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JACOBFS BOUND FOR THE ORDER OF SYSTEMS
OF FIRST ORDER DIFFERENTIAL EQUATIONSf)

BY

BARBARA A. LANDO(2)

Abstract. Let Au ..., An be a system of differential polynomials in the differential
indeterminates ya\ ..., yw, and let ^ be an irreducible component of the differential
variety -éf(Ai,..., A„). If dim ~# = 0, there arises the question of securing an upper
bound for the order of ~# in terms of the orders r¡¡ of the polynomials A¡ in yw. It
has been conjectured that the Jacobi number

J = J{rij) = max < 2 r<ii '■ h> ■ • -,7n is a permutation of 1,..., n J-

provides such a bound. In this paper J is obtained as a bound for systems consisting of
first order polynomials. Differential kernels are employed in securing the bound, with
the theory of kernels obtained in a manner analogous to that of difference kernels as
given by R. M. Cohn.

1. Introduction. Jacobi investigated the possibility of using J(rif) as a bound
for the number of arbitrary constants in a solution of a differential system Au ...,
An. (See Ritt, [5].) The notion of arbitrary constant has since been made more
precise with the concept of order of a component [6, Chapter II, §35 and §10].
Jacobi's bound has been verified for linear systems and for the cases « = 1 and « = 2
[5], [6, p. 136], and in this paper is secured for first order systems. For an arbitrary
system Ritt [6, p. 135] has obtained a weaker bound R = 2"= i max{ri; : /= 1,...,«}.

It is also shown here that when J is a bound, it is the best bound in the sense
that for any set of integers rtj ä0, i,j= 1,..., n, there exists a system with orders
rif such that one of the components has order equal to J(ri}). It may be noted that,
in the usual definition of order, rif is taken to be zero if no derivatives of yU) of
order ^ 1 are effectively present in At; hence rw = 0 does not indicate whether or
not yU) itself appears in A¡. If the definition of order is altered by setting the order
equal to -co when the indeterminate is not effectively present in the polynomial,
a new, possibly lower, Jacobi number J' is obtained. J' might then be conjectured
as a bound.
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120 B. A. LANDO [November

The theory of differential kernels given here differs from that of difference
kernels [2] in the number of distinct generic prolongations and the number of
principal realizations. In the difference case these numbers are finite, while in the
differential case the generic prolongation and principal realization are unique. The
propositions given below for differential kernels hold for difference kernels if
statements concerning uniqueness are eliminated: a difference kernel R has a
generic prolongation R'; ordu R' = ordv R; R has a principal realization a with
the transformal transcendence degree, t.t.d., of A<a>|K = deg R and t.d. A"<ot>U<y>
= ordu R; and for a regular realization ß, t.t.d. A</9>|Ki;deg R.

The main results of this paper have also been obtained for the difference case
(paper in preparation).

2. Notation. The fields considered will be of characteristic zero. The definitions
of differential rings, ideals, and varieties are assumed [6]. Let P be a differential
ring with a derivation 8. For aeP, 8ra is denoted by ar, r^O, with a0 = a. If there is
also an indexing, it will be denoted in superscripts. If A" is a differential field and S
is a set of elements, K[S] is the ring; AYS), the field; K{S}, the differential ring;
and A<S>, the differential field obtained by adjoining S to K.

If K and L are fields, with A"çL, t.d. L\K will denote the degree of transcendence
of L over K. If A and L are differential fields with A"çL and a e L, then a is differen-
tially algebraic over A" if there is a nonzero differential polynomial over A with the
solution a. a is differentially transcendental over A if no such polynomial exists.
With the notion of differential algebraic dependence, it can be shown that L has a
differential transcendence basis over A" [3, pp. 151-156]. The differential trans-
cendence degree of L over A, d.t.d. L\K, is the number of elements in such a basis.

Varieties in the algebraic sense will be denoted by M, while differential varieties
(also called manifolds) will be denoted by J(. (See [6, Chapter II].) If J( is an
irreducible variety over the differential field A with a generic zero a = (a(1),..., a(n>),
then dim J( = d.t.d. K(a)\K, and ord^ = t.d. A"<a>|i^co.

Let P be a subring of the field A", and let D be a derivation of P into K. Let
aa),..., ain); ba\ ..., bin) be elements of K. Let II be the ideal of polynomials
f(y)=f(ya), ■ • -, yn)) in P[yn\ ..., /n)] such that/(a(1>,..., a(n)) = 0, and let S be
a set of generators for II. Let fD(y) denote the polynomial of P[ya\..., y{n)]
obtained from/(j) by replacing the coefficients off(y) by their derivatives under
D. It is well known [3, p. 172] that D can be extended to a derivation D of
P[aa\ ..., a(n)] into K such that Dam = bu\ /= 1,...,«, if and only if

/D(«)+.2 ¿r> (fl) ■bm = °   for a11 /OO e 5-

Furthermore, if the extension exists, it is unique.
Note !.. This result implies the following. Let A and L be fields with K^L, and

let D be a derivation of A" into L. If D is extended to a derivation of K(am,..., ain))
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1970] JACOBI'S BOUND 121

into L(ba\ ..., b™) with am eL and Dam = bm, /= 1,..., «, then

t.d. K(am,..., a™)\K ^ t.d. L(ba\ ..., ¿<»>)|t.

3. Differential kernels. Let A" be a differential field with a derivation 3, and
let a¡ denote the «-tuple (aj1', •.., af), /=0, 1,..., and a0 = a. A differential kernel
R over K consists of an overfield K(a,..., ar) of K and an extension D of 8 to a
derivation of /¡"(a,..., flr_i) into A(a,..., ar) such that Dai = ai + l, i.e. ßa|fl=<4^i>
7= 1,...,«. r is called the length of the kernel. When r = 0, D is taken to be 8.

The degree of transcendence, deg A, of R is defined to be

t.d. K(a,.. .,ar)\Kia.*._»>•

Let S denote a subindexing of a. S is a special set for 7? if SV is a transcendence
basis of ar over A"(a,..., ar_i). Then U¡ = o >% is an algebraically independent set
over K (by Note 1 and the derivations of K(a,.. .,ai.1; S) into K(a,.. .,a,; Si + 1)
for /=0,..., r— 1).

A kernel A' is a prolongation of kernel A if A' consists of an overfield K(a,.. .,ar + i)
of K(a,..., a) and an extension D' of Z) to a derivation of A(a,..., ar) into
A(a, • • •. tfr + i) such that D'ar = ar + 1. It follows from Note 1 that if 5 is a special
set for R, then S contains a special set for R', and that t.d. K(a,..., ar)\Kia.ar_ü
^t.d. K(a,..., ar + 1)\K(a.„r). Thus deg R^ deg/?'. R' is called a generic pro-
longation if deg 7? = deg A'. In this case a special set for R is a special set for R'.

A kernel R consisting of K(a,..., ar) and D is a specialization ofRif(a,..., ar)
is a specialization of (a,..., ar) over A" in the algebraic sense. We note that if <f>
is the homomorphism of K[a,..., ar] onto K[a,..., ar], then

¿(/>ap)) = iAolïi = mx = D(ß?) = /3(<M»),
and <£ is necessarily a specialization in the differential sense.

Proposition 1. Let R be a kernel. There is a generic prolongation R' of R.
Furthermore, if R is any other prolongation of R, R is a specialization of R'.

Proof. Let R consist of K(a,..., ar) and D, and let i = deg R. Let S be a special
set. Let 5r + 1 be a set of 5 elements which are algebraically independent over
K(a,..., aT). There is a derivation D of K(a,..., ar_1; Sr) into K(a,..., ar; Sr + 1)
extending D, with Da{rn = air'l1, where a^'lx is a distinct element of Sr + 1 for each/
Since K(a,..., ar) is a separable algebraic extension of K(a,..., ar_j; Sr), D can
be extended in a unique way to a derivation D of K(a,..., ar) into K(a,.. .,ar;Sr + 1)
[3, p. 175]. Fory"=l,...,«, let o&i = Da^''. Then A(a,..., ar + 1) with Z) is a kernel
A", and deg R' = deg A.

Let A"(a,..., ar, ar +1), D, be a prolongation Ä of A. Since Sr + ! is an algebraically
independent set over K(a,..., ar), there is a homomorphism <f> of K(a,..., ar)[Sr + {]
onto A(o,..., ar)[Sr + 1], where Sr + 1 = DSr. We note that if c e K(a,..., a,-^, Sr),
De e K(a,..., ar)[Sr + 1]. Now if a\fí $ S„ it is separably algebraic over

K(a,..., ar_!; Sr)
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with minimal polynomial f(y), and

7Ja<» = mi = -(WWW)) eK(a,..., ar)[Sr+1].

By a similar argument,

Dd? = St&x = -(fD(ar»)/f'(a?)) eK(a,..., aT)[Sr + 1].

Hence <f> is already defined on a^li with aril1 = ä(rll1, and thus provides the required
specialization.

Corollary. The generic prolongation of a differential kernel is unique in the
sense of isomorphism.

Yet U be a subindexing of a such that U contains a special set and

t.d. K(U,..., UT)\Kia.Ur_0 = deg R.

Then the order of R with respect to U, ord^ R, is defined to be

t.d. K(a, ...,ar)\KW.Ur).

If U is itself a special set, then ord^ R is defined, and

ordu R = t.d. K(a,..., ar)\KW.Ur) = t.d. K(a,..., ar_x; Ur)\KiU.Ur)

= t.d. K(a,..., Or-».)!*«,.t;,-!)-

If deg R = 0, U may be the empty set, and we define the order of R, ord R, to be
t.d.K(a,...,ar)\K.

Proposition 2. Let R be a kernel with a generic prolongation R'. Let U be a
subindexing of a such that ord^ R is defined. Then ord^ R' is defined, and

ordu R = ordu R'.

Proof. Analogous to that of Lemma III, Chapter 6, of [2].
If R:K(a,..., ar), D, is a kernel, and a = (aa\ ..., a(n)) is contained in a differen-

tial overfield of A, then a is a realization of R if (a, al5..., a,.) is a specialization of
(a, au..., ar) over A". If the specialization is generic, the realization is called
regular. Finally, a is called a principal realization of R if there is a sequence of
kernels R = R(0\ Ra\ ..., each a generic prolongation of the preceding, such that
a is a regular realization of each R{lc\ k = 0, 1,....

Proposition 3. Every kernel R has a principal realization a which is unique in the
sense of isomorphism, d.t.d. K(a}\K = deg R; and if U is a subindexing of a such that
ordu R is defined and V is the corresponding subindexing of a, then t.d. A"<ce>|K<v>
= ord[; R. If U is a special set, V is a differential transcendence basis for a over K.

Proof. Proof of existence is analogous to that of Lemma V, Chapter 6, of [2].
The uniqueness of a follows from the uniqueness of generic prolongations in the
differential case.
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Proposition 4. If a is a regular realization of R, then d.t.d. A"<a>|K = deg A with
equality holding if and only if a is a principal realization.

Proof. Analogous to that of Lemma VI, Chapter 6, of [2].

Corollary. A realization ß of a kernel A which specializes to a principal realiza-
tion a is a principal realization, and the specialization is generic.

Proof. Clearly ß is a regular realization, and d.t.d. ÂXj8>|K^d.t.d. A<a>|A =
deg A. By the proposition, ß is a principal realization. By the uniqueness of principal
realizations, A"<j8>sA"<a>.

In general, however, if a is any realization of A, it is not necessarily true that
d.t.d. A"<a>UádegA.

Example 1. Let a = (u, v, w) where u, v, and w are algebraically independent
over K. Let ay = (u, v, w±) where wx is a zero of the polynomial vy — u. Then K(a, a¿)
defines a kernel A of degree 0. Let a'= (0,0, w) and a{ = (0, 0, w[) where w[ is
transcendental over K(w). K(a', a[) defines a kernel A' of degree 1. A specializes
to A', but deg A<deg A'. If a' is a principal realization of A', it is a realization, but
not a regular one, of A. Thus deg A = 0, but A has a realization a' with

d.t.d. a:<«'>|k = 1.

Note 2. If A is a kernel of length r > 0, A is equivalent to a kernel A' of length 1
in the sense that their realizations generate the same differential field extensions
of A". If A consists of K(a,..., ar) and D, with r > 1, let b be the vector (a,..., a,_i)
having rn components and let b1 = (a1,..., ar). Then Db = bu and A' consisting of
K(b, /;,) and D is a kernel of length 1 which is equivalent to A.

4. Specialization problem. Let A and R be kernels with fields K(a,..., ar) and
K(ä, ...,äT), respectively, r=g0, such that K(a,..., ar-l)'^KK(ä,..., âr_i).
(When r = 0, the isomorphism is the identity automorphism of A".) Let ä be a
principal realization of R. It will be shown that if R is a specialization of A over
K, then d is the specialization of a principal realization a of A.

In general, a specialization of kernels does not imply a specialization of principal
realizations. In Example 1 A specializes to A', but deg A < deg A', and hence there
is no specialization of principal realizations. Furthermore, while deg A ä deg A' is
a necessary condition for the existence of a specialization of principal realizations,
it is not sufficient.

Example 2. Let A consist of K(a, ay), D, where a is a single element algebraically
independent over A", and aY is a zero of f(y)=y2 — Aa. Let A' consist of A(0, 0)
and D'. Then A specializes to A', and deg A = deg A'=0. Dax=—fD(a1)/f'(a1)
= 4a1/2a1 = 2. Since (a, au 2) does not specialize to (0, 0, 0), the principal realization
of A does not specialize to the principal realization (0) of A'.

The lemmas below are concerned with arbitrary fields, not necessarily differential
fields.
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Lemma 1. Let K and L be fields; let K[a] = K[am,..., a{n)] be an integral domain
and M afield containing A. Let a: K[a] -> L and t: M -*■ L be homomorphisms over
K with restrictions a\K = r\K #0. Then there exists a free join M'[a'] of M and K[a]
over K with >/j1: K[a'] = KK[a] and </i2: M'^KM, and there exists a homomorphism
</>: M'[a'] —>L such that <p\¡aa-i = a ° "Ai and </>\w = Tot)i2.

Proof. Since A" is a field and <r^0, we may assume without loss of generality
that K^L and that o\K=r\K = idK. By the universal mapping property of tensor
products, there exists a homomorphism $> of M ®KK[a] into L such that O|xtaj = or
and 0|m = t.

Let n be the kernel of O. Since 0 e II and II is prime, there exists a prime divisor
A of the ideal (0) such that A^Il. M ® K[a] is noetherian; thus, by Corollary 3
to Theorem 10, Chapter IV, of [7], A consists of zero divisors. Hence M (g> A"[a]/A
is a free join of M and K[a] over K [1, p. 189], and M <g> K[a]/A^KM'[a'] with
i/^: K[a']~KK[a] and >p2: M'^KM. Since A£ll, there is a homomorphism
</>: M'[a'] —>L determined by <f> such that <p\K[a.j = o ° </ix and </>\M- = T ° <l>2-

It may be assumed in the above lemma that either i/>1 = id or ^r2 = id.

Lemma 2. Let L be an algebraically closed field and L(b)=L(ba\ ..., b{n)) with
t.d.L(b)\L=\. Let b = (bm,..., ¿><n>) consist of elements of L. If b specializes to 5
over L, then there exists a parameter t e L(b), transcendental over L, such that L[b]
has a representation in the power series ring L[[t]] with

¿c» = ¿<» + 2 Cijtj,       i=\,...,n.
i = l

Proof. L(b) is an algebraic function field of one variable over L. Using the
notation and results of Chevalley [1], we may obtain a place p and a valuation
ring o of L(b) over L with L[b]^o and è(i)-5(i)e», i=\,...,n, [1, Chapter I,
Corollary 1 to Theorem 1]. By Theorem 2, Chapter I, of [1], o/p is algebraic over
L; hence o/p=L since L is algebraically closed.

Since o/p=L is separable over/., it follows that every element c in the p-adic
completion of 7(6) has a representation c = 2"=r CjV with r an integer and c¡eL
for all j [1, p. 46]. Moreover, if c e o, then r^O; and if c ep, then r^ 1. Then,
since L[b]^o, L[b]^L[[t]], and since b(n-bwep, bm-bw = 2T=i «VJ with
bw, cueL. This completes the proof.

Let K[[t, /i,..., tm]] be the formal power series ring in m +1 indeterminates
t0 = t, tu..., tm. For p e K[[t,..., tm]], p may be written p0+Pi-\-+pk-\-,
where pk = 0 or is a homogeneous polynomial of degree k in K[t,..., tm].

Lemma 3. Let D be a derivation of K into K[[t]]. Then D can be extended to a
unique derivation D of K[[t,..., tm-1]] into K[[t,..., tm]] such that Dt, = tj + 1 and
forp=p0+p1+- ■ ■ +pk+   -in K[[t,..., /„-j.]], Dp = 2k = o Dpk.

Proof. D can be uniquely extended to a derivation D of K[t,,.., (,. J into
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K[[t,..., tm]] with Dtj = tj + 1, j=0,..., m— 1. If p, = atk»- ■ ■t!^-'{L is a monomial
of degree k = ^fJo1 k¡,

m-l m-1   / _ \

Dp = (Da)- Y}tp + a- £ M^-Writf' *
1=0 i=0  \ t*)       I

where Da e K[[t]]. Thus Dp is a power series of K[[t,..., tm]] of order ^k. If
p=Po+Pi+ • ■ £ ^[[?. • • •> tm-i\], then ord Dpk^k, and hence the sum 2™= o ̂ P*
converges to a series in A[[r,..., rm]]. Thus we may define Dp to be the series
2?=o DPk- It is easily shown that O is a derivation on K[[t,..., fm_i]] and it is
clear that D is unique.

Now let A" be a differential field with derivation 8. Let a represent (am,..., aw).

Theorem 1. Let A and R be differential kernels consisting of K(a,..., ar), D, and
K(ä,..., är), D, respectively, r^O, with K(a,..., ar-x)^KK(ä,..., âr-i)- Let a and
à be principal realizations of R and R, respectively. If Ris a specialization of R, then
d is a differential specialization of a.

Proof. Since principal realizations are unique up to isomorphism, it suffices to
prove the result for any principal realizations of A and A. Also, we may assume
that the kernels are of length 0 or 1 (Note 2). The proof is given first for the case of
length 1.

A and R have fields K(a, aj and K(ä, äj), respectively. Since K(a)~ K(a), we may
assume that a = a. Since (ai) specializes to (o^) over K(a), deg A ̂  deg R. If deg A
= deg A, then K(a, a^)^K(a, äx), and by the uniqueness of principal realizations,
A"{a}= K{á}. It remains to consider the case deg A>deg A.

It will be shown that we may assume that deg A = deg A+1. Let

t = t.d. K(a, üJIkm   and   s = t.d. K(a, «OU«»).       t > s.

There exists a sequence of specializations over K(a) :

Qi = bU} -*■ ¿>(i-i) -*■-> b(s) = <z,

with t.d. K(a, bm)\K{a) = i, i=s,...,t [8, p. 194]. Since there is a derivation
D : K(a) -*■ K(a, O]) and since ay ^^ bm, there is a derivation Dw : K(a) >-»■ K(a, bin),
i=s,..., t. Thus each K(a, bu), Dw, is a kernel of degree /', and it suffices to prove
the theorem for the case deg A = deg A +1.

Next it is shown that we may assume that deg A = 0. Suppose deg R = s>0 and
deg R = s+ 1. Let A"<<x>, 8, and A<a>, 8, be the differential fields generated by the
principal realizations à and a. By Proposition 3, d.t.d. K(d}\K=s and d.t.d. K(,ay\K
=s+1. We may assume (a, dj) = (a, ax) and (a, a1) = (a, ax). Since (a, ay) specializes
to (a, ¿j) over A", there is a subindexing S of a such that S is a special set for R
and is contained in a special set for A. Fory'^ 1, let d'S be denoted by 5; and 8'S
by Sj. Since the realizations are principal, Uf™ i ^i and Ur^i St are both algebrai-
cally independent sets over A"(a), and thus K(a; Si, S2,.. ,)^K(a; S1( S2,...). By
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taking a principal realization isomorphic to ä we may assume that 5¡ = 5¡ for all
/^0. A"<S> is a differential field; A"<S>(a, «0 is a kernel R' over A"<5> of degree 1
with a principal realization «; and K(S}(a, öj) is a kernel R' over A<5> of degree 0
with a principal realization <*. The specialization A[a, aj -> A"[a, äj may be
extended to the homomorphism A(5, S^a, aj -> A"(5', ̂ [a, 5X], and then to
A<5>[a, Ai] K<s>> A<5>[a, âj since Uf^a-Si is an algebraically independent set
over both K(a, a±) and K(a, tä,.). Thus R' specializes to R' over A"<S>. If a jf<iS>> ä,
then clearly a^-«. Thus it suffices to consider the case deg R = 0.

Let L be the algebraic closure of K(a, äj) (and hence of K(a)). Since there exist
homomorphisms K(á)[a-¡] xj^ A"(a)[¿i]£L and L^L, by Lemma 1 there exists
a free join 7[a^] of L and A^faJ over A(a) with K(a)[a[] = A"(a)[fli], and there
exists a homomorphism^: 7[ai] j^Lwith^a^Ö!. We may assume that a[ =a1 (by
taking a kernel isomorphic to R over A(a)). Thus <f> gives a specialization of ax onto
ai over/,, t.d. L(a1)\L=l since t.d. K(a, ai)|jr<0)=T, and Lía».) is a free join over K(a).
By Lemma 2 there exists í g L(a1), transcendental over L, such that L[ßi] has a
representation in L[[t]] with

(1) 4P - 4M-2 <fct'   for/= 1,...,«.

Since L is algebraic over A"(a), the derivations Z): A"(a)—^ A"(a)[ai]çL[[r]] and
D: K(a)^> K(a)[äx]^L have unique extensions to D: L^- L[[t]] and D.L^L
[3, pp. 172-175]. By Lemma 3, D can be extended successively to derivations

D2: L[[t, ¡fill—>-L[[r, rl5 r2]],...,

/>,:£[[;,..'., í,-!]] ->Z.[[f,...,i,]],....

For each/ fy is transcendental over L[[?,..., f/_i]]; Djtj-1 = tj; and if q=q0+qx
+ ■ • ■ +<7jc+ • • ■ eL[[i,..., iy-i]] with #« homogeneous of degree k, then 7)^ =
2™= o Dsqk. Then U^o-i-itf, • • -, ¡j]] ¡s a differential ring P with a derivation D
obtained by taking the union of the derivations D¡,j=0, 1,....

ü! = Da eL[[t]]. For h>\, let ah = Dha. Then K[a, au ...] is a differential sub-
ring of P, and K(a, at, ...) is a differential field, (a, au ..., ah,...) is a regular
realization of R, and d.t.d. A~(a, au .. .)|K^deg 7?= 1. Since t e L(ax), tll-1 =
D*"1! e L(ax,..., ah) for any h>0. th-i is transcendental over L[[t,..., ?h_2]] and
therefore over L[a,..., a„_i]. Hence for all h>0,

t.d.K(a,...,ah)\Kia.ah_0 è t.d. L(au . ...ßj.))«,,,.,...,,^...) ^ 1,

and thus d.t.d. A(a, a1;.. .)|Kè I. Therefore d.t.d. K(a, a±,.. .)\K = 1 =deg A, and
(a, a-i, a2,...) is a principal realization of A (by Proposition 4).

L is a differential field with the derivation D. Da = äi. For h>\ let 5h = Dha.
Then (<7, a»., o2,...) is a regular realization of R. Since 0ád.t.d. K(a, au .. .)\K
g deg Â = 0, (a, äu ä2,...) is a principal realization of Ä.
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Let <I>:P-+L be defined by 0^=0,7=0, 1,.... Then <J> is a homomorphism
over L and from (1) it is clear that <ba1 = ä1 = <f>a1. Thus <D is an extension of the
specialization <¡>: L[ax] ->L[äx]=L (and of the specialization K[a, ax] -»■ K[a, aj),
and for c e K[a], <&(Dc) = </>(Dc) = Dc. We will show that <DoD = Do(D on P.
First for peL, let f(y) be the minimal polynomial of p over K(a). Then Dp =
-fD(p)/f'(p), and Dp—-fD(p)lf'(p)- We may assume that f(y) has coefficients
in K[a]; then <HJD(p))=fD(<S>p). Using this and the fact that <&p=p, we obtain

<H.DP) = ®(-fD(p)if(p)) = -fB(®p)imp)
- -fD(p)lf'(p) = 5/> = ***/>>•

Forç eL[[í, ..., rÄ]], q=qo+q', whereq0 eL, and^' = 0 or each term of<7' involves
r's. Dq=Dq0 + Dq', where Dq' =0 or each term of Dq' involves some t's from
among t, tlt..., rft + 1. Then

(2) 0(£><7) = <&(Dq0 + Dq') = <b(Dq0) = D(q0) = D(®q)

for any qeP.
The restriction of $ to K[a, au ...] is a homomorphism into L with Q)a = a and

Oa1 = â1. Assume that it has been shown that <¡>aj = aj,j=0,...,«— 1. Then using
(2) we obtain (bah=<&(Dah-1) = D(<I>ah-1) = Däh-1 = äh. Therefore, by induction,
<D provides a specialization of the principal realization (a, au...,ah,...) of A
to the principal realization (a, alt... ) of A.

The preceding proof can be modified easily for the case of kernels of length 0.
The same assumptions can be made: that degA=l and degA = 0, and that a
specializes to ä over the algebraic closure M of K(a). Then M[a] has a representa-
tion in M[[t]] with a(i) = â(i) + 2f=i dKjV; and U"=i M[[t,..., th]], D, and O can be
defined in a similar manner. However, in this case, since M is the algebraic closure
of A", Z> = J5on M. Thus for « = 1,2,...,

and it is clear that 0>ah=äh, «^0.

Corollary. Every regular realization of a kernel A is the specialization of a
principal realization.

Proof. Let A be a kernel of length r ^ 0, and let ß be a regular realization of R.
By Proposition 4, d.t.d. A"<j8>|KSdeg A. We use induction on

«I = degA-d.t.d.A-<J8>|ir.
Basis. m = 0. Then d.t.d. K(ß}\K = deg A, and ß is a principal realization.
Inductive step. Assume the result holds for any kernel A with a regular realization

ß such that O^deg A-d.t.d. K0}\K<M.
Let degA-d.t.d. K<ß>\K = M>0. Let Rk be the kernel K(ß,...,ßr+k), k^0.

Then deg ASdeg A^ • •• âdeg Afc^0. Let k~ be the minimal k^0 such that
deg Rk = deg Rk + h for all «^0. ß is a principal realization of A¿. Since M>0,
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k>0, and by the minimality of k, deg Rk^1>degRk. Thus Rk is not a generic
prolongation of Rk-1. Let A' be the generic prolongation K(ß, ■.., ßr+k-i, ßr+a)
which specializes to K(ß,..., ßr + k-i, ßr+t)- By the theorem there is a principal
realization ß' of A' which specializes to ß. ß' is a regular realization of A. Further-
more, since the specialization ß'^ ß is not generic, deg A — d.t.d. K(ß")\K<
deg A — d.t.d. K(ß)\K = M. By induction there is a principal realization a of A
which specializes to ß'. Hence a ^> ß' ¡p> ß.

5. Jacobi's bound. Let A be an « x « matrix \rfj\ where rif is an integer or —co.
A diagonal sum of A is any sum rlh + r2J2 + ■ • ■ +rnjn, with/,.. .,_/„ a permutation
of 1,...,«. If A is an m x « matrix with M = min {m, «}, then a diagonal sum of A
is a diagonal sum of any MxM submatrix of A. The Jacobi number J(A) of a
matrix A is the maximal diagonal sum of A.

Two mxn matrices A and A* are called I-equivalent if ^4* can be obtained
from A by interchanges of rows and interchanges of columns. For k á min {m, ri),
A will be called Ik-equivalent to A* if A* can be obtained from A by interchanges
within the first k rows and columns. If A and ^4* are 4-equivalent, J(A)=J(A*).

Proposition 5. Let A be an mxn matrix \rtj\ with m>n, rtj=l for i=j, and
/•i; = 0 or 1 for i^j. Then A is In-equivalent to a matrix of the form:

1
1

1

1

: i

0 !    '•■
i

B

t n

where 0 á t g « and for allj>t there is an i} >j such that rijj=\. (Each column of B has
a 1 somewhere below the diagonal.)

Proof. We use induction on n.
Basis. «=1. A is a column \ra\ with r11 = l. Then A has the required form: if

rtl=0 for i> 1, i=l; if ru = l for some i> 1, i = 0.
Inductive step. Assume the result holds for any mxñ matrix A with m>« and

1^«</V.
Let A be an mxN matrix, m>N>l. Let C=|rü|i>JV be the submatrix of A

consisting of the last m-N rows of ^. If C=|0|, let t = N. If C#|0|, then rM=l

/

m
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for some p>N. We may assume that «7 = N(hy interchanges of rows and of columns).
Let D be the mx(N— 1) submatrix of A consisting of the first N—\ columns of A.
By induction D is IN _ !-equivalent to a matrix D* of the required form with
OfitfiN— 1. Since rNN and rpN are unaffected by interchanges within the first
N— 1 rows or N— 1 columns, A is /# .^-equivalent to a matrix A* of the required
form with O^t^N- 1.

Proposition 6. Let A be an mxn matrix \rv\ with ry = 0 or  1. Lei J(A)=J.
Then A is I-equivalent to a matrix of the form:

1
1

(3)

0

0

0
m

t J        n
where 0¿ t^J and for each j, t<j^J, there is an it>j such that riti=\.

Proof. The case /4 = |0| is trivial with 0 = /=7; so we assume /i#|0|. Since
J(A)=J we may assume that ru=\, i=l,.. .,J. If m=J, let /=/. If m>J, Proposi-
tion 5 may be applied to the submatrix of A consisting of the first J columns of A.
Hence A is /-equivalent to

1
1

1

A* = |jw| =

0

D

0

J

m
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where 0¿/á/and each column of B has a 1 in some row below the diagonal. Then
it can be shown that A* has form (3). Let D be the submatrix of A* with entries
si;; t<i^J,J<j^n. D= 0 if t=J or J=n. In either of these cases A* has form (3).
If 7)# 0, it remains to show that 7>=|0|. If 7>#|0|, by using the fact that each
column of B has a 1 below the diagonal, one can obtain a diagonal sum greater
than J, a contradiction. Thus D= |0|.

Theorem 2. Let K[y] = K[ym,..., J(n)] be a polynomial ring over afield K. Let
Ax,..., Am be polynomials of K[y]; let A be the mxn matrix \rit\ with rtj=l ifyli)
appears in A¡ and rtj = 0 if not. If the algebraic variety M(AX,..., Am) is not empty,
then every irreducible component has dimension ^n—J(A).

Proof. Since interchanging of rows of A corresponds to reordering Au ..., Am,
and interchanging of columns corresponds to reindexing ya\ ..., v(n), by Proposi-
tion 6, we may assume that A is of the form (3), with J=J(A) andO^t^J. t + (n— J)
of the indeterminates do not appear in At + 1,..., Am, and thus the irreducible
components of M(At + u ..., Am) have dim ^t + n—J. By the Dimension Theorem
[4, p. 36], the components of M(AU ..., At) have dimension än — t. M(AU ..., Am)
= M(Au...,At)nM(At + 1,...,Am). Thus the irreducible components of
M(AU ..., Am) have dimension ^(n — t) + (t + n—J) — n = n—J(A).

Let K[x,y] = K[xm,..., x(m);ya\ .. .,y(ny] be a polynomial ring in m + n
indeterminates over a field K. If L is an ideal of K[x, y], let £° denote the ideal
S n K[x] in K[x].

Lemma 4. Let (a, b) p* (a, b) where a=(am,..., a(m)) and b = (ba\ ..., bM). If
t.d. K(ä)\K = t.d. K(a)\K-s, säO, there exists c = (cm,..., c(n)) such that (a, b)-^
(ä, c) ^ (a, b) and t.d. K(ä, c)\K^t.d. K(a, b)\K-s.

Proof. Let II and II be the associated ideals of (a, b) and (ä, b), respectively, in
K[x, y]. dim n° = dim II°-i. It suffices to obtain a prime ideal A of K[x, y] such
that n^A^n, A°=n°, and dim A^dim U-s. We use induction on s.

Basis. s = 0. Then n° = n°. Let A=II.
Inductive step. Assume that the statement is true for all prime ideals S and S

with 0 ̂  dim 2° - dim S° < S.
Let dim IT-dim n° = S'>0. Then n°cfi°, and there is anf(x) e ÏÏ° such that

f(x) ci IT. Hence nc(ri,/)ç II, and there is a prime divisor A1 of (II,/) such that
ricA^n. By the Dimension Theorem, dim Ai = dim II — 1. Since/e A^, 11°<=AI
çll°; thus dim Aî-dim n° = i1^S—1. By induction there is a A such that
A^Ajgfi, A°=n°, anddim A^dim Aj-Ji. Then nsAgn, and

dim A ^ dim Aj-í! ^ dim A1-(S-l) = dim II-1 -(S-l) = dimïï-S.
Now let A" be a differential field and K{y} = K{ym,..., v<n)} a differential poly-

nomial ring with a derivation d. Then K[y, y^ is a subring of K{y}, and 8 is a
derivation of K[y] into K[y, y¡] with 8y=y1. If/(v) e K[y], then 8(f(y)) e K[y, yx]
and will be denoted by 8f(y, yj.
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Let II be a prime ideal of K[y, jj with a generic zero (a, b). 17.° = II n K[y] is
the ideal associated with a over K. Let G be a finite set of generators for 11°.
K(a, b) is a kernel if and only if 8G^ If [3, p. 172]. Let the elements of G be indexed
gi(y),---,gh(y) so that {8gx(a, yj,..., 8gr(a, yj}, r^h, is a maximal linearly
independent subset of {8gx(a, j^),..., dgh(a, jx)} over K(a). Then 8gi(a,y1) =
2k = i «ut dgk(a, Ji), aik e K(a), i= 1,..., h; and 8gt(a, b) = 0 if and only if 8gk(a, b)
= 0, k=l,..., r. Thus K(a, b) is a kernel if and only if 8gk(y, yt) e Yl, k— 1,..., r.
When K(a, b) is a kernel,

{dgi(a, yt) = *f(fl) + ¿ |^ (a)•//>, i = 1,..., «}

is a consistent system of polynomials in A(a)[jj] since b is a zero. Since r is the
number of linearly independent polynomials, r equals the rank of the matrix

\8gi(d)/8y(ñ\,       i = 1,..., «;   j =],..., n.

But rank |0g((a)/3y<»| =«-t.d. K(a)\K [3, pp. 177-179]. Therefore, r = «-t.d. K(a)\K
and r is independent of the choice of generators.

Let Au ..., Am be a system of differential polynomials in A"{y}. Let rM be the
order of A¡ inyU), with ry = 0 if y(n does not appear effectively in A¡. Then the matrix
/4 = |rw| of orders may be associated with the system, and the Jacobi number of
the system is J(A).

Theorem 3. Let Ax,..., Am be first order differential polynomials in K{y}. Let
A = \rfJ\ be the matrix of orders ru of At in yU). If Jt is an irreducible component of
the differential variety Jt(Au ..., Am) with dim Jé = §, then ordJi^J(A).

Proof. Let á = (ó;<1),..., â(n)) be a generic zero of J(. Then K(d, dj) is a kernel A.
Since d is a regular realization of R, it is the specialization of a principal realization
a of A (Corollary to Theorem 1). But a is a zero of Ax,..., Am; thus d is itself a
principal realization. Hence 0 = d.t.d. K(d}\K = deg R, and ord^# = ordA =
t.d.A(â,â1)|K = t.d.A-(â)|K.

(a, âj) is a zero of the ideal (Ax,..., Am) in K[y, jj. Let (a, ay) be the generic
zero of an irreducible component of the algebraic variety M(AU ..., Am) such that
(a, ax) j*- (a, dj). For some 5^0,

t.d. K(d)\s = t.d. K(a)\K-s.
By Lemma 4, there exists c such that (a, ax) -^ (d, c) -¡^ (ä, dj, and

(4) t.d. K(d, c)\K ̂  t.d. K(a, aJlx-s.

Let A and n be the associated prime ideals of (d, c) and (<x, dj, respectively, in
K[y,yil A° = LT°. Let {gi(y), ■ ■ ■, gh(y)} be a set of generators of A° with
{dgi(ä, ji),..., 8gr(d, yj) a maximal linearly independent subset of

{dg¿ñ,yi),i = l,...,«}

over K(d). Since K(d, äj is a kernel, 8g¿y, y1)eU,i=l,..., r. There exists a prime

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



132 B. A. LANDO [November

divisor LI of the ideal (A; 8gA[y, yx),..., 8gr(y, yj) such that us II. dim II
^dim A-r. The relation A°cnoçn0 = A° implies that n° = ïï0. Thus II has a

generic zero (ä, ax) for some au and

(5) t.d. K(ä, ai)\K ^ t.d. AX«, c)\K-r.

Since 8gi(y, yx) e II, i= 1,..., r, K(â, a±) is kernel R.
Since (â, a,) p- (à, âj), there is a specialization of the principal realization a of

R onto â (Theorem 1). But a is a zero of Ax,..., Am and ä is a generic zero of J/;
therefore, the specialization is generic, and A~(<*, a^S*K(â, âj).

Using this isomorphism, (4), and (5), we obtain

t.d. K(ä, äx)U = t-d. K(ä, ai)\K ^ t.d. K(ä, c)\K-r
^ t.d. K(a, a^lx-s-r.

Then, since s = t.d. K(a)\K —t.d. K(a)\K and t.d. K(ä)\K = t.d. K(ä, ä])\K, the in-
equality becomes O^t.d. K(a, a1)\K(a) — r. However, by the remark preceding the
theorem, r = n — t.d. K(a)\K = n — ord Ji. Substitution for r in the above inequality
yields
(6) ord J( ^ «-t.d. K(a, ax)\KiaY

Let A*,..., A* be the polynomials of K(a)[vj obtained by substituting
aa\ ..., a(n) for ya\ ..., ym in Au ..., Am. Let A* be the mxn matrix \rf}\ with
rfj= 1 if j'/' appears in Af, and rj*=0 if not. J(A*)^J(A) since rj$=l only-if r(J=l.
By Theorem 2 every component of the algebraic variety M(A*,..., A*,) over K(a)
has dimension ^n—J(A*)^n—J(A). a-¡, is a zero of A*,..., /!*; thus there is a
generic zero b of a component of M(A*,..., A*) such that b kj^> a1. But (a, b)
is a zero of Ait..., /4m, and (a, a^ is a generic zero; therefore the specialization is
generic, and t.d. K(a, ax)\Kia)^n—J(A). Using this inequality and (6), one obtains
ord .#^704).

The following slight generalization can be made in the above theorem. Let Ji
be an irreducible variety with generic zero a. Let y' he a subset of the coordinates
of y. Let a be the coordinates of a corresponding to y'. Then the order of Ji
relative to y', ord (y')Jt, is defined to be t.d. A"<a>|x<a->.

Let Bu ..., Bm be a system of differential polynomials in K{y}. Let y' be a subset
of y such that ifyu) ^ y', the order ru of Bt in y0) is 0 or 1. Let \ri}»\ be the submatrix
of the order matrix |rw| consisting of those rtj such that y(i) $/. IfJi is a component
of Ji(Bi,..., Bm)for which y' contains a complete set of parameters, then

ord (y')Jl ^ J(rif.).

This theorem can be reduced to Theorem 3 by a method similar to that of
Theorem IX, Chapter 8, of [2].

Note 3. Any finite system £? of differential polynomials may be reduced to an
equivalent first order system ^. However the Jacobi number of ¡T may be greater
than that of ¿f. Thus the extension of Theorem 3 to arbitrary systems is not
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immediate. This situation suggests that the strong Jacobi number might be a more
natural bound. Let if consist of Au ..., Am with an order matrix \ru\. We may
define the strong order sti of At in yU) to be rf, if yU} is effectively present in Ah and
to be -co, if not. Then J'=J(s¡j) is the strong Jacobi number of the system ¿f.
J' SJ(rv). It can be shown that the strong Jacobi number of 3~ is equal to that of if.

6. Examples. Let A be an « x « matrix of nonnegative integers. It will be shown
that there exists a system of « differential polynomials in n indeterminates with a
matrix of order equal to A such that some zero-dimensional component of the
variety of the system has order equal to J(A). Thus, if the Jacobi number is a
bound (as it is for first order systems), then it is a bound achieved by some system.
A more general result is easily obtained by taking A to be a matrix with entries
that are nonnegative integers or -co, and such that J(A)^0. A system can then be
found with order equal to the strong Jacobi number.

Let A" be a differential field with L the subfield of constants under the derivation
8. Let L^K. Let L[8] be the ring of linear differential operators. Let A denote an
n x n matrix |//ö)| of such operators, y the vector

/»)
and Ay=0 the system of linear differential equations

{A, =/1(3)/1,+ • • • +/n(%(n) = 0, / = 1,..., «}.

Let *y denote the strong order of A¡ in yw. Then stí, = deg fif(8), the degree of
fij(8) as a polynomial in 8. deg (det A)^J(degfij(8))=J(sij).

Let A be an nx« matrix with entries that are nonnegative integers or -co, and
let J(A)^0. Let A = \su\. If stj=s^ -co, let Fil{x,8) = xii0 + xm8+-r-xijs8s,
where the xiJk are indeterminates. If sit= —co, let F^x, 8) = 0. Then det \Ft¿x, 8)\
is a polynomial p0(x)+ • ■ ■ +pm(x)8m, with m=J(slj)^0 and with each ph(x) a
polynomial over the integers in the indeterminates xm. There exists a point (am)
of integers such that pm(a)¥=0. Let fij(8) = Fij(a, 8) eL[8], and let A=|//e)|.
\degfij(8)\=A and deg (det A) = m=J(A). The system Ay has strong Jacobi
number J'=J(A). It will be shown that this system has a component of dimension
zero and order J(A).

There exists a matrix A of linear differential operators such that det A e L and
A A has a triangular form:

«n(3)   «12(d)      •••

0       h22(8)   h23(8)      ■■

0 0       «33(8)      ••

Kn(8)
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with hu(8) ?é 0 for all /'. The method of obtaining A may be indicated as follows.
Since det A^0,/a(3)#0 for some i. We may assume that/n(3)#0 and/21(S)^0.
Let g(S) = g.c.d.(/11,/21). Then f11(8)=g(8)d(8) and f21(8)=g(8)-e(d), and
ef11 — df21=0. Since d and e are relatively prime, there exist p(8) and q(8) in L[8]
such that dp + eq=\. Let

Ax«

Then det Ax = — 1 and

AjA =

P(ö)
e(8)

0

q(8)    0
-¿/(S)    0

0      1

gu(d) gi2(S)

0 g22(8)   g23(8)

fsi(8) MS)   f33(d)

fm(d) ■ ■ ■

/a.(3)

fn»W

Since det (AjA)= — det A#0, some entry in the first column is nonzero. This
procedure may be repeated to obtain matrices A¡. Eventually the product A of
such A¡ will satisfy the requirements. Since det AeL, A has an inverse A-1 in
L[8]. Thus the systems Ay and A Ay are equivalent, det AA = c det A, ceL.
Hence deg (det A A) = deg (det A) =J(A). A zero (a(1),..., <x(n)) of A Ay (and in
fact the generic zero of a component) may be obtained by successively solving one
equation in one indeterminate, beginning with the last.

t.d. AV°,..., c^'M^+d.«<»>> = deghu(8)-

Thus d.t.d. A"<a>|K = 0, and t.d. A"<<x>|K = 2f=i deg hu(8) = deg (det AA)=/(^).
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