
http://exp.telecomitalialab.com

exp - Volume 3 - n. 3 - September 200376

L. Braubach, W. Lamersdorf, A. Pokahr

INTRODUCTION

Intelligent agents are considered a promising ap-

proach for building complex software systems, be-

cause the agent paradigm allows for modelling ap-

plications in a natural way that resembles how hu-

mans perceive the problem domain (1). Neverthe-

less, agent applications are still scarce in the market

for several reasons. Firstly, the design and imple-

mentation requires skills in many different fields like

distributed systems engineering, communication in-

frastructures and agent architectures. Secondly,

there exists no general consensus for a modelling

and methodology paradigm for multi-agent sys-

tems. In contrast a lot of different description tech-

niques and methodologies were developed, but

none of them has reached a high level of maturity

yet (2). Thirdly, the choice of an agent-platform is cru-

cial for the success of a software project, but difficult

due to the large number of available platforms.

For developing agent systems it is necessary to

consider the intra-agent as well as inter-agent struc-

tures. In this article it is argued that the BDI model is

a sound foundation for modelling and implement-

ing the internal agent behaviour. The BDI model en-

ables to view an agent as a goal-directed entity

that acts in a rational manner. To allow a smooth

transition between the modelling and implemen-

tation phase the BDI paradigm has to be support-

ed on the implementation level as well. Regarding

inter-agent communication, the FIPA specification1

can nowadays be seen as de-facto standard. Be-

Jadex: Implementing
a BDI-Infrastructure
for JADE Agents

ABSTRACT - INTELLIGENT AGENTS ARE A MODELLING PARADIGM, BASED ON THE NOTION OF

AGENTS WITH MENTAL STATES. THE AGENT METAPHOR IS NOWADAYS USED IN MANY RESEARCH

AND INDUSTRY PROJECTS, AND SEVERAL GENERIC AGENT PLATFORMS ARE AVAILABLE.

NEVERTHELESS, THERE IS A GAP BETWEEN PLATFORMS CONCENTRATING ON AGENT COMMUNI-

CATION INFRASTRUCTURE AND PLATFORMS CONCERNED WITH THE REPRESENTATION OF INTERNAL

AGENT CONCEPTS. THIS ARTICLE PRESENTS AN APPROACH TO BRIDGE THIS GAP: JADEX, AN ADD-

ON TO THE WIDELY USED JADE AGENT PLATFORM. THE ADD-ON FOLLOWS THE BDI ARCHITEC-

TURE, A WELL-KNOWN MODEL FOR REPRESENTING MENTALISTIC CONCEPTS IN THE SYSTEM DESIGN

AND IMPLEMENTATION. THE ARTICLE PROVIDES AN OVERVIEW OF THE BDI MODEL, AND THE

DESIGN AND REALIZATION IN JADEX, AS WELL AS THE INTEGRATION OF THE ADD-ON INTO THE

JADE AGENT FRAMEWORK.

1 http://www.fipa.org

BDI:

Belief Desire

Intention

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 77

cause the JADE multi-agent platform (3) is an ex-

cellent choice due to its FIPA compliance and ma-

turity, a generic approach to integrate the BDI con-

cepts into JADE is presented.

In section “BDI Fundamentals” the BDI fundamen-

tals regarding the individual concepts and their in-

terplay are described. Section “Example” explains

the design and implementation of the JADE add-

on Jadex by showing the utilized mentalistic con-

cepts and the integration into the JADE platform.

Related BDI implementations are discussed in sec-

tion “System Design and Realization”. The article

concludes with a summary and a description of

the ongoing and future work.

BDI FUNDAMENTALS

The Belief-Desire-Intention model (BDI) was con-

ceived by Bratman as a theory of human practical

reasoning (4). Several software systems have been

implemented, which are based on the BDI model,

the most well-known representative being the Pro-

cedural Reasoning System – PRS (5). These systems

reduce the abstract notions of desires and inten-

tions to the more concrete concepts of goals and

plans. The BDI model has later been formalized

and further developed to the AgentSpeak(L) lan-

guage (6). The three types of attitudes a BDI agent

has, are now shortly sketched.

Beliefs are informational attitudes of an agent, i.e.

beliefs represent the information, an agent has

about the world it inhabits, and about its own in-

ternal state. But beliefs do not just represent entities

in a kind of one-to-one mapping; they provide a

domain-dependent abstraction of entities, by high-

lighting important properties, while omitting irrele-

Alexander Pokahr received his diploma in computer sci-
ence in January 2002 at the University of Hamburg.
He worked in the field of model-based user interface con-
struction systems and since April 2002 he is a research
assistant at the University of Hamburg and deals with the
modelling and implementation aspects of agent-based

systems. The topic of his current project MedPAge is the
agent-based management of hospital logistics. This work
is funded by the Deutsche Forschungsgemeinschaft
(DFG SPP 1083). Besides this work he gives practical
courses in agent-oriented software engineering based on
the JADE and Jadex technologies.

Alexander Pokahr

pokahr@informatik.uni-hamburg.de

vant details. This introduces a personal world view

inside the agent: The way in which the agent per-

ceives and thinks about the world.

The motivational attitudes of agents are captured

in goals. The goal is a central concept of the BDI

architecture, representing a certain target state

that the agent is trying to reach. In a goal-orient-

ed design, goals explicitly represent the states to

be achieved, and therefore the reasons, why ac-

tions are executed. When actions fail it can be

checked if the target state is already achieved, or

if not, if it would be useful to retry the failed action,

or try out another set of actions to achieve the tar-

get state. Moreover, the goal concept allows to

model agents which are not purely reactive i.e.,

only act after the occurrence of some event.

Agents that pursue their own goals exhibit pro-ac-

tive behaviour.

Plans, which are deliberative attitudes, are the

means by which agents achieve their goals. A

plan is not just a sequence of basic actions, but

may also include sub-goals. Other plans are exe-

cuted to achieve the sub-goals of a plan, thereby

forming a hierarchy of plans. The agent keeps

track of the actions and sub-goals carried out by

a plan, to determine and handle plan failures.

EXAMPLE

As a running example a simple translation agent is

presented. The agent has the skills to translate a

word from a source to a target language, to add

new word pairs to its internal dictionary and to

speak out sentences. It offers its abilities via a sim-

ple message-oriented service interface that com-

plies to the FIPA request protocol.

exp - Volume 3 - n. 3 - September 200378

In the following the example will be recalled,

whenever it helps to understand certain details of

the Jadex system or can be used to show how the

presented concepts can be realized.

SYSTEM DESIGN AND REALIZATION

The JADE platform focuses on implementing the FI-

PA reference model, providing the required com-

munication infrastructure and platform services

such as agent management, and a set of devel-

opment and debugging tools. It intentionally

leaves open much of the issues of internal agent

concepts. The JADE eXtension Jadex is an imple-

mentation of a hybrid (reactive and deliberative)

agent architecture for representing mental states

in JADE agents following the BDI model. It is de-

signed for easy integration into JADE as an add-on

package. The main objective is to facilitate the uti-

lization of mentalistic concepts in the implemen-

tation, where this is regarded as appropriate by the

agent developer.

Overview
In figure 1 an overview of the abstract Jadex archi-

tecture is presented. Viewed from the outside, an

agent is a black box, which receives and sends mes-

sages. Incoming messages, as well as internal events

and new goals serve as input to the agent’s internal

reaction and deliberation mechanism. Based on the

results of the deliberation process these events are

dispatched to already running plans, or to new plans

instantiated from the plan library. Running plans may

access and modify the belief base, send messages

to other agents, create new top-level or sub-goals,

and cause internal events.

In the following the design and implementation of

each of the concepts of the BDI architecture (be-

liefs, goals and plans) will be described. Afterwards,

an overview of how a developer would apply these

concepts to construct agents using the Jadex ex-

tension is given.

Beliefs
Each Jadex agent has a belief base to store the

facts that make up the agent’s knowledge. The

Adopted
Goals

Adopt New Goals

Belief
Base

Messages

Instantiate Plans

Select for
Execution

Plan
Library

Agent

Internal
Events

Handle Events

Evaluate State

Messages

Dispatch (Sub-) Goals / Events

Query, Add,Remove Facts

Belief/Condition Events

Running
Plans

Reaction
Deliberation

Figure 1
Jadex Abstract Architecture

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 79

facts are structured using slots representing the be-

liefs, which are named and typed, and can be ei-

ther single-valued or multi-valued (containing or-

dered sets of facts).

Jadex does not require any special kind of knowl-

edge representation, but allows arbitrary Java ob-

jects to be stored as facts. One option for the

agent developer is to use a frame based knowl-

edge representation, e.g., following the OKBC

knowledge model (7). Using hand coded ontolo-

gies, or modelling tools like Protégé and code

generation it is possible to capture the semantics

of objects, to be stored as beliefs.

The belief base implementation also incorporates

concepts from the relational database world. A set

oriented declarative query language allows re-

trieving subsets of beliefs, or evaluating expres-

sions over the belief base state. Another special

feature of the belief base is the support for condi-

tions. Conditions represent a persistent expression

of a certain state e.g., of one or more beliefs. Once

a condition is satisfied, an internal event is gener-

ated, which may trigger plans or plan steps, or

lead to the adoption of new goals.

In the translation agent example a belief is used to

represent the dictionary. This allows the translations

plan as well as the plan which adds new word en-

tries to access the dictionary. Moreover the trans-

lation plan makes use of the built-in query lan-

guage for requesting words from the dictionary.

Goals
In Jadex three different kinds of goals can be dis-

tinguished: Achieve, maintain, and perform goal.

The most basic kind of a goal, the achieve goal,

just defines a desired target state, without specify-

ing how to reach it. Agents may try several different

alternatives, to achieve a goal of this kind. For

goals of kind maintain, an agent keeps track of

the state, and will continuously execute appropri-

ate plans to re-establish the target state whenever

needed. When not the desired target state, but

rather the concrete actions to be done are the

matter of subject, a goal is of kind perform. Per-

form goals directly specify the actions to execute,

therefore an agent will not engage in any meta-

level reasoning how to achieve a goal of this kind.

Also, the success of the goal does not depend on

the outcome of the actions, i.e., a perform goal

succeeds even when a performed action fails (8).

Goals are represented as objects with several at-

tributes. The target state of achieve goals can be

explicitly specified by an expression (e.g., referring

to beliefs), which is evaluated to check if the goal

is achieved. Name and properties of the goal fa-

cilitate plan selection, and its parameters guide

the actions of executing plans. A perform goal de-

fines directly the plan that is executed. Both kinds

of goals can be augmented with activation and

deactivation condition, which are used to repro-

duce maintain goal like behaviour.

The execution semantics of an active goal is cap-

tured in so called BDI-flags, which guide plan se-

lection and execution. The developer can choose

if a goal should be given to only a single plan at a

time, is retried after a plan failure, if failed plans

should be excluded from the applicable plan list,

and if meta-level reasoning is enabled.

Reasoning about goals can be implemented in

two ways. Using activation and deactivation con-

ditions, the agent developer can apply a rule

based approach, to enable or disable goals when

certain internal conditions (e.g. expressions de-

fined over the belief base) hold. Alternatively, goals

maybe activated and deactivated manually from

procedurally implemented plans.

The translation agent registers its services using an

achieve goal. Additionally it utilizes a conditional

perform goal to clean up its word table, whenever

hundred new entries have been added.

Plans
Jadex uses the plan-library approach to represent

the plans of an agent, instead of performing ad-

hoc planning. The agent programmer decompos-

es agent functionality into separate plans, which

are implemented as Java classes. Therefore ob-

ject-oriented techniques can be exploited in the

development of plans. Plans can be reused in dif-

ferent agents, and can incorporate functionality

implemented in other Java classes e.g., to access

a legacy system.

The Jadex execution model is event-based. Every-

thing happening inside a Jadex agent is repre-

exp - Volume 3 - n. 3 - September 200380

sented as event. Message events denote the re-

ception of an ACL message. Goal events an-

nounce the emergence and the achievement of

goals, and internal events (called stimuli) report

e.g., changes of beliefs, timeouts, or that condi-

tions are satisfied.

Events trigger plan steps, by leading to an invoca-

tion of the action method of a plan. A plan step is

executed as a whole, and may contain several ba-

sic actions and/or sub-goals. The action method of

a Jadex plan is similar to the action method of a

JADE behaviour, but is only called, when the event

specific to the next plan step occurs. Plans create

filters to wait for specific events, which trigger sub-

sequent plan steps. In addition activation filters are

used to specify which plan should be instantiated

when a certain event occurs.

The event model allows already running plans to

wait for specific goals to appear, which are then

adopted by the plan. This is a fundamental differ-

ence to traditional PRS-style plans, which are cre-

ated for a single root goal, and are deleted, once

they have achieved, or failed to achieve the goal.

In Jadex, so called service plans can be con-

structed, which cyclically adopt and process new

goals. Service plans use permanent filters to an-

nounce interest in events they always want to han-

dle, even when they are not currently ready to

process them. Each running plan has its own inter-

nal wait queue, which collects events for the plan

to process later. When no plan is currently interest-

ed in an event, the event is ignored and discarded.

For the translation agent all of the plans except the

speak plan are realized as PRS-style plans. This

plan is a colourful example for a situation when it

is advantageous to utilize a service plan, because

its wait-queue can be used to keep the order of the

incoming requests. Using a PRS-style plan would re-

quire a synchronization of multiple instances of the

speak plan. Otherwise they would talk in disorder.

Agent Definition
To create and start an agent, the system needs to

know the properties of the agent to be instantiat-

ed. The state of an agent is determined by the be-

liefs, the goals, the running plans, as well as the li-

brary of known plans.

Jadex uses a declarative and a procedural ap-

proach to define the components of an agent. The

plan bodies have to be implemented as ordinary

Java classes. All other concepts (beliefs, goals, fil-

ters, conditions) are specified using a language

that allows for creating Jadex objects in a declar-

ative way. If desired, inside the declarations the de-

veloper can refer to Java code e.g., defined in

methods. The complete definition of an agent is

captured in a so called agent definition file (ADF).

In the ADF, the developer defines the initial beliefs

and goals, by declaring the corresponding Java

objects. Plans are declared by specifying how to

instantiate them from their Java class. For plans to

be instantiated on demand (called passive plans)

the filter for the triggering event has to be stated.

The filter is omitted in the case of a plan to be exe-

cuted, when the agent starts (instant plan). In ad-

dition to the BDI components some other informa-

tion is stored in the ADF e.g., default arguments for

launching the agent or service descriptions for reg-

istering the agent at a directory facilitator.

The currently employed ADF format is a property

file with name value pairs for mapping references

to object declarations. To illustrate the agent defi-

nition in the property format, a cut out of the trans-

lation agent definition is depicted in figure 2 (key-

words are uunnddeerrlliinneedd, “#” starts a comment). Be-

cause of the limitations of property files an XML for-

mat for specifying the ADF is under development.

Realization
To integrate the aforementioned BDI concepts into

the JADE agent platform, several additional com-

ponents are necessary. The core of a BDI architec-

ture is obviously the mechanism for plan selection.

Plans not only have to be selected for goals, but for

internal events and incoming messages as well. To

collect the incoming messages and forward them

to the plan selection mechanism a specialized

component is needed. Another mechanism is re-

quired to execute selected plans, and to keep

track of plan steps to notice failures.

As a first step towards the BDI integration a rudi-

mentary event handling and plan selection mech-

anism called dispatcher was developed. In a sim-

ilar fashion to the approach described in (9) a

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 81

JADE behaviour was implemented to collect mes-

sages and to invoke the dispatcher. For any oc-

curring event, the dispatcher would immediately

select a plan, which had to be implemented as

JADE behaviour that is dynamically added to and

removed from the agent.

This approach soon proved to be unsatisfactory,

because among other problems the dispatcher

could not keep track of the executing plans when

using the standard JADE scheduling mechanism.

In a redesign all of the required functionality was

implemented in cleanly separated components.

The relevant information about beliefs, goals, and

plans is stored in data structures accessible to all

of these components. The current implementation

is described in the next section.

Execution Model
The functionality of the BDI architecture is imple-

mented in four JADE behaviours, which run inside

each Jadex agent: The scheduler, the dispatcher,

the message receiver, and the timing behaviour

(see figure 3). These behaviours operate concur-

rently on the internal data-structures of the agent.

The message receiver and the timing process are

very simple behaviours, with the single purpose to

add new events to the event list. The message re-

ceiver listens for ACL messages from other agents,

and creates corresponding message events. The

timing behaviour removes events from the

timetable, when their time point is reached, and

appends them to the list of events to be dis-

patched. The dispatcher is responsible for adopt-

ing goals by placing them on the intention stack

and selecting plans to handle events from the

event list. The selected plans are subsequently ex-

ecuted step-by-step by the scheduler that also im-

plements the plan supervision. The behaviours will

put themselves to sleep, and restart each other ap-

propriately, to avoid that the agent unnecessarily

consumes CPU cycles, when it is actually idle.

Implementing the functionalities into separate be-

haviours provides a clean design and allows for

flexible replacement of the behaviours with custom

implementations, e.g. alternative scheduling mech-

anisms and BDI implementations can be tried out,

using modified versions of the corresponding be-

haviours. The next section describes the default im-

plementations of these two behaviours.

The dispatcher is the heart of the Jadex runtime

system with the responsibility to select appropriate

plans and plan instances to handle all events and

goals inside the agent, facilitating the reactive and

pro-active behaviour. It also manages the interre-

Figure 2
Translation Example Agent Definition

Lars

Lars

Lars

Lars

Lars

Lars

Lars

Lars

Lars

Lars

Lars

Lars

exp - Volume 3 - n. 3 - September 200382

lation between plan instances and goals. The dis-

patcher cyclically removes the next entry from the

event list, checks if a goal is associated with the

event, and then creates the applicable plans list

(APL) for the event. For events with goals, a meta-

level reasoning will by default select the most ap-

propriate plan from the APL. Internal events are for-

warded to all applicable plans at once. When a

goal is finished, i.e., either succeeded or failed, the

owner of the goal will be notified. For a failed goal,

the dispatcher may choose another plan for exe-

cution depending on the BDI flags of the goal.

The scheduler executes the ready-to-run plan in-

stances one at a time, and step by step, applying

an FCFS scheme. In each scheduling cycle, the first

plan instance is removed from the ready list, and

then a single step is executed. The scheduler waits

until the plan step finishes or an error occurs. After-

wards it checks if any of the associated goals are

already achieved. When it was the last step of the

plan, the plan instance is removed from the agent.

JADE Integration
The jadex.BDIAgent class has been implemented

as subclass of the jade.core.Agent. The BDIAgent

initializes its beliefs goals and plans from an

agent definition file. In addition it creates and

starts the four internal behaviours, which provide

the glue between JADE and the internal BDI exe-

cution process.

One aim of the Jadex project was to facilitate a

smooth transition from developing conventional

JADE agents to employing the mentalistic con-

cepts of Jadex agents. All available JADE func-

tionality can still be used in Jadex plans.2 More-

over, it is possible to use some of the Jadex func-

tionality e.g., the belief base or the goal stack, from

conventional JADE behaviours. To use JADE be-

haviours in conjunction with Jadex plans the mes-

sage receiver behaviour supports filtering of in-

coming ACL messages. It is necessary to sort out

those messages which are handled by plans and

therefore have to be dispatched to the internal

Jadex system and keep the other messages avail-

able for the JADE behaviours.

Development Tools
As a Jadex agent is still a JADE agent all available

tools of JADE can also be used to develop Jadex

agents. Most of the JADE platform deals with the ex-

Agent

Select Plan Instances

Instantiated Plans List

Intention Stack

Instantiate Plans

Scheduler

Select Plans

Handle Goals

Remove Timeouts

Add Events

Add Plan Instances

Execute Plan Instances

Dispatch
Add Events

Consume Due Entries

Ready List

New Events

Timetable

Dispatcher

Timing

Message Receiver

ACL Messages

Plan List

Figure 3
Jadex Execution Model

2 Nevertheless, inside plans it is not recommended to bypass the
dispatching mechanism by accessing the JADE message queue
directly.

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 83

ternal view of an agent, which does not differ be-

tween conventional JADE agents and Jadex agents.

Only the JADE introspector agent is of limited use, be-

cause it only shows the four Jadex standard behav-

iours and not the agent’s plans. To enable debug-

ging of Jadex agents a so called BDIViewer is cur-

rently developed and will support a visualization of

the internal BDI concepts (see figure 4). Moreover, it

will allow for debugging through stepwise execution

of plans and manipulation of the agent’s beliefs.

Once the ADF property format has been replaced

by XML, development tools will be added to visu-

ally create and check agent definitions.

RELATED WORK

Nowadays a bunch of different multi-agent plat-

forms is available. For a short overview of round-

about forty currently available systems the reader

can refer to (10). They range from one-man open

source systems to expensive commercial platforms

with IDE integration. For a multi-agent platform of

general applicability two features are essential.

The first key feature is the support for mentalistic

concepts to enable the smooth transition from the

design to the implementation phase. The second

key feature for a multi-agent platform is the provi-

sion of a sophisticated communication infrastruc-

ture that complies with communication standards

and therefore enables platform interoperability.

Considering the support of mentalistic notions it

can be stated that no general consensus exists

about the appropriate set of concepts. This is re-

flected by a number of agent language families,

most notably Agent-0 (11), AgentSpeak(L) (6), and

3-APL (12). Three reasons account for using the BDI

model as introduced with the AgentSpeak(L) lan-

guage family. First, the models underlying the oth-

er two languages assume a time-sliced execution

of agents that is inefficient when agents are idle

most of the time. The BDI model in contrast sup-

ports event-based reactive behaviour as well as

pro-active (goal directed) behaviour. Secondly, the

BDI model is a popular model with a solid theoret-

ical and philosophical foundation (4). Finally, evi-

dence exists that systems based on the BDI model

can be used to build successful applications (13).

When considering the communication infrastruc-

ture of a platform it is essential that it complies with

established standards, e.g. KQML or FIPA-ACL (14)

Without a standard compliant communication

and platform layer interoperability e.g. for world

wide accessible agent service networks, like

Agentcities3, cannot be realized.

A comparison of the available platforms revealed

that none of the systems fulfils both of these two

key features equally well. Addressing the first key

feature, Jadex was conceived not to “reinvent the

wheel”, but to combine the best concepts from

well known BDI systems such as PRS (5), Jack (15) or

JAM (8) and improve them with several new ideas.

In contrast to these, Jadex is a pure Java API, there-

fore, developers do not have to learn a new lan-

guage, and a wide range of existing development

tools and IDEs for Java can still be used.

Moreover, Jadex is developed specifically to inte-

grate well with the JADE platform, a FIPA-compliant

agent platform, allowing Jadex to support the sec-

ond key feature as well.

The only other approach bringing together FIPA-

compliance and a BDI architecture is the FIPA-

JACK system (16) that adds a FIPA compliant

communication infrastructure to the sophisticat-

ed BDI platform JACK. Other approaches inte-

grate a reasoning layer by making use of infer-

ence engines, e.g. JADE/Jess (17) or support

Figure 4
BDIViewer Screenshot

3 http://www.agentcities.org

exp - Volume 3 - n. 3 - September 200384

planning based on goals, like PARADE (18). Com-

paring these approaches to Jadex several dif-

ferences can be noted. In contrast to JADE/Jess

and FIPA-JACK, Jadex exhibits an explicit repre-

sentation of goals. In the opinion of many re-

searchers goals have independent properties

and should be distinguished from pure events

(19). PARADE focuses on planning from first prin-

ciples, while Jadex offers an API for goal-orient-

ed programming. Moreover the Jadex add-on

as well as the JADE platform are open source

projects, making them open for modifications

and custom extensions.

CONCLUSIONS AND OUTLOOK

This article argues for the use of mentalistic con-

cepts as found in the BDI architecture, not only at

the design level, but also in the implementation of

agent-based systems. An overview of the BDI mod-

el was given, and the design and realization of a

BDI implementation was described, and com-

pared to related work.

The objective of the Jadex project is to integrate a

BDI architecture into the JADE agent platform. The

Jadex add-on allows agent developers to design

and implement JADE agents, which exhibit goal-

oriented (as opposed to task-oriented) behaviour.

The Jadex project is also seen as a means for re-

searchers to further investigate which mentalistic

concepts are appropriate in the design and im-

plementation of agent systems. One important re-

search area of future work is to make use of the BDI

semantics already contained in the FIPA ACL com-

municative acts for simplifying the design and de-

velopment multi-agent systems.

The Jadex system is continuously evolving while it

is utilized. Currently the system is used as the basis

of the research project MedPAge (20), which deals

with agent-based management of hospital logis-

tics. Additionally, the system is used in a teaching

course “realisation of distributed agent systems” at

the University of Hamburg.

A first public release of the Jadex system is avail-

able at the projects home page hhttttpp::////ssoouurrccee--

ffoorrggee..nneett//pprroojjeeccttss//jjaaddeexx..

ACKNOWLEDGEMENTS

This work is supported in part by the German prior-

ity research programme SPP 1083: Intelligent
Agents in Real-World Business Applications.

ABOUT THE AUTHORS

Alexander Pokahr and Lars Braubach received

their diploma in computer science in January

2002 at the University of Hamburg. They worked

in the field of model-based user interface con-

struction systems and since April 2002 they are

research assistants at the University of Hamburg

and deal with the modelling and implementa-

tion aspects of agent-based systems. The topic

of their current project MedPAge is the agent-

based management of hospital logistics. This

work is funded by the Deutsche Forschungsge-

meinschaft (DFG SPP 1083). Besides this work they

give practical courses in agent-oriented soft-

ware engineering based on the JADE and Jadex

technologies.

GLOSSARY

ACL Agent Communication Language

FIPA Foundations for Intelligent Physical Agents

OKBC Open Knowledge Base Connectivity

PRS Procedural Reasoning System

REFERENCES

[1] N. R. Jennings. An agent-based approach for build-

ing complex software systems, Communications of

the ACM, vol. 44, no. 4, pp. 35-41, 2001.

[2] C. Iglesias, M. Garrijo, and J. Gonzalez, A Survey of

Agent-Oriented Methodologies (in “Proceedings of

the 5th International Workshop on Intelligent Agents

(ATAL-98)”), J. Müller, M. Singh, and A. Rao, editors,

Springer-Verlag, 1999.

[3] F. Bellifemine, G. Rimassa, and A. Poggi, JADE – A FI-

PA-compliant agent framework (in “4th International

Conference on the Practical Applications of Agents

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 85

and Multi-Agent Systems (PAAM-99)”), The Practical

Application Company Ltd., London, UK, 1999.

[4] M. Bratman, Intention, Plans, and Practical Reason,

Harvard University Press, 1987.

[5] M. Georgeff and A. Lansky, Reactive Reasoning and

Planning: An Experiment With a Mobile Robot (in

“Proceedings of the 1987 National Conference on

Artificial Intelligence (AAAI 87)”), pp. 677-682, Seat-

tle, Washington, 1987.

[6] A. Rao, AgentSpeak(L): BDI Agents Speak Out in a

Logical Computable Language (in “Agents Breaking

Away”), W. van der Velde, and J. Perram, editors,

Springer-Verlag, 1996.

[7] V. Chaudhri, A. Farquhar R. Fikes, P. Karp, and J. Rice,

OKBC: A Programmatic Foundation for Knowledge

Base Interoperability (in: “Proceedings of the 15th Na-

tional Conference on Artificial Intelligence (AAAI-98)”),

AAAI Press/The MIT Press, pp. 600-607, 1998.

[8] M. Huber, JAM: A BDI-Theoretic Mobile Agent Archi-

tecture (in “Proceedings of the Third Annual Confer-

ence on Autonomous Agents”), pp. 236-243, O. Etzioni,

J. P. Müller, J. Bradshaw, editors, ACM Press, 1999.

[9] M. Oja, B. Tamm, and K. Taveter, Agent-based Soft-

ware Design (in “Proceedings of the Estonian Acad-

emy of Sciences”), vol. 50, pp. 5-21, 2001.

[10] E. Mangina, Review of Software Products for Multi-

Agent Systems, AgentLink, software report 2002.

[11] Y. Shoham. Agent-oriented programming, Artificial

Intelligence, vol. 60, pp. 51-92, Elsevier Amsterdam,

1993.

[12] K. Hindriks, F. De Boer, W. Van der Hoek, and J.-J.

Meyer, Agent Programming in 3APL, Autonomous

Agents and Multi-Agent Systems, vol. 2, no. 4, pp.

357-401, N. Jennings, K. Sycara, and M. Georgeff,

editors, Kluwer Academic publishers, 1999.

[13] N. Howden, R. Ronnquist, A. Hodgson, and A. Lucas,

JACK Intelligent Agents - Summary of an Agent Infra-

structure (in “Proceedings of the 5th ACM Internation-

al Conference on Autonomous Agents”), Canada, 2001.

[14] Y. Labrou, T. Finin, and Y. Peng, Agent Communica-

tion Languages: The Current Landscape, IEEE Intel-

ligent Systems, vol. 14, no. 2, pp. 45-52, 1999.

[15] P. Busetta, R. Ronnquist, A. Hodgson and A. Lucas,

JACK Intelligent Agents - Components for Intelligent

Agents in Java, AgentLink News Letter, January 1999.

[16] K. Yoshimura. FIPA JACK: A Plugin for JACK Intelli-

gent AgentsTM, Manual, RMIT University.

[17] E. Friedman-Hill, Jess in Action: Java Rule-Based

Systems, Manning Publications Company, 2003.

[18] F. Bergenti and A. Poggi, A Development Toolkit to

Realize Autonomous and Inter-operable Agents (in

“Proceedings of Agents Fifth International Confer-

ence on Autonomous Agents), pp. 632-639, 2001.

[19] M. Winikoff, L. Padgham, and J. Harland, Simplifying

the Development of Intelligent Agents (in “Proceed-

ings of AI 2001: Advances in Artificial Intelligence”),

pp.557-562, Springer-Verlag, 2001.

[20] T. Paulussen, N. Jennings, K. Decker, and A. Heinzl,

Distributed Patient Scheduling in Hospitals (in “IJCAI

03 Proceedings”), 2003 (to appear).

Lars Braubach
Distributed Systems and Information Systems
University of Hamburg
Tel.: +49 4042883 2091 - Fax: +49 4042883 2328
braubach@informatik.uni-hamburg.de

Prof. Dr. W. Lamersdorf
Distributed Systems and Information Systems
University of Hamburg
lamersd@informatik.uni-hamburg.de

Alexander Pokahr
Distributed Systems and Information Systems
University of Hamburg
Tel.: +49 4042883 2091 - Fax: +49 4042883 2328
pokahr@informatik.uni-hamburg.de

CONTACTS

