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Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices
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In a recent work Killip and Nenciu gave random recurrences for the characteristic polyno-

mials of certain unitary and real orthogonal upper Hessenberg matrices. The corresponding

eigenvalue p.d.f.’s are β-generalizations of the classical groups. Left open was the direct

calculation of certain Jacobians. We provide the sought direct calculation. Furthermore,

we show how a multiplicative rank 1 perturbation of the unitary Hessenberg matrices pro-

vides a joint eigenvalue p.d.f. generalizing the circular β-ensemble, and we show how this

joint density is related to known inter-relations between circular ensembles. Projecting the

joint density onto the real line leads to the derivation of a random three-term recurrence for

polynomials with zeros distributed according to the circular Jacobi β-ensemble.

1 Introduction

Consider the classical group U(N) ofN×N unitary matrices. There is a unique measure dHU — the Haar

measure — which is invariant under both left and right multiplication by a fixed unitary matrix, thus

giving a uniform distribution on the group. The corresponding eigenvalue probability density function

(p.d.f.) has the explicit form (see e.g. [8])

1

(2π)NN !

∏

1≤j<k≤N

|eiθk − eiθj |2, (1.1)

and this in turn is of fundamental importance in recent applications of random matrix theory to combi-

natorial models [20, 3], analytic number theory [15] and the quantum many body problem [9].

A basic question is how to best sample from (1.1). Until very recently, the only method available

has been to first generate a member of U(N) according to the Haar measure, by for example applying

the Gram-Schmidt orthogonalization procedure to the columns of an N ×N complex Gaussian matrix,

then to calculate the eigenvalues of the resulting matrix. However, inspired by recent work of Dumitriu

and Edelman [6], this situation has been dramatically improved upon by Killip and Nenciu [17]. Thus

augmenting ideas from [6] with results from the theory of orthogonal polynomials on the unit circle, these

authors have provided an explicit unitary Hessenberg matrix, with positive elements on the subdiagonal,

which has for its eigenvalue p.d.f. the β-generation of (1.1),

1

CβN

∏

1≤j<k≤N

|eiθk − eiθj |β , CβN = (2π)N
Γ(βN/2 + 1)

(Γ(β/2))N
. (1.2)

In general the characteristic polynomial χN (λ) of such matrices can be calculated from the coupled

recurrences

χk(λ) = λχk−1(λ) − ᾱk−1χ̃k−1(λ)

χ̃k(λ) = χ̃k−1(λ) − λαk−1χk−1(λ) (1.3)

1Supported by the Australian Research Council

1

http://arXiv.org/abs/math/0505552v1


(k = 1, . . . , N) where χ0(λ) = χ̃0(λ) = 1 and furthermore χ̃k(λ) = λkχ̄k(1/λ). For the unitary Hessenberg

matrix relating to (1.2), the parameters {αj}j=0,...,N−1 are random variables with distributions specified

in [17] (see (4.3) below). As a consequence of this result the joint distribution (1.1), or more generally

(1.2), can be sampled by simply iterating (1.3) to generate χN(λ), then computing its roots.

The problem of efficiently sampling from the p.d.f.

1

CN (a, b;β)

N
∏

l=1

|1 − eiθl |2a+1|1 + eiθl |2b+1
∏

1≤j<k≤N

|eiθj − eiθk |β |1 − ei(θj+θk)|β, (0 ≤ θl ≤ π) (1.4)

was solved according to the same strategy in [17]. Here the underlying unitary Hessenberg matrix is

real orthogonal with determinant +1, and thus the characteristic polynomial χ2N (λ) has real coefficients.

In this case χ̃k(λ) = λkχk(1/λ) and so only the first of the recurrences in (1.3) is required. Note

that the eigenvalues of a real orthogonal matrix with determinant +1 come in complex conjugate pairs

e±iθ; (1.4) is the joint distribution of those with 0 < θ < π. The case β = 2, (a, b) = (± 1
2 ,± 1

2 ) (the

signs chosen appropriately) of (1.4) gives the eigenvalue p.d.f. for matrices from the real orthogonal and

symplectic classical groups with Haar measure (see e.g. [8]). Like their counterparts from U(N), such

random matrices are of fundamental importance in applications of random matrix theory to combinatorial

models [20, 3], analytic number theory [16] and the quantum many body problem [10].

In the work [17], Killip and Nenciu left open two questions concerning the direct computation of

certain Jacobians, one relating to unitary Hessenberg matrices corresponding to (1.2), and the other to

real orthogonal Hessenberg matrices corresponding to (1.4). Earlier, Dumitriu and Edelman [6] had left

open an analogous question in the case of tridiagonal matrices corresponding to the Gaussian β-ensemble

p.d.f.

1

GβN

N
∏

l=1

e−x
2

l /2
∏

1≤j<k≤N

|xk − xj |β .

It was remarked in [6] that one of the present authors (PJF) had communicated a direct derivation of the

sought Jacobian for the change of variables from the elements of a tridiagonal matrix, to the eigenvalues

and the first component of the eigenvectors. A primary purpose of this article is to show how a similar

approach can be used to answer the two questions left open in [17]. We begin in Section 2 by presenting the

calculation for the Jacobian in the case of a tridiagonal matrix. In Section 3 this calculation is extended

to provide a direct calculation of Jacobians relating to unitary and real orthogonal Hessenberg matrices.

Also shown is how portions of the working in [17] reliant on the theory of orthogonal polynomials on

the unit circle, can alternatively be derived within a matrix setting. In Section 4, it is shown how a

certain rank 1 multiplicative perturbation of unitary matrices leads to the derivation of a joint eigenvalue

p.d.f. generalizing (1.2). An integration formula associated with this p.d.f. is discussed, which in turn

is shown to include as special cases known inter-relations between circular ensembles. Furthermore, the

multiplicative perturbation is used to give an alternative derivation of these inter-relations.

The Cayley transformation of the distributions obtained in Section 4, projecting the unit circle to the

real line, are studied in Section 5. This leads to a random three-term recurrence for the projection onto

the real line of polynomials with zeros distributed according to

1

MN(a; c)

N
∏

l=1

|1 − eiθl |a
∏

1≤j<k≤N

|eiθk − eiθj |2c, (1.5)

which with 2c = β is known as the circular Jacobi β-ensemble [8]. In the case a = 0 this recurrence

scheme is distinct from the scheme (1.3).
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2 Calculation of a Jacobian for tridiagonal matrices

Let

T =























an bn−1

bn−1 an−1 bn−2

bn−2 an−2 bn−3

. . .
. . .

. . .

b2 a2 b1

b1 a1























(2.1)

be a general real symmetric tridiagonal matrix. The problem posed in [6] is to compute the Jacobian for

the change of variables from the description of T in terms of its entries, to the description in terms of

eigenvalues and variables relating to its eigenvectors.

As is well known, and easy to see by direct substitution, for each eigenvalue λk and corresponding

eigenvector ~vk, once the 1st component ~v
(1)
k =: qk, qk > 0, of ~vk is specified, the other components are

then fully determined by {λk} and the elements of T . However only n − 1 of these components are

independent due to the relation
n

∑

k=1

q2k = 1, (2.2)

which itself is a consequence of T being symmetric and thus orthogonally diagonalizable. Thus the 2n−1

variables

~a := (an, an−1, . . . , a1), ~b := (bn−1, . . . ,~b1) (2.3)

can be put into 1-to-1 correspondence with the 2n− 1 variables

~λ := (λ1, . . . , λn), ~q := (q1, . . . , qn−1) (2.4)

where λ1 > · · · > λn and qi > 0. The Jacobian for the change of variables from (2.3) to (2.4) can be

computed directly using the method of wedge products (for an introduction to the use of this technique

in random matrix theory see [8]).

We will first isolate results required in the course of the calculation.

Proposition 1. Let (X)ij denote the ij entry of the matrix X. We have

((T − λIn)−1)11 =
n

∑

j=1

q2j
λj − λ

. (2.5)

Also
∏

1≤i<j≤n

(λi − λj)
2 =

∏n−1
i=1 b

2i
i

∏n
i=1 q

2
i

(2.6)

and

det
[

[λjk − λjn] j=1,...,2n−1

k=1,...,n−1

[jλj−1
k ] j=1,...,2n−1

k=1,...,n

]

=
∏

1≤j<k≤n

(λk − λj)
4. (2.7)

Proof. The identity (2.5), which is well known, follows by writing the matrix entry as an inner product,

and decomposing the vectors in this inner product as eigenvectors. The identity (2.6) is contained in [6].

It can be derived from (2.5) by using the fact that for a general n× n non-singular matrix

(X−1)11 =
detXn−1

detX
, (2.8)
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where Xn−1 denotes the bottom right n − 1 × n − 1 submatrix of X , introducing the corresponding

characteristic polynomials Pn−1(λ), Pn(λ), and making use of the three term recurrence

Pk(λ) = (λ− ak)Pk−1(λ) − b2k−1Pk−2(λ), P0(λ) := 1.

For the identity (2.7), note that both sides are homogeneous symmetric polynomials of degree 2n(n− 1).

Furthermore, the determinant and its first three derivatives with respect to λ1 vanish at λ1 = λ2. As

a consequence, it follows that the determinant must in fact be proportional to the fourth power of the

product of differences as given in the r.h.s. The fact that the proportionality constant is unity follows by

comparing coefficients of (λ0
1λ

1
2 · · ·λn−1

n )4 on both sides. �

The Jacobian can now be computed according to the following result.

Theorem 1. The Jacobian for the change of variables (2.3) to (2.4) is equal to

1

qn

∏n−1
i=1 bi

∏n
i=1 qi

. (2.9)

Proof. Rewriting (2.5) in the form

((In − λT )−1)11 =

n
∑

j=1

q2j
1 − λλj

, (2.10)

recalling the explicit form of T from (2.1), and equating successive powers of λ on both sides gives

1 =
n

∑

j=1

q2j

an =
n

∑

j=1

q2jλj

∗ + b2n−1 =

n
∑

j=1

q2jλ
2
j

∗ + an−1b
2
n−1 =

n
∑

j=1

q2jλ
3
j

∗ + b2n−2b
2
n−1 =

n
∑

j=1

q2jλ
4
j

∗ + an−2b
2
n−2b

2
n−1 =

n
∑

j=1

q2jλ
5
j

...
...

∗ + a1b
2
1 · · · b2n−2b

2
n−1 =

n
∑

j=1

q2jλ
2n−1
j . (2.11)

Here the ∗ denotes terms involving only variables already having appeared on the l.h.s. of preceding

equations. Thus the variables an, bn−1, an−1, bn−2, . . . occur in a triangular structure. Upon taking

differentials, the first of these equations implies

qndqn = −
n−1
∑

j=1

qjdqj .
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For the differentials of the remaining equations, we use this to substitute for dqn, and then take wedge

products of both sides. On the l.h.s., the triangular structure gives

2n−1
n−1
∏

j=1

b4j−3
j d~a ∧ d~b (2.12)

where

d~a :=

n
∧

j=1

daj , d~b :=

n−1
∧

j=1

dbj .

On the r.h.s. the wedge product operation yields

2n−1q2n

n−1
∏

j=1

q3j det
[

[λjk − λjn] j=1,...,2n−1

k=1,...,n−1

[jλj−1
k ] j=1,...,2n−1

k=1,...,n

]

d~λ ∧ d~q (2.13)

where

d~λ :=
n
∧

j=1

dλj , d~q :=
n−1
∧

j=1

dqj

(a common factor 2qk has been removed from column k, k = 1, . . . , n − 1 of the determinant, as has a

common factor q2k from columns n− 1 + k, k = 1, . . . , n).

By definition the Jacobian J satisfies

d~a ∧ d~b = Jd~λ ∧ d~q. (2.14)

Equating (2.12) and (2.13), and using (2.7) to evaluate the determinant then shows

J =
1

qn

∏n−1
j=1 bj

∏n
j=1 qj

(

∏n
j=1 q

2
j

∏n−1
j=1 b

2j−1
j

)2 ∏

1≤j<k≤N

(λk − λj)
4.

Recalling (2.6) gives the form of J (2.9). �

In [6] indirect methods are used to derive (2.9) but with the factor 1/qn not present. As noted in

[17], the reasoning of [6] is most suited to working with the variables µj = q2j , and doing so eliminates

this apparent discrepancy.

3 Calculation of a Jacobian for unitary and real orthogonal Hes-

senberg matrices

3.1 Preliminaries

In general a unitary upper triangular Hessenberg matrix H = [Hi,j ]i,j=0,...,n−1 with positive elements

along the sub-diagonal is parametrized by n − 1 complex numbers α0, α1, . . . , αn−2 with |αj | = 1 and a

further complex number αn−1 with |αn−1| < 1. Setting α−1 := −1, ρj :=
√

1 − |αj |2 (j = 0, . . . , n− 2),

one can check that if the diagonal entries are specified as Hi,i = −αi−1ᾱi, and subdiagonal entries as

Hi+1,i = ρi, then the remaining non-zero entries are given by

Hi,j = −αi−1ᾱj

j−1
∏

l=i

ρl, i < j. (3.1)

5



Let λj = eiθj (j = 1, . . . , n) denote the eigenvalues of H and let qj denote the modulus of the

first component of the corresponding normalized eigenvectors (the {qj} thus satisfy (2.2)). With the

{θj} ordered, there is an invertible 1-to-1 correspondence with the parameters {αj}j=0,...,n−1. Our

interest is to directly compute the Jacobian for the change of variables from {αj}j=0,...,n−1 to {θi}i=1,...,n,

{qi}i=1,...,n−1.

In preparation for the derivation of this result, note that with Hk denoting the top k× k block of H ,

χk(λ) := det(λIk −Hk)

satisfies (1.3) (see e.g. [13]). Also of interest is a variant of the characteristic polynomial of the bottom

k× k submatrix. In relation to this, note that with the involution αj 7→ −ᾱjαn−1 (j = 0, . . . , n− 2), the

bottom k × k submatrix, after reflection in the anti-diagonal, becomes equal to the top k × k submatrix

but with αj 7→ αn−2−j (j = 0, . . . , n−2). Let the characteristic polynomial of the bottom k×k submatrix

with the replacements αj 7→ −ᾱjαn−1 (j = 0, . . . , n− 2) be denoted χbk(λ). We see that this polynomial

satisfies the recurrence (1.3) with αj replaced by −ᾱn−2−jαn−1 in (1.3),

χbk(λ) = λχbk−1(λ) + αn−1−kᾱn−1χ̃
b
k−1(λ)

χ̃bk(λ) = χ̃bk−1(λ) + λᾱn−1−kαn−1χ
b
k−1(λ) (3.2)

(k = 1, . . . , n) where χb0(λ) = χ̃b0(λ) = 1 and χ̃bk(λ) = λkχ̄bk(1/λ). These recurrences can be used to derive

the analogue of (2.6) [17]

Proposition 2. For the unitary Hessenberg matrix specified by (3.1) and surrounding text, we have

∏

1≤i<j≤n

|λi − λj |2 =

∏n−2
l=0 (1 − |αl|2)n−1−l

∏n
j=1 q

2
j

. (3.3)

Proof. We follow the strategy sketched to prove (2.6) in the proof of Proposition 1. Analogous to (2.5)

we have

((H − λIn)−1)11 =

n
∑

j=1

q2j
λj − λ

(3.4)

where qj and λj relate to H as specified below (3.1). Using (2.8), (3.4) can be rewritten as

χbn−1(λ)|αj 7→−ᾱjαn−1

∏n
i=1(λ− λi)

=

n
∑

j=1

q2j
λ− λj

, (3.5)

which in turn implies
n

∏

i=1

q2i =

∏n
i=1 |χbn−1(λi)||αj 7→−ᾱjαn−1

∏

1≤i<j≤n |λi − λj |2
.

From this we see (3.3) follows if we can show

n
∏

i=1

|χbn−1(λi)| =

n−2
∏

l=0

(1 − |αl|2)n−1−l. (3.6)

To establish (3.6) we will use (3.2). With λ
(p)
j denoting the jth zero of χbp(λ), it follows from (3.2)

that

χbk(1/λ̄
(k)
j ) =

1

λ̄
(k)
j

(1 − |αn−k−1|2)χbk−1(1/λ̄
(k)
j )

χ̃bk(λ
(k)
j ) = (1 − |αn−k−1|2)χ̃bk−1(λ

(k)
j ). (3.7)
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Introducing the factorizations

χbk−1(x) =

k−1
∏

i=1

(x − λ
(k−1)
i ), χ̃bk(x) =

k
∏

i=1

(1 − xλ̄
(k)
i )

we deduce from (3.7) that

k
∏

i=1

χbk(1/λ̄
(k)
i ) = (1 − |αn−k−1|2)k

k
∏

i=1

(1/λ̄
(k)
i )k

k−1
∏

j=1

χ̃bk−1(λ
(k−1)
j )

k
∏

i=1

χ̃bk(λ
(k)
i ) = (1 − |αn−k−1|2)k

k−1
∏

j=1

(λ̄
(k−1)
j )k−1χbk−1(1/λ̄

(k−1)
j ).

These latter two equations together imply

k
∏

i=1

(λ̄
(k)
i )kχbk(1/λ̄

(k)
i ) =

k−1
∏

l=0

(1 − |αn−l|2)l+1.

Making further use of the first equation in (3.7), setting k = n, and noting |λ(n)
i | = 1 gives (3.6). �

In [17] (3.3) is derived using a different strategy relating to the determinant of the Toeplitz matrix

formed from the moments of the underlying measure.

Also required is a determinant evaluation analogous to (2.7).

Proposition 3. We have

det









[

λjk − λjn
λ−jk − λ−jn

]

j,k=1,...,n−1

[

jλjk
−jλ−jk

]

j=1,...,n−1

k=1,...,n

[λnk − λnn]k=1,...,n−1 [nλnk ]k=1,...,n









=

∏

1≤j<k≤n(λk − λj)
4

∏n
l=1 λ

2n−3
l

. (3.8)

Proof. By inspection the determinant is a symmetric function of λ1, . . . , λn which is homogeneous of

degree n. Upon multiplying columns 1 and columns n by λ2n−3
1 we see that the determinant becomes a

polynomial in λ1, so it must be of the form

1
∏n
l=1 λ

2n−3
l

p(λ1, . . . , λn)

where p is a symmetric polynomial of λ1, . . . , λn of degree 2n(n− 1).

We see immediately that the determinant vanishes when λ1 = λ2. Furthermore, it is straightforward

to verify that its derivatives (λ1
∂
∂λ1

)j (j = 1, 2, 3) also vanish when λ1 = λ2. The polynomial p must thus

contain as a factor
∏

1≤j<k≤n(λk − λj)
4. As this is of degree 2n(n− 1), it follows that the determinant

must in fact be proportional to (3.8).

On the r.h.s. of (3.8), the coefficient of
∏n
l=1 λ

4(l−1)−2n+3
l is unity. In the determinant, let us add

(n− 1) times the first column to the nth column. Then we see that the coefficient of λ−2n+3
1 is given by

the cofactor coming from multiplying together the (2n − 2, 1) and (2n − 4, n) elements. In the cofactor

we add (n− 2) times the first column to the (n− 1)st column. The coefficient of λ−2n+7
1 is given by the

cofactor coming from multiplying together the (2n − 3, 1) and (2n − 5, n − 1) elements. Proceeding in

this manner we see that the coefficient of
∏n
l=1 λ

4(l−1)−2n+3
l is also unity in the determinant. �

As remarked in the Introduction, the approach to the ensemble (1.4) given in [17] is via 2n × 2n

(n = N) real orthogonal Hessenberg matrices with determinant +1. The elements being real implies

7



{αj}j=0,...,2n−1 are real, while the determinant equalling +1 implies α2n−1 = −1. Thus there are 2n −
1 independent real parameters α0, . . . , α2n−2. In the corresponding eigen-decomposition, there are n

independent eigenvalues λj = eiθj (j = 1, . . . , n, 0 ≤ θj < π) and n − 1 independent variables qj

(j = 1, . . . , n− 1) where 1
2q

2
j is the square of the first component of both the eigenvalues λj and λ̄j . Left

open in [17] is the problem of a direct calculation of the corresponding Jacobian. For this the analogue

of Proposition 2 is required.

Proposition 4. [17] For a 2n× 2n real orthogonal Hessenberg matrix of determinant +1, parametrized

in terms of the real parameters {αi}i=0,...,2n−2, |αi| < 1, we have

n
∏

i=1

|λi −
1

λi
|

∏

1≤i<j≤n

|λi − λj |2|λi − 1/λj |2 = 2n
∏2n−2
l=0 (1 − α2

l )
(2n−1−l)/2

∏n
i=1 q

2
i

(3.9)

n
∏

j=1

|1 − λj |2 = 2

2n−2
∏

k=0

(1 − αk),

n
∏

j=1

|1 + λj |2 = 2

2n−2
∏

k=0

(1 + (−1)kαk). (3.10)

Proof. Denoting the Hessenberg matrix in question by H , the analogue of (3.5) reads

((I2n − λH)−1)11 =
1

2

n
∑

j=1

q2j

( 1

1 − λλj
+

1

1 − λλ̄j

)

. (3.11)

Analogous to the reasoning underlying (3.5), the l.h.s. is equal to χb2n−1(1/λ)/λχ
b
2n(1/λ). We thus have

∣

∣

∣

χb2n−1(λj)

χ′
2n(λj)

∣

∣

∣
=

1

2
q2j (j = 1, . . . , 2n)

where λj+n = λ̄j , qj+n = qj . Taking the product over j = 1, . . . , 2n, making use of (3.6), then taking the

square root gives (3.9). For the results (3.10), one notes

n
∏

j=1

|1 − λj |2 = χ2n(1),

n
∏

j=1

|1 + λj |2 = χ2n(−1),

while from (1.4) χk+1(λ)|λ=±1 = (λ− αkλ
k)χk(λ)|λ=±1. �

We remark that in [17] (3.9) is deduced by making use of (3.3), which in turn is derived using formulas

relating to the underlying measure. Our derivation of (3.10) is the same as that in [17].

We must make note too of a further determinant evaluation.

Proposition 5. We have

det
[

[λjk + λ−jk − (λjk + λ−jk )] j=1,...,2n−1

k=1,...,n−1

[j(λjk − λ−jk )] j=1,...,2n−1

k=1,...,n

]

=

n
∏

j=1

(λj − 1/λj)
∏

1≤j<k≤n

(λk − λj)
2(1/λk − 1/λj)

2(λj − 1/λk)
2(1/λj − λk)

2. (3.12)

Proof. We see that the determinant is a symmetric rational function in λ1, . . . , λn, and is antisymmetric

under the mapping λi 7→ 1/λi for any i = 1, . . . , n. It must thus be of the form

n
∏

j=1

(λj − 1/λj) q(λ1, . . . , λn) (3.13)

where q is symmetric and unchanged by the mapping λi 7→ 1/λi. Noting too that the determinant

vanishes when λ1 = λ2, we see that q must contain as a factor
∏

1≤j<k≤n

(λk − λj)
2(1/λk − 1/λj)

2(λj − 1/λk)
2(1/λj − λk)

2. (3.14)
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The highest order term (in degree) of (3.14) multiplied by
∏n
j=1(λj−1/λj) is

∏n
j=1 λj

∏

1≤j<k≤n(λk−λj)4.
On the other hand the highest order term in degree in the determinant is

det
[

[λjk − λjn] j=1,...,2n−1

k=1,...,n−1

[jλjk] j=1,...,2n−1

k=1,...,n

]

.

According to (2.7) this evaluates to the same expression, so in fact q must be exactly equal to (3.14). �

3.2 The Jacobians

Using a similar strategy to that used to derive the Jacobian (2.9) in the proof of Theorem 1, the results of

the previous subsection together with the method of wedge products allows the two Jacobians evaluated

by indirect means in [17] to be derived directly.

Theorem 2. Consider unitary Hessenberg matrices with entries specified by (3.1) and surrounding text.

The Jacobian for the change of variables from {αj}j=0,...,n−1 to {θi}i=1,...,n, {qi}i=1,...,n−1 is equal to

∏n−2
i=0 (1 − |αi|2)
qn

∏n
i=1 qi

. (3.15)

Consider 2n× 2n real orthogonal Hessenberg matrices as specified above Proposition 4. The Jacobian

for the change of variables from {αj}j=0,...,2n−2 to {θi}i=1,...,n, {qi}i=1,...,n−1 is equal to

2n−1

qn
∏n
i=1 qi

∏2n−2
l=0 (1 − |αl|2)

∏2n−2
k=0 (1 − αk)1/2(1 + (−1)kαk)1/2

. (3.16)

Proof. In relation to (3.15) we begin by equating successive powers of λ on both sides of (3.4). Recalling

the explicit form of H given by (3.1) and surrounding text this gives

1 =

n
∑

j=1

q2j

ᾱ0 =

n
∑

j=1

q2jλj

∗ + ᾱ1ρ
2
0 =

n
∑

j=1

q2jλ
2
j

∗ + ᾱ2ρ
2
0ρ

2
1 =

n
∑

j=1

q2jλ
3
j

...
...

∗ + ᾱn−1ρ
2
0ρ

2
1 · · · ρ2

n−2 =
n

∑

j=1

q2jλ
n
j (3.17)

where the ∗ denotes terms involving only variables already having appeared on the l.h.s. of the preceding

equation. Thus as in the corresponding equations (2.11) in the tridiagonal case a triangular structure

results. We know that αj (j = 0, . . . , n−2) has an independent real and imaginary part, while αn−1 := eiφ,

λj := eiθj (j = 1, . . . , n) have unit modulus. Consequently the number of equations can be made equal

to the number of variables by firstly using the first equation to eliminate q2n in the subsequent equations,

then appending to the list the complex conjugate of all but the last of the remaining equations.
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Let us take differentials of these 2n− 1 equations, then take wedge products of both sides. Because

of the triangular structure, we obtain on the l.h.s.

ρ2
0ρ

2
1 · · · ρ2

n−2

n−2
∏

l=1

ρ4l
n−l−2d~α ∧ dφ, (3.18)

while this operation on the r.h.s. yields

q2n

n−1
∏

j=1

q3j

∣

∣

∣

∣

∣

∣

∣

∣

det









[

λjk − λjn
λ−jk − λ−jn

]

j,k=1,...,n−1

[

jλjk
−jλ−jk

]

j=1,...,n−1

k=1,...,n

[λnk − λnn]k=1,...,n−1 [nλnk ]k=1,...,n









∣

∣

∣

∣

∣

∣

∣

∣

d~θ ∧ d~q

= q2n

n−1
∏

j=1

q3j
∏

1≤j<k≤n

|λk − λj |4d~θ ∧ d~q (3.19)

where the equality follows upon using the determinant evaluation (3.8).

Analogous to (2.14), by definition the Jacobian J satisfies

d~α ∧ dφ = Jd~θ ∧ d~q.

Equating (3.18) and (3.19) and making use of (3.3) gives (3.15).

Consider next the derivation of (3.16). Proceeding as in the derivation of (3.17), expanding (3.11) in

powers of λ, we obtain

1 =
n

∑

j=1

q2j

α0 =
1

2

n
∑

j=1

q2j (λj + λ̄j)

∗ + α1ρ
2
0 =

1

2

n
∑

j=1

q2j (λ
2
j + λ̄2

j )

...
...

∗ + α2n−2ρ
2
0 · · · ρ2

2n−3 =
1

2

n
∑

j=1

q2j (λ
2n−1
j + λ̄2n−1

j ).

The l.h.s. again exhibits a triangular structure, and furthermore all quantities on the l.h.s. are real.

Taking the differentials of both sides, and forming the wedge product of the l.h.s.’s of all but the first

equation gives
2n−3
∏

l=0

ρ
2(2n−2−l)
l d~α. (3.20)

On the r.h.s., after substituting for qndqn using the differential of the first equation, this same procedure

gives

2−nq2n

n−1
∏

j=1

q3j

∣

∣

∣
det

[

[λjk + λ−jk − (λjk + λ−jk )] j=1,...,2n−1

k=1,...,n−1

[j(λjk − λ−jk )] j=1,...,2n−1

k=1,...,n

]∣

∣

∣
d~θ ∧ d~q. (3.21)

Here the Jacobian J satisfies

d~α = Jd~θ ∧ d~q,
so (3.20) and (3.21) (with the determinant evaluated according to (3.12)) together give a formula for J in

terms of {qi}, {αi} and {λi}. The latter set of variables can be eliminated by making use of Proposition

4, and (3.16) results. �
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4 A multiplicative rank 1 perturbation of unitary matrices

4.1 Circular analogue of the Dixon-Anderson density

Let ~e1 denote the n × 1 unit vector (1, 0, . . . , 0)T . Let t be a complex number with |t| = 1. Then the

matrix

In − (1 − t)~e1~e
T
1

is a unitary matrix differing from the identity only in the top left entry which is t. Our interest in this

section is the eigenvalue distribution of

Ũ := (In − (1 − t)~e1~e
T
1 )U, (4.1)

for U a given unitary matrix. Such multiplicative rank 1 perturbations are discussed for example in

[1]. The term multiplicative perturbation is used because Ũ is obtained from U by multiplication of the

first row by the unimodular complex number t, while the term rank 1 is used because the multiplicative

perturbative factor differs from the identity by a rank 1 matrix. We will see that for U a member of the

circular β-ensemble, a joint eigenvalue p.d.f. generalizing (1.2) results.

First a rational function having as its zeros the eigenvalues of Ũ will be specified.

Proposition 6. Let U be an n×n unitary matrix with distinct eigenvalues eiθ1 , . . . , eiθn, and denote the

corresponding matrix of eigenvectors by V = [vjk]j,k=1,...,n. The eigenvalues of Ũ as specified by (4.1)

occur at the zeros of the rational function

Cn(λ) = 1 + (t− 1)
n

∑

j=1

eiθj |v1j |2
eiθj − λ

. (4.2)

Proof. Noting from (4.1) that Ũ = U − (1 − t)U ′, where U ′ is the n× n matrix in which the first row

is equal to the first row of U , and all other rows have all entries zero, we see

V −1ŨV = diag[eiθ1 , . . . , eiθn ] + (t− 1)[v̄1jv1ke
iθk ]j,k=1,...,n.

Thus Ũ has the same spectrum as a matrix which consists of a rank 1 multiplicative perturbation of a

diagonalized unitary matrix. The characteristic polynomial of this matrix can be factorized as

n
∏

l=1

(eiθl − λ) det
[

δj,k + (t− 1)v̄1jv1ke
iθk/(eiθj − λ)

]

j,k=1,...,n
,

and the zeros must occur at the zeros of the determinant. Noting the simple determinant evaluation

det[ujδj,k + 1]j,k=1,...,n =
n

∏

l=1

ul

(

1 +
n

∑

j=1

1

uj

)

,

the sought result follows. �

We remark that Proposition 6 can be extended to the case that each eigenvalue eiθj has multiplicity

mj. Thus with v
(s)
1j denoting the first component of the sth independent eigenvector corresponding to

eiθj , we replace |v1j |2 in (4.2) by
∑mj

s=1 |v
(s)
1j |2.

Let us suppose now that the matrix U is a unitary upper triangular Hessenberg matrix parametrized

as specified by (3.1) and surrounding text. One of the main results of [17] is that the parameters

{αj}j=0,...,n−1 can be chosen from particular probability distributions so that the eigenvalue p.d.f. of U

11



is given by (1.2). The probability distributions in question are parametrized by a real number ν ≥ 1 and

denoted by Θν . For ν > 1, the support of Θν is the open unit disk |z| < 1 in the complex plane, and the

distribution is specified by the p.d.f.
ν − 1

2π
(1 − |z|2)(ν−3)/2.

For ν = 1, the support is the unit circle |z| = 1, and Θ1 denotes the uniform distribution. Proposition

4.2 of [17] tells us that if

αn−j−1 ∼ Θβj+1 (j = 0, . . . , n− 1) (4.3)

then the corresponding eigenvalue p.d.f. is given by (1.2). Furthermore, it tells us that the modulus

squared of the first component of the eigenvectors |v1j |2 := µj have the distribution with measure

1

CβN

n
∏

i=1

µ
β/2−1
i d~µ, (4.4)

where

CβN =
ΓN(β/2)

Γ(βN/2)
, d~µ := dµ1 . . . dµn−1.

This is an example of the Dirichlet distribution.

The latter fact motivates the study of the zeros of (4.2) with the |v1j |2 distributed according to

the Dirichlet distribution. We will find that a conditional p.d.f. relating to (1.2) results provided the

distribution of t is appropriately chosen. First, some preliminary results must be established.

Lemma 1. Suppose in (4.2) that

0 < θ1 < θ2 < · · · < θn ≤ 2π. (4.5)

The function C(λ) has exactly n zeros occurring at λ = eiψ1 , . . . , eiψn , where

θi−1 < ψi < θi (i = 1, . . . , n, θ0 := θnmod 2π). (4.6)

Furthermore, with λj := eiθj , λ̃j := eiψj , we have

− (t− 1)λjqj =

∏n
l=1(λj − λ̃l)

∏n
l=1,l 6=j(λj − λl)

(j = 1, . . . , n) (4.7)

n
∏

l=1

λ̃l = t

n
∏

l=1

λl. (4.8)

Proof. The fact that there are exactly n zeros of unit modulus follows from the relationship of Cn(λ)

to the characteristic polynomial of a unitary matrix. The interlacing property is well known [1]. It can

be seen graphically by writing (4.2) in the form

Cn(λ) =
(t− 1)

2i

(

cot
φ

2
−

n
∑

i=1

qi cot
(ψ − θi

2

))

,

where we have set t := eiφ, λ := eiψ.

With the zeros so identified, and the poles as evident from (4.2), it follows that

Cn(λ) =

∏n
j=1(λ− λ̃j)

∏n
j=1(λ− λj)

, (4.9)

where use has also been made of the property Cn(λ) → 1 as λ → ∞. Comparing residues in (4.2) and

(4.9) gives (4.7), while setting λ = 0 gives (4.8). �

The Jacobians for some change of variables are also required.
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Lemma 2. Let J be the Jacobian for the change of variables {qj}j=1,...,n−1 ∪ {φ} to {ψj}j=1,...,n. We

have

J == |1 − t|−(n−1)
∏

1≤j<k≤n

∣

∣

∣

λ̃k − λ̃j
λk − λj

∣

∣

∣
(4.10)

Proof. By definition J is positive and satisfies

d~q ∧ dt = Jd~ψ. (4.11)

Now

d~q ∧ dφ = (t− 1)−(n−1)d(t− 1)~q ∧ dφ

= (t− 1)−(n−1) det

[

[∂(t− 1)ql

∂λ̃j

]

j=1,...,n

l=1,...,n−1

[ ∂t

∂λ̃j

]

j=1,...,n

]

d
~̃
λj .

But according to (4.7) and (4.8)

∂(t− 1)ql

∂λ̃j
=

(t− 1)ql

λl − λ̃j
,

∂t

∂λ̃j
=

t

λ̃j
,

and so with λn = 0 (temporarily as a notational convenience)

d~q ∧ dφ = t

n−1
∏

l=1

(−ql) det
[ 1

λ̃j − λl

]

j,l=1,...,n
d
~̃
λ. (4.12)

Since J is positive and satisfies (4.11), it must be equal to the modulus of the terms multiplying d~̃λ in

this expression. Evaluating the determinant as a Cauchy double alternant, and evaluating
∏n−1
l=1 ql using

(4.7) gives the stated result. �

The results of the above two lemmas allow a change of variables to be made from {qj}j=1,...,n−1 ∪{t}
to {λl}l=1,...,n.

Theorem 3. With |v1j |2 = qj (j = 1, . . . , n) in (4.2), let {qj} have the Dirichlet distribution with

measure
Γ((n− 1)d+ d0)

(Γ(d))n−1Γ(d0)

(

n−1
∏

j=1

qd−1
j

)

qd0−1
n d~q. (4.13)

Further, let the parameter t in (4.2) be determined by the p.d.f. with measure

Γ2(1
2 (d0 + (n− 1)d+ 1))

2πΓ((n− 1)d+ d0)
|1 − t|d0+(n−1)d−1dφ. (4.14)

The conditional p.d.f. of {λ̃j = eiψj}j=1,...,n, given {λj = eiθj}j=1,...,n, is equal to

A

∏n
l=1 |eiθn − eiψl |d0−1

∏n−1
l=1 |eiθn − eiθl |d0+d−1

∏n−1
j=1

∏n
l=1 |eiθj − eiψl |d−1

∏

1≤j<k≤n−1 |eiθk − eiθj |2d−1

∏

1≤j<k≤n

|eiψk − eiψj |, (4.15)

A :=
Γ((n− 1)d+ d0)

(Γ(d))n−1Γ(d0)

Γ2(1
2 (d0 + (n− 1)d+ 1))

2πΓ((n− 1)d+ d0)
.

Proof. Our proof, which at a technical level proceeds by making use of the results of Lemmas 1 and

2, is based on a strategy adopted for an analogous problem with real roots by Anderson [2], and many

years before by Dixon [5].
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We must change variables in the product of (4.13), (4.14), and the Jacobian J . We know the latter

is given by (4.10). To change variables in (4.13) we use (4.8), which gives

(

n−1
∏

j=1

qd−1
j )qd0−1

n =
1

|1 − t|d0+(n−1)d−n

∏n−1
j=1

∏n
l=1 |λj − λ̃l|d−1

∏

1≤j<l≤n−1 |λl − λj |2(d−1)

∏n
l=1 |λn − λ̃l|d0−1

∏n−1
l=1 |λn − λl|d0+d−2

. (4.16)

Multiplying (4.14), (4.10) and (4.16) we see that the dependence on t cancels, and the expression (4.15)

results. �

4.2 Properties of the corresponding joint density

Let us suppose {θj}j=1,...,n, assumed ordered as in (4.6) and with θn fixed, are distributed according to

the p.d.f.

(n− 1)!

(2π)n−1Mn−1((a1 + d0 + d− 1)/2, (a1 + d0 + d− 1)/2, d)

n−1
∏

l=1

|eiθn−eiθl |a1+d0+d−1
∏

1≤j<k≤n−1

|eiθk−eiθj |2d,

MN(a, b, λ) =

N−1
∏

j=0

Γ(λj + a+ b+ 1)Γ(λ(j + 1) + 1)

Γ(λj + a+ 1)Γ(λj + b+ 1)Γ(1 + λ)
, (4.17)

(for a discussion of this p.d.f. see [8]). Multiplying this with (4.15) gives the joint p.d.f.

C(n,n−1)(ψ, θ) :=
A(n− 1)!

(2π)n−1Mn−1((a+ a1 + d)/2, (a+ a1 + d)/2, d)

n
∏

l=1

|eiθn − eiψl |a

×
∏

1≤j<k≤n

|eiψk − eiψj |
n−1
∏

l=1

|eiθn − eiθl |a1

∏

1≤j<k≤n−1

|eiθk − eiθj |
n−1
∏

j=1

n
∏

l=1

|eiθj − eiψl |d−1(4.18)

where d0 − 1 =: a.

The case of (4.18) relevant to the circular β-ensemble of Killip and Nenciu is a = d − 1, a1 = 1 and

d = β/2. Then (4.18) is symmetric in {θl}l=1,...,n and in {ψl}l=1,...,n, and θn may again be considered as

variable ((4.18) should then be multiplied by n/2π to get the correct normalization). It corresponds to the

joint eigenvalue p.d.f. of a unitary Hessenberg matrix with parameters distributed according to (4.3), and

thus with eigenvalue p.d.f. (1.2), and the same unitary Hessenberg matrix perturbed by multiplication of

the first row by t. The factor t is to be distributed according to (4.14) with d0 = d = β/2. We know that

the p.d.f. for {θl}l=1,...,n can be sampled by computing the zeros of χn(λ) as calculated from (1.4) with

{αj}j=0,...,n−1 chosen as specified by (4.3). To sample from {ψl}l=1,...,n−1 in the joint p.d.f., with the

same {αj}j=0,...,n−1 we again compute χn(λ) from the recurrences (1.4), but now with χ0(λ) = χ̃0 = t.

Next, let us turn our attention to integration formulas associated with (4.18). Since (4.15) is a

conditional p.d.f. we must have

∫

R

dψ1 · · ·dψn C(n,n−1)(ψ, θ) =
(n− 1)!

(2π)n−1Mn−1((a+ a1 + d)/2, (a+ a1 + d)/2, d)
(4.19)

×
n−1
∏

l=1

|eiθn − eiθl |a+a1+d
∏

1≤j<k≤n−1

|eiθk − eiθj |2d (4.20)

where R denotes the region specified by the inequalities (4.5). Special cases of (4.19) are two classical

inter-relations between circular ensembles [7, 18] (for an extensive study of such formulas in random matrix

theory see [11], and for application of the Dixon-Anderson density to the cases with real eigenvalues see

[12]).
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Proposition 7. Let COEn, CUEn, CSEn — the circular ensembles with orthogonal, unitary and sym-

plectic symmetry respectively — refer to the eigenvalue p.d.f. (1.2) with β = 1, 2, 4 respectively. Let alt

refer to the operation of integrating over every second eigenvalue. Let COEn ∪COEn denote the p.d.f. of

2n eigenvalues which results from superimposing two independent sequences of n eigenvalues each with a

COEn distribution. One has

alt(COEn ∪ COEn) = CUEn (4.21)

alt(COE2n) = CSEn (4.22)

Proof. For the first identity we require the fact that [14]

COEn ∪ COEn ∝
∏

1≤j<k≤n

|eiθ2k − eiθ2j ||eiθ2k−1 − eiθ2j−1 |. (4.23)

We then see that (4.19) with a1 = d = 1 is equivalent to the first identity. The second identity is

immediately seen to correspond to (4.19) with a1 = 2, d = 2. �

4.3 Matrix theoretic derivation of the COE, CUE, CSE inter-relations

The inter-relations (4.21), (4.22) were originally proved by establishing the same integration formulas as

those noted in the proof of Proposition 7. In this subsection it will be shown how random matrices can

be constructed in such a way that both (4.21) and (4.22) are immediate.

Let us consider first (4.21). This requires a different random matrix realization of the joint p.d.f. (4.18)

in the case d = a1 = 1, a = 0 to that given in the paragraph below (4.18). The theory underlying the

construction is the following.

Proposition 8. Let M1 be a 2n× 2n unitary matrix with real elements, which has a doubly degenerate

spectrum with the independent eigenvalues distributed as CUEn. Let the matrix of eigenvectors be V =

[vij ]i,j=1,...,2n, and suppose the joint distribution of µj := (v1 2j−1)
2 + (v1 2j)

2 (j = 1, . . . , n) is equal to

the Dirichlet distribution (4.4) with β = 2. Form the matrix M ′
1 by multiplying the first row of M1 by the

complex number t, |t| = 1, where t has distribution (4.14) with d0 = d = 1. Then the perturbed matrix

M ′
1 has for its eigenvalue p.d.f. (4.18) with a = 0, a1 = d = 1.

Proof. Let {eiθl}l=1,...,n denote the independent eigenvalues of M1. Proceeding as in the derivation of

(4.2) shows that the characteristic polynomial of the perturbed matrix is equal to

n
∏

j=1

(eiθl − λ)2
(

1 + (t− 1)

n
∑

j=1

eiθjµj
eiθj − λ

)

. (4.24)

Thus M ′
1 has n eigenvalues at {eiθl}l=1,...,n, and n eigenvalues given by the zeros of the rational function

factor in (4.24). We are given that the former have p.d.f. CUEn, while Theorem 3 tells us that the

latter have conditional p.d.f. (4.15) with d0 = d = 1. Multiplying these together gives the stated joint

distribution. �

To realize the matrix M1, we begin with an element of U(n) chosen according to the Haar measure.

This gives the eigenvalue p.d.f. CUEn, with the eigenvectors such that the µj := |v1j |2 (j = 1, . . . , n)

have joint distribution (4.4) with β = 2. To obtain a doubly degenerate spectrum, each element x+ iy is

replaced by its 2 × 2 real matrix representation
[

x y

−y x

]

,
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so forming a 2n× 2n matrix with real entries. Since the corresponding perturbed matrix M ′
1 retains all

distinct eigenvalues of M1,

unpert(M ′
1) = CUEn, (4.25)

where the l.h.s. denotes the eigenvalue p.d.f. of M ′
1 integrated over the perturbed eigenvalues. On the

other hand Proposition 8 together with (4.23) tell us that with reference to the eigenvalue p.d.f., M ′
1 =

COEn ∪COEn. Thus we have a matrix theoretic understanding of (4.21) in the sense that its validity is

a consequence of spectral properties of M ′
1 which avoid the need for explicit integration of the eigenvalue

p.d.f.

We seek a similar understanding of (4.22). For this we must identify an ensemble of random matrices

with a doubly degenerate spectrum, and their perturbations, which give rise to (4.18) in the case d = 2,

a = a1 = 1. In fact the very definition of the circular symplectic ensemble involves matrices with a doubly

degenerate spectrum (see e.g. [8]). Thus, if for any 2n× 2n matrix X we set

XD := Z2nX
TZ2n, where Z2n := In ⊗

[

0 −1

1 0

]

,

and select U ∈ U(2n) with Haar measure, then matrices of the form UDU make up the circular symplectic

ensemble. Such matrices have a doubly degenerate spectrum, and the n independent eigenvalues are

distributed according to CSEn. Furthermore, with the matrix of eigenvectors denoted V = [vij ]i,j=1,...,2n,

one has that the µj := |v1 2j−1|2 + |v1 2j |2 (j = 1, . . . , n) are distributed according to the Dirichlet

distribution (4.4) with β = 4. Consideration of these facts, together with reasoning analogous to that

used in the proof of Proposition 8, gives the sought realization.

Proposition 9. Let M2 be a member of the circular symplectic ensemble as specified above. Form the

matrix M ′
2 by multiplying the first row of M2 by the complex number t, |t| = 1, where t has distribution

(4.14) with d0 = d = 2. The joint eigenvalue p.d.f. of M ′
2 is then given by (4.18) with a = a1 = 1, d = 2.

Analogous to (4.25) it is immediate that

unpert(M ′
2) = CSEn.

Because Proposition 9 tells us that M ′
2 has a joint distribution formally equivalent to COE2n, (4.22) is

reclaimed as a matrix theoretic identity.

5 Cayley transformation

5.1 Cauchy analogue of the Dixon-Anderson density

In general a unitary matrix U is transformed to an Hermitian matrix H by the Cayley transformation

H = i
1N − U

1N + U
. (5.1)

At the level of the eigenvalues, the change of variables (5.1) in the workings of Sections 4.1 and 4.2 leads

to a joint p.d.f. on interlacing variables on the real line, relating to the so called (generalized) Cauchy

ensemble [21, 4]. Properties of this allow a random three term recurrence to be derived for the (projected)

characteristic polynomial associated with the p.d.f. (1.5).

First we apply the change of variables implied by (5.1) to (4.2) with the l.h.s. written as (4.9).
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Proposition 10. Consider the rational function (4.2) with the lower terminal of summation extended to

j = 0. Substitute for the l.h.s. (4.9) with the lower terminals in the products extended to j = 0. Under

the change of variables

λ̃j =
xj − i

xj + i
, λj =

yj − i

yj + i
(j 6= 0)

λ =
z − i

z + i
, t =

c− i

c+ i
(5.2)

and with λ0 = 1 we obtain
∏n
j=0(z − xj)

(z2 + 1)
∏n
j=1(z − yj)

=
z − c

q0(z2 + 1)
−

n
∑

j=1

(qj/q0)

z − yj
, (5.3)

where

x0 > y1 > x1 > · · · > yn > xn+1. (5.4)

Proof. This follows from direct substitution, together with the formula

q0
c+ i

=

∏n
l=1(yl + i)

∏n
l=0(xl + i)

, (5.5)

which is a consequence of (4.7), with lower product terminals extended to l = 0, in the case j = 0. �

Theorem 4. Consider the rational function (5.3). Let {qj}j=0,...,n−1 have the Dirichlet distribution with

measure
Γ(

∑n
j=0 dj)

∏n
j=0 Γ(dj)

n
∏

j=0

q
dj−1
j d~q. (5.6)

Let c have the generalized Cauchy distribution with measure

Γ(γ)Γ(γ̄)

π22(1−Re γ)Γ(2Re γ − 1)
(1 + ic)−γ(1 − ic)−γ̄ dc (5.7)

where
n

∑

i=0

di + 1 = 2Re γ. (5.8)

We have that the conditional p.d.f. of {xj}j=0,...,n given {yj}j=1,...,n is equal to

Ã

n
∏

j=0

(1 + ixj)
−γ(1 − ixj)

−γ̄
n

∏

j=1

(1 + iyj)
γ−dj(1 − iyj)

γ̄−dj

×
n

∏

j=1

n
∏

l=0

|yj − xl|dj−1
∏

1≤j<k≤n

|yj − yk|1−dj−dk

∏

0≤j<k≤n

|xj − xk| (5.9)

where

Ã =
Γ(γ)Γ(γ̄)

π22(1−Re γ)

1

Γ(2Re γ − 1 − ∑n
i=1 di)

∏n
j=1 Γ(dj)

. (5.10)

Proof. The task is to change variables in the wedge product of (5.6) and (5.7) to {xj}j=0,...,n. We have

(1 + ic)−γ(1 − ic)−γ̄ = |(1 − ic)−γ̄ |2

= q−2Re γ
0

∣

∣

∣

∣

(∏n
l=1(1 − iyl)

∏n
l=0(1 − ixl)

)γ̄∣
∣

∣

∣

2

= q−2Re γ
0

∏n
l=1(1 + iyl)

γ(1 − iyl)
γ̄

∏n
l=0(1 + ixl)γ(1 − ixl)γ̄

(5.11)
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where the second equality follows from (5.5), and the final equality uses the fact that since xl, yl interlace

according to (5.4),

log

(

∏n
j=0(1 + ixj)

∏n
j=1(1 + iyj)

)

=

n
∑

j=0

log(1 + ixj) −
n

∑

j=1

log(1 + iyj).

Also, for j = 1, . . . , n

qj =
q0

|1 + iyj|2
∏n
l=0 |yj − xl|

∏n
l=1,l 6=j |yj − yl|

. (5.12)

It remains to change variables in d~q ∧ dc. Since xj is related to λ̃j and c to t = eiφ as given in (5.2),

d~q ∧ dc =
J

2
|1 + ic|2

n
∏

j=0

2

(1 + ixj)(1 − ixj)
d~x

where J is the Jacobian (4.10) (appropriately modified to account for the lower terminal being 0). In

terms of the change of variables (5.2) the latter reads

J = 2−nqn0

∏

0≤j<k≤n |xj − xk|
∏

1≤j<k≤n |yj − yk|

and thus we have

d~q ∧ dc = qn+2
0

1

|1 + ixj |2

∏

0≤j<k≤n |xj − xk|
∏

1≤j<k≤n |yj − yk|
d~x. (5.13)

Multiplying (5.11), (5.12) and (5.13) gives the stated result. �

We remark that the conditional p.d.f. (5.9) appears in [19] as a generalization of a conditional p.d.f. due

to Dixon and Anderson (see (5.26) below). We remark too that the distribution (5.7) in the case γ real

is the classical t-distribution.

Integrating (5.9) over {xj}j=0,...,n within the region (5.4) we must get unity. Using this allows us to

derive for the multi-dimensional integral

In(γ; d) =
1

n!

∫ ∞

−∞

dx1 · · ·
∫ ∞

−∞

dxn

n
∏

l=1

(1 + ixl)
−γ(1 − ixl)

−γ̄
∏

1≤j<k≤n

|xj − xk|2d (5.14)

a recurrence analogous to that obtained by Anderson [2] for the Selberg integral. Moreover, the interme-

diate workings will allow us to deduce a random three term recurrence for the characteristic polynomial

associated with the p.d.f. (1.5).

Corollary 1. We have

In+1(γ; d) = π22−2Re γ Γ(2Re γ − nd− 1)Γ((n+ 1)d)

Γ(d)|Γ(γ)|2 In(γ − d; d). (5.15)

Proof. Let us denote the region (5.4) by R′. As remarked, integrating (5.9) over {xj}j=0,...,n within

R′ must give unity. Setting

d1 = · · · = dn = d (5.16)

this implies

Ãd

∫

R′

dx0 · · ·dxn
n

∏

j=0

(1 + ixj)
−γ(1 − ixj)

−γ̄
n

∏

j=1

n
∏

l=0

|yj − xl|d−1
∏

0≤j<k≤n

|xj − xk|

=

n
∏

j=1

(1 + iyj)
−γ+d(1 − iyj)

−γ̄+d
∏

1≤j<k≤n

|yj − yk|2d−1 (5.17)
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where Ãd := Ã|d1=···dn=d. Thus

1

Ãd
In(γ − d; d) =

∫

R′

dx0 · · · dxndy1 · · · dyn
n

∏

j=0

(1 + ixj)
−γ(1 − ixj)

−γ̄

×
n

∏

j=1

n
∏

l=0

|yj − xl|d−1
∏

1≤j<k≤n

|yj − yk|
∏

0≤j<k≤n

|xj − xk|. (5.18)

On the other hand, we know from [5, 2] that

∫

R′

dy1 · · · dyn
∏

1≤j<k≤n

|yj − yk|
n

∏

j=1

n
∏

l=0

|yj − xl|d−1

=
(Γ(d))n+1

Γ((n+ 1)d)

∏

0≤j<k≤n

|xj − xk|2d−1, (5.19)

so the r.h.s. of (5.18) is also equal to

(Γ(d))n+1

Γ((n+ 1)d)
In+1(γ; d). (5.20)

Equating (5.18) and (5.20) gives (5.15). �

Iterating (5.15) with I0(γ, d) = 1 reclaims the gamma function evaluation [8]

n!In(γ; d) = 2dn(n−1)−2(Re γ−1)πnMn(γ̄ − d(n− 1) − 1, γ − d(n− 1) − 1, d) (5.21)

where MN(a, b, λ) is given by (4.17).

5.2 A random three term recurrence

Consider the rational function (5.3). Suppose {qj}j=0,...,n have the Dirichlet distribution (5.6) with equal

parameters (5.16), and suppose c has the distribution (5.7). Suppose furthermore that {yj}j=1,...,n have

distribution with measure

1

In(γ − d; d)

n
∏

j=1

(1 + iyj)
−γ+d(1 − iyj)

−γ̄+d
∏

1≤j<k≤n

|yk − yj|2d. (5.22)

The marginal distribution of {xj} is then given by multiplying this with (5.9) and integrating {yj} over

the region R′ (5.4). Using (5.19) gives

1

In+1(γ; d)

n
∏

j=0

(1 + ixj)
−γ(1 − ixj)

−γ̄
∏

0≤j<k≤n

|xj − xk|2d. (5.23)

Hence with pn+1(z; γ; d) denoting the random monic polynomial of degree n+1 with zeros at {xj}j=0,...,n

having distribution (5.23), we see that (5.3) can be written

pn+1(z; γ; d)

(z2 + 1)pn(z; γ − d; d)
=

z − c

q0(z2 + 1)
−

n
∑

j=1

(qj/q0)

z − yj
. (5.24)

A companion identity to (5.24) is also required. For this purpose we introduce the random rational

function
∏n−1
k=1 (z − uk)

∏n
j=1(z − yj)

=

n
∑

j=1

µj
z − yj

(5.25)
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where {µj} have Dirichlet distribution

Γ(nd)

(Γ(d))n

n
∏

j=1

µd−1
j .

We know from the work of Dixon [5] and Anderson [2] that the conditional p.d.f. of {uk} given {yj} is

equal to

Γ(nd)

(Γ(d))n

∏

1≤j<k≤n−1(uj − uk)
∏

1≤j<k≤n(yj − yk)2d−1

n−1
∏

j=1

n
∏

k=1

|uj − yk|d−1, (5.26)

provided

y1 > u1 > · · · > yn−1 > un−1 > yn. (5.27)

It follows from (5.26) that if {yj} have distribution (5.22), then the marginal distribution of {uj} is

equal to

Γ(nd)

(Γ(d))n
1

In(γ − d; d)

∏

1≤j<k≤n−1

(uj − uk)

∫

R̃

dy1 · · ·dyn

×
n

∏

j=1

(1 + iyj)
−γ+d(1 − iyj)

−γ̄+d
n−1
∏

j=1

n
∏

k=1

|uj − yk|d−1

where R̃ is the region (5.27). According to (5.17) this can be evaluated as

1

In−1(γ − 2d, d)

n−1
∏

j=1

(1 + iuj)
−γ+2d(1 − iuj)

−γ̄+2d
∏

1≤j<k≤n−1

|uj − uk|2d.

We therefore conclude that (5.25) can be written

pn−1(z; γ − 2d; d)

pn(z; γ − d; d)
=

n
∑

j=1

µj
z − yj

. (5.28)

Comparison of (5.24) and (5.28) implies {pn(z; γ+(n−1)d; d)} satisfy a random three term recurrence.

Theorem 5. With B[α, β] denoting the classical beta distribution, let

bn ∼ B[2Re γ + nd− 1, nd] (n 6= 0), b0 = 1, (5.29)

and let cn have the Cauchy distribution

Γ(γ + nd)Γ(γ̄ + nd)

π22(1−nd−Re γ)Γ(2(Re γ + nd) − 1)
(1 + ic)−(γ+nd)(1 − ic)−(γ̄+nd) (5.30)

(this is (5.7) with γ 7→ γ + nd). We have that for n = 0, 1, . . . ,

pn+1(z; γ + nd; d)

=
(z − cn)

bn
pn(z; γ + (n− 1)d; d) +

(

1 − 1

bn

)

(1 + z2)pn−1(z; γ + (n− 2)d; d), (5.31)

where p0 := 1.

Proof. In (5.24) and (5.28) replace γ 7→ γ + nd. We know that in general if {dj}j=0,...,n have Dirichlet

distribution (5.6), then each dj has beta distribution B[dj ,
∑n

l=0,l 6=j dj ]. Using this fact it follows that in

(5.24) we now have

qj ∼ B[d, (n− 1)d] (j 6= 0), q0 ∼ B[2Re γ + nd− 1, nd],
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where in deriving the former use has also been made of (5.8), while in (5.28)

µj ∼ B[d, (n− 1)d].

The quantities are constrained by
∑n
j=0 qj = 1,

∑n
j=1 µj = 1. Substituting (5.31) in (5.24) we thus see

that (5.28) results, thereby verifying the correctness of (5.31). �

To relate this to the circular Jacobi β-ensemble (1.5), we note that with

xj = i
1 − eiθj

1 + eiθj
(j 6= 0), x0 = 0,

the p.d.f. (5.23) with γ 7→ γ + 2d (γ real) extended to a measure via the multiplication by dx1 · · · dxn,

becomes equal to (1.5) with a = 2γ − 2 and extended to a measure via the multiplication by dθ1 · · · dθn.
Thus the zeros of the polynomial pn(z; γ + (n− 1)d; d), with γ real, x1, . . . , xn say, under the mapping

xj − i

xj + i
= eiθj (j = 1, . . . , n) (5.32)

give for {θj} the distribution (1.5) with a = 2γ − 2.

As an illustration, let us consider the case γ = 1, d = 1, which relates to averaging over U(N). There

are a number of averages over U(N) which are known analytically. For example, with p ∈ Z>0, [7]

〈|TrUp|2〉U∈U(N) =

{

p, 0 < p ≤ N

N, p ≥ N

Since

〈|TrUp|2〉U∈U(N) =
〈
∣

∣

∣

N
∑

j=1

eipθj

∣

∣

∣

2〉

U(N)

we can compute the Monte Carlo approximation

〈|TrUp|2〉U∈U(N) =
1

M

M
∑

k=1

∣

∣

∣

N
∑

j=1

(x
(k)
j − i

x
(k)
j + i

)p∣
∣

∣

2

+O
( 1√

M

)

(5.33)

where use has been made of (5.32) and x
(k)
j refers to the jth generation of pN (z;N ; 1) from (5.31).

For the latter task, we read off from (5.29) that

bn ∼ B[1 + n, n].

Also, by definition the Student t-distribution Tν say, has p.d.f. proportional to (1 + t2/ν)−(ν+1)/2 so

cn ∼ 1√
ν
Tν

∣

∣

∣

ν=2n+1
.

Significantly, the zeros of the lower order polynomials in the sequence {pj(z; j; 1)}j=0,1,...,N themselves

allow us, via (5.32), to sample from U(j). Hence (5.33) can be calculated for all values of N less than the

sought value within the same calculation. Monte Carlo results obtained this way are presented in Table

5.2. The consistency of these results is evident.
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