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Improved Stiffness Evaluation
A Jacobian-based topology optimization method is recently proposed for compliant par-
allel mechanisms (CPMs), in which the CPMs’ Jacobian matrix and characteristic stiff-
ness are optimized simultaneously to achieve kinematic and stiffness requirement,
respectively. Lately, it is found that the characteristic stiffness fails to ensure a valid
topology result in some particular cases. To solve this problem, an improved stiffness
evaluation based on the definition of stiffness is adopted in this paper. This new stiffness
evaluation is verified and compared with the characteristic stiffness by using several
design examples. In addition, several typical benchmark problems (e.g., displacement
inverter, amplifier, and redirector) are solved by using the Jacobian-based topology opti-
mization method to show its general applicability. [DOI: 10.1115/1.4038332]

1 Introduction

Compliant mechanisms are elastic structures that can transmit
force or motion from input to output. Due to the combined charac-
teristics of mechanism and structure, the analysis and design of
compliant mechanisms are more challenging than that of rigid-
body mechanisms. There are two main synthesis approaches for
compliant mechanisms, i.e., rigid-body replacement approach
[1–3] and topology optimization approach [4–7].

The rigid-body replacement approach has a wide design scope
including all kinds of degree-of-freedom (DOF) compliant mecha-
nisms. This approach synthesizes most of compliant parallel
mechanisms (CPMs), whose synthesis method is the focus of this
paper, by replacing the kinematic joints of existing rigid-body
mechanisms with flexure hinges. Thus, the compliant mechanisms
designed by this approach rely on the topologies of rigid-body
mechanisms. While this approach is successful in designing
multi-DOF CPMs for precision applications, it is limited by the
fact that a compliant mechanism may still be unable to fully
reproduce the motion of its rigid-body counterpart even using rig-
orous analysis and optimization techniques [8]. Moreover, this
approach cannot select the best topology for a specific problem
currently, which is quite important for developing mechanisms
with high performance.

The topology optimization approach regards the synthesis of
compliant mechanism as finding out the optimal material distribu-
tion within a given design domain, by maximizing the motion or
force transmission between specific input and output ports. Due to
this advantage, the topology optimization approach has been suc-
cessfully applied to the synthesis problems of multiple input and
output ports [5,9–13], multiple materials or physics [9–11], three-
dimensional simple compliant mechanisms [14–16], etc. The
compliant mechanisms designed by this approach possess struc-
tural type of topology, i.e., no flexure hinges, which is different
from the flexure hinge-based mechanisms obtained by the rigid-
body replacement approach.

To introduce the idea of topology optimization into the design
scope of the rigid-body replacement approach, our previous works
[17–19] tried to synthesize the flexure-based compliant

mechanisms with simple motion based on the idea of topology
optimization. Lum et al. [20–22] presented a hybrid topological
and structural optimization method. This method first synthesizes
the compliant joints with the optimal stiffness characteristics by
topology optimization. The resulting compliant joints are then
assembled into a CPM based on existing rigid-body mechanism
topology.

Recently, we proposed a Jacobian-based topology optimization
method [23] for the optimal synthesis of planar CPMs. Traditional
topology optimization methods realize multiple outputs by prede-
fining specific output displacements at output ports. The premise
of this realization is that the position and direction of output ports
are known. However, the output motion of multi-DOF CPMs is
unknown. The traditional way of predefining specific output ports
cannot be applied to multi-DOF CPMs topology optimization
directly. To solve this problem, Jacobian matrix [24,25] is intro-
duced into the field of topology optimization by the proposed
method. The Jacobian matrix describes all the freedoms of CPM’s
mobile platform in a unified and concise form, and contains the
information of CPM’s DOF and direct kinematics simultaneously.
By optimizing the Jacobian matrix, one can synthesize a compli-
ant mechanism with desired DOF (mechanism’s function) and
optimized direct kinematics (mechanism’s performance). In addi-
tion to the above kinematic realization, the mechanism’s input
and output characteristic stiffness [26,27] (C-stiffness for short)
are also optimized to achieve enough stiffness to bear the external
loads.

Lately, we found that the C-stiffness fails to ensure a valid
topology result in some particular problems. In this paper, an
improved stiffness evaluation based on its definition is incorpo-
rated into the problem formulation, and will be compared with the
C-stiffness formulation by using several design problems.

The rest of this paper is organized as follows: Section 2
describes the problem formulations of Jacobian-based topology
optimization method. Section 3 illustrates the topology analysis of
CPMs. The sensitivity analysis and optimization algorithm are
described in Sec. 4. Section 5 gives numerical examples to
verify the stiffness formulation. The conclusions are presented in
Sec. 6.

2 Jacobian-Based Topology Optimization Method

2.1 Problem Description. The topology of a CPM is deter-
mined by the number, arrangement, and topology structures of its
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constituent compliant limbs. The proposed method regards the
problem of CPMs topology optimization as finding the best topol-
ogy of compliant limbs within several given design domains.

A CPM composed of n compliant limbs is shown in Fig. 1. The
mechanism’s compliant limbs are assumed to be synthesized
within n predefined design domains, C ¼ fX1;X2;…;Xng. The
corresponding design variables to these design domains are illus-
trated by X ¼ fX1;X2;…;Xng. The number of compliant limbs,
n, is determined by the number of CPM’s DOF. The position of
input points ai (i ¼ 1; 2;…; n) and output point o is defined by
designers.

2.2 Properties of Jacobian Matrix. The kinematics of multi-
DOF CPMs is much more complicated than that of the compliant
mechanisms designed by current topology optimization methods.
Since the motion of CPMs is unknown, i.e., the output trajectory
of the mobile platform is not fixed, we cannot use fixed output
loads to define its output motion any more. Considering the appli-
cation situation, the Jacobian matrix, which is previously used in
analysis of rigid-body mechanisms and flexure-based CPMs, is
introduced into topology optimization as an alternative kinematic
formulation. As shown in Eq. (1), the Jacobian matrix J describes
transmission relation between the displacements of input and out-
put freedoms, i.e., forward kinematics of the CPM

Uo ¼ JUa (1)

where Uo ¼ ½ux; uy; hz�
T
contains the three freedoms’ displace-

ment of output point o at the mobile platform, and Ua ¼
½u1; u2;…; un�

T
is the vector of input displacements at input points

ai. Since the compliant mechanisms are usually driven by linear
motion actuators, we limit the displacements in Ua to the transla-
tional freedoms of input points.

The element Jji in J represents the geometry advantage (GA)
between the jth freedom of Uo and the ith input. If all the elements
of the jth row in J are equal or close to zero, all the inputs in Ua

will not produce displacement in the jth freedom of mobile plat-
form, i.e., this freedom is suppressed. While the other freedoms
corresponding to nonzero row vectors are considered as the
CPM’s DOF. By maximizing the absolute value of the elements
in the nonzero row vectors, the forward kinematics and motion
transmission performance of CPM can be optimized. Thus, the
Jacobian matrix contains the information of CPM’s function and
performance simultaneously. By optimizing the Jacobian matrix,
we can synthesize a compliant mechanism with desired DOF to
realize the mechanism’s function and optimized direct kinematics
to achieve higher performance.

2.3 Problem Formulation. The objective function of CPMs
topology optimization used in Ref. [23] is developed on the basis
of Chen and Wang’s formulation [26,27] that utilizes the C-
stiffness. This paper tries to modify the formulation using a new
stiffness evaluation that calculates the stiffness based on its
definition.

2.3.1 Differences Between C-Stiffness and Stiffness. The for-
mulation proposed by Chen and Wang is used for the compliant
mechanisms with single input and single output. Take the compli-
ant system shown in Fig. 2 as an example to illustrate the formula-
tion. For this compliant system, the relationship between forces
(fin and fout) and displacements (uin and uout) at input and output
ports can be described by a mechanism stiffness matrix Km [28]
shown in the following equation:

fin
fout

� �

¼ k11 k12
k21 k22

h i

|fflfflfflfflffl{zfflfflfflfflffl}

Km

uin
uout

� �

(2)

The diagonal elements of the mechanism stiffness matrix Km

[28] are the C-stiffness [26]. As shown in Eq. (3), they incorporate
the C-stiffness at input and output ports (k11 and k22) into the for-
mulation to achieve topology optimization of hinge-free compli-
ant mechanisms

min� e�ðGA�GA�Þ2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

f

k11k22
|fflffl{zfflffl}

S

(3)

where GA is the geometry advantage of the mechanism, and GA*
is the desired geometry advantage, f and S represent the kinematic
and stiffness requirement, respectively.

According to Eq. (2), the physical meanings of k11 and k21 are
the forces that should be acted on input and output ports, if uin¼ 1
and uout¼ 0 are expected. The input C-stiffness k11 just describes
part of the stiffness relationship between fin and uin, and so does
the output C-stiffness k22.

On the contrary, the stiffness based on its definition can fully
describe the force and displacement relationship at one specific
freedom. To obtain the input and output stiffness of this simple
compliant system, the input and output compliance are first calcu-
lated according to the physical meaning of compliance. Let fin¼ 1
and fout¼ 0, and solve Eq. (2). The resulting input displacement
uin is the input compliance

uin ¼
k22

k11k22 � k12k21
(4)

Let fin¼ 0 and fout¼ 1, and solve Eq. (2). The resulting output
displacement uout is the output compliance

uout ¼
k11

k11k22 � k12k21
(5)

The inverse of input and output compliance are the input and
output stiffness, respectively

Fig. 1 General design domain for planar CPMs Fig. 2 A compliant system with single input and single output
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kin ¼ u�1
in ¼ k11 � k12k21=k22

kout ¼ u�1
out ¼ k22 � k12k21=k11

(6)

By comparing k11 and k22 with kin and kout, respectively, C-
stiffness is part of the stiffness. While the C-stiffness has success-
fully evaluated the mechanism’s stiffness property in many design
problems, some problems show that the stiffness is more reliable
than C-stiffness. Thus, this paper will modify the formulations of
Jacobian-based topology optimization method by replacing the C-
stiffness with stiffness.

2.3.2 Formulations Using New Stiffness Evaluation. As can
be seen in Eq. (3), the kinematic requirement f and stiffness
requirement S are two conflicting subobjectives. On one hand, the
mechanism should be soft enough to deform and deliver motion.
On the other hand, it should be stiff enough to transmit forces to
the mobile platform and bear the external force. A general prob-
lem formulation for CPMs topology optimization can be written
as follows:

min fðXÞ ¼ �fxSð1�xÞ

s: t: VðXÞ � Vo

(7)

where x (0<x< 1) is the weight indicating the relative signifi-
cance of kinematic requirement f. V(X) is the volume fraction of
topology candidate, and Vo is the allowed volume fraction.

The kinematic requirement f has two different forms according
to the design problem. The first form of kinematic requirement f1
is suitable for the CPMs whose kinematics is simple enough to be
predefined by designers. This form is to force the Jacobian matrix
J of CPM to be close to a desired Jacobian matrix J* by minimiz-
ing the differences between Jji and J�ji, which are the elements of J
and J*, respectively. As a result, the desired DOF and kinematic
properties of CPM can be expressed in the desired Jacobian matrix
J*

max f1 ¼ e�
P

ðJji�J�
ji
Þ2

j ¼ 1; 2;…; 3 i ¼ 1; 2;…; n
(8)

The second form of kinematic requirement f2 is suitable for the
CPMs with complex kinematics. This form tries to maximize the
motion in desired freedoms Jdj and suppress the rest Jcj

max f2 ¼ e�
P

Jc
j

Y

Jdj (9)

where Jj evaluates the workspace in the jth freedom, which is the
quadratic sum of the elements in corresponding row vector shown
in Eq. (10). Jdj is the workspace of a desired freedom, while Jcj is
the workspace of a constrained freedom. The natural exponential
function forces each Jcj to be close to zero

Jj ¼
Xn

i¼1

J2ji (10)

In our previous work [23], the stiffness requirement S is
achieved by maximizing the input and output C-stiffness of the
CPM. This paper uses the stiffness calculated by its definition as a
new stiffness evaluation instead of the C-stiffness. Mathemati-
cally, the stiffness requirement is formulated as the product of the
input stiffness kiin and output stiffness k

i
out

max S ¼
Yn

i¼1

kiink
i
out (11)

The calculation of Jacobian matrix J, input and output stiffness
will be illustrated in Secs. 3.3 and 3.4, respectively.

2.4 Unification of the Units in Rotational and Translational
Freedoms. Since the units in rotational and translational freedoms
are different, it is unfair to compare the parameters in rotational
and translational freedoms directly during the optimization. Thus,
the characteristic length [29,30] lc is introduced in this paper.
Based on the characteristic length lc, we can define equivalent
moment ~M and equivalent rotational displacement ~hz as follows:

~M ¼ M=lc

~hz ¼ hzlc
(12)

For the Jacobian matrix, each element Jji is the ratio of the jth
freedom of Uo and the ith input. Since all the inputs are transla-
tional freedoms, only the rotational displacement hz in Uo should
be transformed into equivalent rotation displacement ~hz. Thus, the
elements in the third row vector of J are multiplied by lc to obtain
equivalent Jacobian matrix ~J

~J3i ¼ J3ilc; i ¼ 1; 2;…; n (13)

For the input and output stiffness, the output stiffness related to
rotational freedom should be transformed into equivalent rota-
tional stiffness. The relationship among the applied moment M,
rotational stiffness kh, and rotational displacement hz is as follows:

M ¼ khhz (14)

Solve the moment M and rotational displacement hz in Eq. (12),
and substitute them into Eq. (14)

~Mlc ¼ kh~hz=lc (15)

The equivalent rotational stiffness ~kh is calculated as follows:

~kh ¼ ~M=~hz ¼ kh=l
2
c (16)

3 Topology Analysis

This section shows how the Jacobian matrix, and input and out-
put stiffnesses of CPMs can be obtained by using the finite ele-
ment analysis and matrix methods [31].

3.1 Discretization and Parameterization. One advantage of
using multiple design domains is that the compliant limbs of CPM
can be discretized, parameterized, and analyzed separately in their
local coordinates. A compliant limb in its local coordinate is
shown in Fig. 3, and consists of design domain Xi and part of the
mobile platform X

i
p. The compliant limb (Xi þ X

i
p) is discretized

by using the quadrilateral elements that possess three freedoms
(ux, uy, hz) at each node, and parameterized by the simplified iso-
tropic material with penalization scheme [32]. The stiffness
matrix of the ith compliant limb can be obtained by the following
equation:

Fig. 3 Stiffness modeling schematic for the ith compliant limb
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KiðXiÞ ¼
XNi

e¼1

ðxeÞqKe þ
X
Ni
p

e¼1

Ke

0 < xemin � xe � 1; xe 2 Xi

(17)

where Ni is the number of the elements in design domain Xi, N
i
p is

the number of the elements in Xi
p, Ke is the element stiffness matrix

in the global level, xe is the material density (design variable) of
each element in Xi with value between the lower limit xemin (void)
and 1 (solid), q is the penalty factor, the elements in Xi

p are solid.

3.2 Stiffness Modeling of CPMs. For a compliant limb in its
local coordinate (as shown in Fig. 3), only the input freedom at
point ai and the three freedoms of endpoint oi are considered in its
stiffness modeling. First, a compliance matrix Ci

ao that character-
izes the compliance relationship between these four concerned
freedoms is calculated according to physical meaning of compli-
ance. Four load cases Fj ðj ¼ 1; 2;…; 4Þ, in which a unit dummy
load is applied to each concerned freedom of ai and oi in
sequence, are used to calculate corresponding displacements by
solving the following equation:

Fj ¼ KiUj; j ¼ 1; 2;…; 4 (18)

The physical meaning of element Cjk in a compliance matrix C
is the displacement of the jth freedom due to a unit load that only
acts on the kth freedom. According to this physical meaning, the
element of Ci

ao is obtained by Eq. (19). The displacements of the
four concerned freedoms in displacement vector Uk form the kth
column in Ci

ao

Ci
aoðj; kÞ ¼ FT

j Uk; j; k ¼ 1; 2;…; 4 (19)

Then, the compliance of endpoint oi is transferred into the coor-
dinate of the output point o by a transformation matrix To

i ,
whereas the compliance of the input freedom at ai remains in its local
coordinate. The inverse of the resulting compliance matrix, i.e., stiff-
ness matrix Ki

ao, is shown in Eq. (20). For more information about
the transformation matrix To

i , please refer to Refs. [31,33].

Ki
ao ¼

1 0
0 To

i

� �

� Ci
ao

� ��1

(20)

where 1 is to keep the compliance of the input freedom at ai remain
in its local coordinate, and the notation� is defined as follows:

A� C ¼ ACAT (21)

Finally, the stiffness model of compliant limbs will be com-
bined into the stiffness model of CPM. The stiffness related to the
output point o in Ki

ao of all the compliant limbs are superimposed
to form stiffness of the output point o at mobile platform, while
the stiffness of all the input freedoms at points ai (i ¼ 1; 2;…; n)
remain in their local coordinates. The transformation is shown in
Eq. (22). The resulting Km is the mechanism stiffness matrix that
characterizes the stiffness relationship between the n input free-
doms and the three freedoms of output point o

Km ¼

1 0 0 0 � � � 0 0
0 0 1 0 � � � 0 0

� � � �
.
.

.
� �

0 0 0 0 � � � 1 0
0 I 0 I � � � 0 I

2

6
6
6
6
6
4

3

7
7
7
7
7
5

�

K1
ao 0 � � � 0 0
0 K2

ao � � � 0 0

� �
.
.

.
� �

0 0 � � � Kn�1
ao 0

0 0 � � � 0 Kn
ao

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(22)

3.3 Kinematic Analysis of CPMs. According to the input
and output freedoms of the CPM, the mechanism’s displacements
are partitioned into two sets Ua and Uo, respectively, for displace-
ments of the input and output freedoms. As shown in Eq. (23), the
mechanism loads are also partitioned into two sets as Fa and Fo,
accordingly. This would in effect partition the mechanism stiff-
ness matrix Km into the following form:

Fa

Fo

� �

¼ K11 K12

K21 K22

h i

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Km

Ua

Uo

� �

(23)

Assuming that there is no external load applied to the mobile
platform of CPMs, i.e., Fo¼ 0, by solving the second equation in
Eq. (23), the relationship between the input displacement Ua and
output displacement Uo, i.e., the Jacobian matrix J, can be
obtained

J ¼ �K�1
22 K21 (24)

3.4 Input and Output Stiffness of CPMs. By using the
mechanism stiffness matrix Km, we can calculate the input and
output stiffness of CPMs according to the physical meaning of
compliance. As shown in Eq. (25), nþ 3 unit load vectors (Fi

in

and F
j
out) are applied to the freedoms of Km in sequence to obtain

corresponding displacement vectors Ui
in and U

j
out

Fi
in ¼ KmU

i
in; i ¼ 1; 2;…; n

F
j
out ¼ KmU

j
out; j ¼ 1; 2; 3

(25)

The displacement of the freedom where the unit load is applied
is the compliance in this freedom, which can be extracted from
the corresponding displacement vector by using the related unit
load vector. The inverse of these compliances are the stiffness in
the input and output freedoms of this CPM

kiin ¼ ððFi
inÞ

TUi
inÞ

�1; i ¼ 1; 2;…; n

k
j
out ¼ ððFj

outÞ
TU

j
outÞ

�1; j ¼ 1; 2; 3
(26)

4 Sensitivity Analysis

The sensitivity of the objective function discussed in Sec. 2.3.2
is determined by the sensitivities of Jji, k

i
in, and k

j
out. The sensitiv-

ity of Jji can be extracted from sensitivity of J, which is calculated
as follows:

@J

@xe
¼ K�1

22

@K22

@xe
K�1

22 K21 �K�1
22

@K21

@xe
(27)

Since K22 and K21 are parts of Km, the sensitivity of J is deter-
mined by the sensitivity of Km. According to Eq. (26), the sensi-
tivity of kiin is calculated by Eq. (28), while the sensitivity of k

j
out

can be obtained by the same way

@kiin
@xe

¼ � Fi
in

� �T @Ui
in

@xe
kiin
� �2

(28)

where the sensitivity of Ui
in is as follows:

@Ui
in

@xe
¼ � K�1

m

@Km

@xe
K�1

m

� �

Fi
in (29)

Substitute Eq. (29) into Eq. (28), the sensitivity of kiin can be
turned into the following form:
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@kiin
@xe

¼ Ui
in

� �T @Km

@xe
Ui

in

� �

kiin
� �2

(30)

According to Eqs. (20) and (22), the sensitivity of Km is deter-
mined by the sensitivities of Ki

ao

@Ki
ao

@xe
¼ �Ki

ao

1 0
0 To

i

� �

�
@Ci

ao

@xe

 !

Ki
ao (31)

where the sensitivity of the element in Ci
ao can be calculated as

follows:

@Ci
ao j; kð Þ

@xe
¼ FT

j

@Uk

@xe
¼ FT

j

@

@xe
K�1

i Fk

� �

¼ �FT
j K

�1
i

@Ki

@xe
K�1

i Fk

¼ �UT
j

@Ki

@xe
Uk

¼ �qðxeÞq�1UT
j KeUk

(32)

On the basis of sensitivity analysis, the topology optimization
problem is solved by modifying the 99 line MATLAB code proposed
by Sigmund [34]. The optimality criteria-based optimizer and fil-
tering technique [7] of the 99 line MATLAB code are used to update
the design variables of each domain and ensure existence of solu-
tions, respectively. For each numerical example in Sec. 5, the ini-
tial design X is defined by setting the material density of each
element to be the value of the allowed volume fraction, i.e.,
xe¼Vo. The convergence criterion is the change in design varia-
bles, which is set to 0.005 in this paper. The move limit in the heu-
ristic updating scheme is 0.1. The filter radius rmin is set to 1.2,
i.e., the filter length scale dmin (dmin¼ 2rmin) is 2.4. It should be
pointed out that the volume constraint is active during the whole
optimization process. For more detail about the optimality
criteria-based optimizer and filtering technique, readers can refer
to Ref. [34].

5 Numerical Studies

This section will compare several topology optimization results
obtained by using the C-stiffness and stiffness formulations,
respectively. The artificial material properties for these examples
are described as: Young’s modulus is E¼ 1GPa and Poisson’s
ratio is t¼ 0.3. The characteristic length lc is set to 10mm in this
study. All the numerical examples are carried out on a computer
with Intel Core i7 – 6700 (3.40 GHz) CPU, 8.00GB RAM, and
MATLAB R2009a. Note that the filter length scale dmin¼ 2.4 is rep-
resented by a red bar in each figure showing the final topology.

5.1 Design of 2DOF CPMs. In this section, a 2DOF CPM
will be synthesized using two asymmetrical compliant limbs
within the design domain shown in Fig. 4. As can be seen, the two
compliant limbs have the same size and boundary conditions.
Each compliant limb is discretized by 100� 100 finite elements
for elastic analysis. The allowable amount of material is 20%.

5.1.1 Solved by Using f1. Since the kinematics of 2DOF
CPMs is simple enough to predefine its desired Jacobian matrix
J*, this design problem can be solved using the first form of objec-
tive function in Eq. (8). The J* for this example is given by Eq.
(33), in which a1x and a2y are the input freedoms. The zero vector
in the third row of the J* means that the freedom hz should be sup-
pressed, i.e., the CPM is expected to have only two translational
freedoms (ux and uy). Moreover, the two translational freedoms
are expected to be decoupled. For example, the input a1x only
induces the translational displacement ux with desired geometry
advantage GA* and has no impact on the other two freedoms

ux
uy
hz

2

4

3

5 ¼
GA� 0

0 GA�

0 0

� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

J�

a1x
a2y

� �

(33)

The GA* is first set to �3 and x is set to 0.5. The corresponding
topology optimization problem is solved by using the C-stiffness
and stiffness formulations, respectively. The optimizations were
run for 200 iterations. The resulting topologies of the two formu-
lations are shown in Fig. 5, which shows that both of C-stiffness
and stiffness formulations can obtain valid topologies in this case.
Figures 6 and 7 show the iteration history of objective value, kine-
matic requirement f, and stiffness requirement S in the optimiza-
tion process of the two formulations, respectively. It can be seen
that oscillations exist in the iteration curves. The oscillations may
be caused by the material distribution at some specific elements.
Fortunately, the topologies at later period of iteration are stable,
which can be regarded as the optimal topology. The correspond-
ing J of the two final topologies are listed in the first two rows of
Table 1. It should be noted that only the elements in the first col-
umn vector of J are displayed for brevity, since J11 ’ J22, J21 ’
J12, and J31 ’ J32. One can see that both of C-stiffness and stiff-
ness formulations can force J of CPMs to be close to J*, i.e., the
kinematics requirement f is realized. In addition, the C-stiffness
(Cka1 and Ckox) and stiffness (ka1 and kox) of the input and output
ports in x-axis of the two final topologies are given in the first two
rows of Table 2. The results show that both of C-stiffness and
stiffness formulations realize the stiffness requirement S

Fig. 4 Design domain for 2DOF CPMs

Fig. 5 Final topologies of 2DOF CPM for the case of GA*
523

solved by (a) the C-stiffness (x50.5) and (b) stiffness (x5 0.5)
formulations
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effectively. The resulting output stiffness is smaller than the input
stiffness to achieve GA, whereas the value of C-stiffness is larger
than stiffness for the same mechanism.

However, when GA* is set to be positive, e.g., GA*¼ 2.5, it is
found that the C-stiffness formulation fails to ensure the stiffness

requirement S and results in invalid topologies. Figure 8(a) shows
the final topology obtained by using the C-stiffness in the case of
GA*¼ 2.5. Although the input and output points of the CPM are
connected by solid material successfully, there is no material con-
nection between the compliant limbs and fixed ports. Conse-
quently, the displacements of the input and output ports in one
direction are equal, i.e., J11¼ 1 (in the third row of Table 1). As

Fig. 6 Iteration history of the topology in Fig. 5(a): (a) objective value and (b) kinematics
requirement f and stiffness requirement S

Fig. 7 Iteration history of the topology in Fig. 5(b): (a) objective value and (b) kinematics
requirement f and stiffness requirement S

Table 1 Jacobian matrices of the final 2DOF CPMs

Formulation GA* J11 J21 J31

C-stiffness �3 �2.52 8� 10�4 0.02
Stiffness �3 �2.26 1.1� 10�3 0.02
C-stiffness 2.5 1 0 �3.5� 10�3

Stiffness 2.5 2.27 �4� 10�4 �0.02

Table 2 Input and output stiffness of the final 2DOF CPMs

Formulation GA* Cka1 Ckox ka1 kox

C-stiffness �3 38.7 4.3 11.3 1.3
Stiffness �3 51.4 3.1 35.8 2.1
C-stiffness 2.5 101.4 101.4 2� 10�6 2� 10�6

Stiffness 2.5 77.5 6.9 42.1 3.7

Fig. 8 Final topologies of 2DOF CPM for the case of GA*
5 2.5

solved by (a) the C-stiffness and (b) stiffness (x5 0.7)
formulations
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shown in the third row of Table 2, the C-stiffness of the input and
output ports in x-axis is 101.4 N/mm, whereas the corresponding
stiffness ka1 and kox of this invalid topology are approximate to
zero. Obviously, the C-stiffness fails to evaluate the stiffness of
mechanism in this case.

Then, this problem is solved by using the stiffness formulation.
The final topology is shown in Fig. 8(b), where x is set to 0.7.
One can see that there are valid material connections between the
input, output and fixed ports of the CPM. As shown in the last
rows of Tables 1 and 2, the resulting J is close to J*, e.g.,
J11¼ 2.27. The values of its C-stiffness and stiffness are reasona-
ble. Thus, the problem of C-stiffness is avoided and a valid final
topology can be ensured by the stiffness formulation.

5.1.2 Solved by Using f2. To compare the two forms of objec-
tive function, the 2DOF CPM design problem is also solved by
using f2 shown in Eq. (9). According to this design problem, the
kinematic requirement f2 is to maximize the workspace of the two
translational freedoms and minimize the workspace of the rota-
tional freedom, which is formulated as follows:

max f2 ¼ e�Jc
3

Y2

j¼1

Jdj (34)

When f2 is combined with the stiffness requirement S based on
C-stiffness, the resulting final topology is similar to the topology
in Fig. 8(a). The final topology obtained by using f2 and stiffness
based S is shown in Fig. 9. x is set to 0.7. The corresponding
Jacobian matrix is described by Eq. (35). One can see that the
workspace of the two translational freedoms (ux and uy) is much
larger than that of rotational freedom hz. The resulting values of
J11 and J22 are positive, i.e., f2 cannot control the sign of Jji like f1
does

J ¼
4:19 0:01
�0:01 4:20
�0:01 0:05

2

4

3

5 (35)

5.2 Design of 3DOF CPMs. The second design problem of
CPMs is to synthesize a 3DOF CPM with three symmetrically
arranged compliant limbs. The positions of the CPM’s input, out-
put, and fixed points are shown in Fig. 10. Each design domain Xi

is discretized by 50� 80 finite elements for elastic analysis under
the same boundary condition. The allowable amount of material is
20%. Since the kinematics of 3DOF CPM is complex, it is hard to

predefine a desired Jacobian matrix for the optimization. The sec-
ond form of kinematic requirement f2 shown in Eq. (9) will be
used in the objective function. For the planar 3DOF CPMs, no
freedom should be suppressed, i.e., the design objective is to max-
imize the workspace of these three freedoms.

The problem is solved by using the C-stiffness and stiffness for-
mulations, respectively. The optimization process was run for 200
iterations. Figure 11 gives the final topology of 3DOF CPM
obtained by using the C-stiffness formulation and setting x¼ 0.7.
Its corresponding Jacobian matrix J is shown in Eq. (36). While
the final topology obtained by using the stiffness formulation
(x¼ 0.9) and its resulting Jacobian matrix J is shown in Fig. 12
and Eq. (37), respectively. One can see that both of the C-stiffness
and stiffness formulations are able to achieve valid topology in
this example, whereas the topology obtained by the stiffness for-
mulation is stiffer.

Fig. 9 Final topology of 2DOF CPM obtained by using f2 and
stiffness formulation

Fig. 10 Design domain for a 3DOF CPM

Fig. 11 Final topology of the 3DOF CPM solved by the C-
stiffness formulation
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J ¼
0:22 �1:79 1:57
1:94 �0:78 �1:16
0:27 0:27 0:27

2

4

3

5 (36)

J ¼
0:93 �2:18 1:24
1:97 �0:18 �1:79
0:12 0:12 0:12

2

4

3

5 (37)

5.3 Solving Benchmark Problems. Although the Jacobian-
based topology optimization method is developed for the CPMs,
this method is applicable to the typical compliant mechanisms
designed by the current topology optimization methods, e.g., dis-
placement inverter, amplifier, and redirector.

5.3.1 Displacement Inverter and Amplifier. A design problem
of 1DOF compliant mechanisms using single design domain is
shown in Fig. 13. The top left corner and the bottom left corner of
the design domain are fixed. The input point a and output point o
are in the middle of the left and right sides, respectively. The
whole design domain is discretized using 100� 100 finite ele-
ments for elastic analysis. The material usage is restricted to 20%.
The Jacobian matrix of the 1DOF compliant mechanism is a 3� 1
vector, whose desired form is shown in Eq. (38). One can see that
the desired output motion of this mechanism is in the direction of
x-axis, whereas the freedoms uy and hz should be suppressed.

Obviously, when only the element J11 of Jacobian matrix is con-
sidered, our objective function is equal to the formulation pro-
posed by Chen and Wang (Eq. (3))

½ux; uy; hz�
T ¼ ½GA�; 0; 0�Tax (38)

When GA* is negative, e.g., GA*¼�3, the design problem is
to synthesize a displacement inverter. The corresponding topology
optimization problem is also solved by using the C-stiffness and
stiffness formulations, respectively. Figure 14(a) shows the result-
ing topology obtained by using the C-stiffness formulation and
setting the weight as x¼ 0.5. Its corresponding Jacobian matrix is
J¼ [�2.7, 0, 0]T, i.e., the optimized GA of displacement inverter
is �2.7. The C-stiffness at the input and output ports are 40.9 and
4.7 N/mm, while the stiffness at input and output ports are 6.4 and
0.7 N/mm, respectively. Figure 14(b) shows the resulting topology
obtained by using the stiffness formulation and setting x to 0.5.
Its corresponding Jacobian matrix is J¼ [�2.8, 0, 0]T. The C-
stiffness at the input and output ports are 57.2 and 2.7 N/mm,
while the stiffness at input and output ports are 41.3 and
2.0 N/mm, respectively. One can see that both of the C-stiffness
and stiffness formulations can obtain valid topologies in this case.

When GA* is positive, e.g., GA*¼ 3, the design problem is to
synthesize a displacement amplifier. It is found that the C-
stiffness formulation results in the invalid topology shown in
Fig. 15(a). Without material connected to the fixed ports, the Jaco-
bian matrix of the resulting displacement amplifier is J¼ [1, 0,
0]T. Both of the input and output C-stiffness are 116.1 N/mm,
whereas both of the corresponding input and output stiffness are
4.3� 10�7 N/mm. Figure 15(b) shows the resulting topology
obtained by using the stiffness formulation and setting x to
0.6. Its corresponding Jacobian matrix is J¼ [2.3, 0, 0]T. The C-
stiffness at the input and output ports are 79.5 and 6.2 N/mm,
while the stiffness at input and output ports are 47.8 and

Fig. 12 Final topology of the 3DOF CPM solved by the stiff-
ness formulation

Fig. 13 Design domain for displacement inverter and amplifier

Fig. 14 Final topologies of displacement inverter for the case
of GA*

523 solved by (a) the C-stiffness (x5 0.5) and (b) stiff-
ness (x50.5) formulations

Fig. 15 Final topologies of displacement amplifier for the case
of GA*

5 3 solved by (a) the C-stiffness and (b) stiffness
(x5 0.6) formulations
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3.8 N/mm, respectively. This case shows again that the C-stiffness
formulation fails to ensure the stiffness requirement.

5.3.2 Solved by Using the Artificial I/O Spring and MSE/SE
Formulations. There are several popular formulations developed
for topology optimization of compliant mechanisms. Deepak et al.
[35] have made a comparative study of these formulations. The
popular artificial I/O spring and mutual strain energy/strain energy
(MSE/SE) formulations are adopted here to solve the problem of
displacement amplifier. In the artificial I/O spring formulation,
two artificial springs are added to the input and output ports,
respectively. The problem is formulated as follow:

max uout

s: t: VðXÞ � Vo

(39)

For the problem of displacement amplifier discussed above, it is
found that the artificial I/O spring formulation also results in the
invalid topology shown in Fig. 15(a), although the stiffness
values of the artificial springs have been varied from 10�10 to
1010 N/mm by ten times. On the contrary, the MSE/SE formula-
tion (Eq. (40)) ensures the valid topology result shown in Fig. 16.

min �MSEþ SE

s: t: VðXÞ � Vo

(40)

The computational expense of the proposed method is com-
pared with the artificial I/O spring formulation by solving the
design problem of displacement inverter in Sec. 5.3.1. It takes the
artificial I/O spring formulation 47.59 s and 220 iterations to find
out the solution, i.e., 216ms per iteration. The C-stiffness formu-
lation spends 181.5 s and 300 iterations to obtain the topology in
Fig. 14(a), i.e., 605ms per iteration. The stiffness formulation
spends 209.37 s and 300 iterations to obtain the topology in
Fig. 14(b), i.e., 698ms per iteration. Obviously, the proposed
method is more expensive than the artificial I/O spring formula-
tion in computation. One reason for this is that the finite element
with 12 nodal freedoms increases the computational expense of
finite element analysis. The other reason is that all the freedoms
of the output point o are considered by the proposed method,
whereas the spring formulation only concerns the freedom ux.

5.3.3 Displacement Redirector. This example illustrates the
application in the case of single input and two outputs compliant
mechanisms. The function of a displacement redirector is
sketched in Fig. 17. The input port a is at the middle of the left
side and causes two output displacement at ports b and c,

respectively. The whole design domain is descretized using
100� 100 finite elements for elastic analysis. The material usage
is restricted to 20%. In this case, only the freedoms of the output
ports b and c are considered, so the Jacobian matrix J of the dis-
placement redirector is a 2� 1 vector, whose desired form is
shown in the following equation:

½ub; uc�
T ¼ ½2;�2�Tua (41)

The corresponding topology optimization problem is solved by
using the C-stiffness and stiffness formulations, respectively. The
optimization process was run for 300 iterations. Figure 18(a)
shows the resulting topology obtained by using the C-stiffness for-
mulation and setting x to 0.5. Its corresponding Jacobian matrix
is J¼ [1.7, �1.7]T. The C-stiffness at the input and output ports
are 41.2, 5.9, and 5.9 N/mm, while the stiffness at input and out-
put ports are 10.7, 2.3, and 2.3 N/mm, respectively. Figure 18(b)
shows the resulting topology obtained by using the stiffness for-
mulation and setting x to 0.5. Its corresponding Jacobian matrix
is J¼ [1.5, �1.5]T. The C-stiffness at the input and output ports
are 58.1, 4.1, and 4.1 N/mm, while the stiffness at input and out-
put ports are 40.1, 3.3, and 3.3 N/mm, respectively. This case
shows that the proposed method is applicable to the compliant
mechanisms with multiple output ports, and both of the C-
stiffness and stiffness formulations can obtain valid topologies.

5.4 Analysis of Mesh Independency. This section is devoted
to analyzing the mesh independency of the proposed method. The
problem of 2DOF CPM, whose parameter settings except

Fig. 16 Final topology of displacement amplifier designed by
using the MSE/SE formulation

Fig. 17 Design domain for a displacement redirector

Fig. 18 Final topologies of displacement redirector solved by
(a) the C-stiffness (x5 0.5) and (b) stiffness (x5 0.5)
formulations
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discretization are the same as the case in Fig. 5, is used to illus-
trate the mesh independency. By using three different element dis-
cretizations of 40� 40, 200� 200 and 300� 300, we obtain the
corresponding results shown in Fig. 19. The three topologies on
the left side of Fig. 19 are solved by the C-stiffness formulation,
whereas the other side contains the results of the stiffness formula-
tion. One can see that the results are almost stable under mesh
refinement or mesh coarsening. In other words, the proposed
method is mesh independent, which is ensured by the filtering
technique of the 99 line MATLAB code.

6 Conclusions

This paper presents a new stiffness evaluation based on the defi-
nition of stiffness for the Jacobian-based topology optimization
method. The proposed stiffness formulation is compared with the
C-stiffness formulation by using two synthesis problems of CPMs
and three traditional benchmark design problems. The results
show that both of the two formulations can achieve valid topolo-
gies in most of design cases. In some cases like displacement
amplifier, the C-stiffness formulation even the artificial I/O spring
formulation cannot obtain valid result, while the stiffness formula-
tion gives an improved stiffness evaluation. Besides, the Jacobian-
based topology optimization method shows a general applicability
in multi-DOF CPMs and benchmark design problems.

According to the results, the topologies produced by the pro-
posed method are easy to exhibit hinges, especially when the kine-
matic requirement is much higher than stiffness requirement.
Relatively speaking, the stiffness formulation has a better per-
formance than the C-stiffness formulation in avoiding hinges, e.g.,
the two topologies in Fig. 18. The strategies for alleviating these
hinges will be addressed in our future works.
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