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Abstract

Juvenile Idiopathic Inflammatory Myopathies (IIM) are a group of rare diseases that are heterogeneous in terms of
pathology that can include proximal muscle weakness, associated skin changes and systemic involvement. Despite
options for treatment, many patients continue to suffer resistant disease and lasting side-effects. Advances in the
understanding of the immunopathology and genetics underlying IIM may specify new therapeutic targets,
particularly where conventional treatment has not achieved a clinical response. An upregulated type I interferon
signature is strongly associated with disease and could be a prime target for developing more specific therapeutics.
There are multiple components of the IFN pathway that could be targeted for blockade therapy.
Downstream of the cytokine receptor complexes are the Janus kinase-signal transducers and activators of
transcription (JAK-STAT) pathway, which consists of JAK1–3, TYK2, and STAT1–6. Therapeutic inhibitors have been
developed to target components of this pathway. Promising results have been observed in case studies reporting
the use of the JAK inhibitors, Baricitinib, Tofacitinib and Ruxolitinib in the treatment of refractory Juvenile
Dermatomyositis (JDM). There is still the question of safety and efficacy for the use of JAK inhibitors in JDM that
need to be addressed by clinical trials. Here we review the future for the use of JAK inhibitors as a treatment for
JDM.
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Introduction
Idiopathic Inflammatory Myopathies (IIM) are a group
of rare immune-mediated diseases that are heteroge-
neous in terms of pathology, clinical phenotypes and age
of onset (Table 1). JDM is very rare with an annual inci-
dence of three cases per million children [2, 23, 24] and
median age of onset 6.3 years old (IQR; 3.8–9.6) [1].
Children typically present with symmetrical proximal

and axial muscle weakness and characteristic skin
changes including Gottron’s papules and heliotrope rash.
Long-term complications include lung fibrosis, lipody-
strophy and calcinosis [25–29] . In most JDM cohorts,
60–70% of children with JDM are positive for an auto-
antibody [30–33]. A number of myositis specific anti-
bodies (MSA) have been described associated with a
variety of phenotypes in JDM [10].

The need for new treatments
The mainstay treatments for IIM are prednisolone and
methotrexate, and even those patients who respond well
to these drugs can have prolonged disease [34, 35].
Other immunotherapy treatments used include
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mycophenolate mofetil, cyclophosphamide, intravenous
immunoglobulin (IvIG), azathioprine, cyclosporine and
tacrolimus [36–38]. Biological targets include blockade
of tumour necrosis factor alpha (TNFα) and B cells
(anti-CD20). As potential treatments for JDM, efficacy
was reported in a case series of the use of adalimumab
and infliximab (TNFα blockades), and also in an Inter-
national study of B cell depletion by rituximab (anti-
CD20) [39, 40]. However, there is a need for more tar-
geted treatments and methods to identify patients who
will require these.
Several more recent emerging biologic therapies for

the treatment of IIM have been reported including; beli-
mumab, abatacept, bimagrumab, spiponimod, apremi-
last, gevokizumab, eculizumab and basiliximab (Table 2)
[41–48]. Sifalimumab, is a fully human immunoglobulin
G1 κ anti-IFNα monoclonal antibody that binds to and
neutralizes the majority of IFN-α subtypes, is an

important candidate therapeutic due to the wealth of
evidence of the strong IFN signature identified in myo-
sitis [11, 12, 50–55]. A phase 1b clinical trial of sifalimu-
mab in adult patients with dermatomyositis (DM) and
polymyositis (PM), used outcome measures of IFN gene
signature suppression against disease improvement. Ini-
tial results suggested that targeting the IFN pathway
with sifalimumab showed more neutralisation of IFN
gene expression in patients that had greater improve-
ment of disease, but blockade of the type I IFN receptor
(IFNAR) may offer superior clinical benefit [49]. Beyond
the therapeutics highlighted in Table 2 there are poten-
tial new therapies for the treatment of IIM including
JAK inhibitors to target the IFN pathway.

Interferon: mechanisms in autoimmune disease
While the interferon family are a group of molecules
central to the anti-viral responses, many autoimmune

Table 1 JDM disease features

Epidemiology Median age of onset (IQR): 6.3 (3.8–9.6) years [1]

Incidence: 7.98 cases/million/year [2]

Prevalence: 14/100,000 [2]

Sex distribution (F:M): 2.1:1 [3]

Clinical features Muscle weakness Most patients

Cutaneous manifestations 30–70% [3]

Calcinosis 12–47% [4, 5]

Lipodystrophy 8–14% [6]

Interstitial lung disease 8–19% [7]

Myocardial involvement Common, non-specific [8]

Vasculopathy Most patients, central to pathogensis [9]

Autoantibodies MSA
49% + ve for MSA

- Transcriptional intermediary factor 1 (TIF-1γ) 22–29%

- Nuclear matrix protein 2 (NXP2) 23–25%

-Aminoacyl tRNA synthetase (ASA) 2–4%

-Signal recognition particle (SRP) < 2%

−3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) < 1%

-Nucleosome-remodelling deacetylase complex (Mi-2) 4–10%

-Small ubiquitin-like modifier activating enzyme (SAE) < 1%

-Melanoma differentiation associated gene 5 (MDA5) 7–38% [10]

Pathogenesis Type I IFN signature Muscle, blood [11, 12]

Mononuclear cells Muscle [15]

FOXP3+ regulatory T cells Increased in muscle [16]

pDCs Increased in muscle/skin [17]

Myogenic pre-cursor cells Increased source of IFN in muscle [18, 19]

Mast cells Increased in skin [20]

Natural killer cells Decreased in blood [21]

Cytokines

Blood: Increased IRF-4, IL-6, IL-17F, Il-23A, IL-21, GATA3, IL-1β

Muscle: Increased GATA3, IL-13, STAT5B [22]
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diseases also have an aberrant interferon response. Gene
activation is the main mechanism for the interferon
anti-viral response, but interferons are also integral to
intra-cellular signalling in the immune system (Add-
itional file 1: Supplementary Fig. 1 [56]). Many auto-
immune diseases have been found to have an up-
regulated IFN type I signature, including systemic lupus
erythematous (SLE), rheumatoid arthritis (RA) and

myositis [11, 50, 51, 57–59]. The IFN type I comprise of
thirteen types including IFN-α, IFN-β, IFN-κ, IFN-ω and
IFN-ν; these bind to a common receptor, IFN-α receptor
(IFNAR), but the differences in induction of cellular re-
sponses is poorly defined [60]. There are three proposed
mechanisms. The first is that plasmacytoid dendritic
cells (pDCs) are activated by endogenous IFN inducers
to produce IFN-α [61]. The second is that genes

Table 2 Emerging biologic therapies for the treatment of adult and juvenile IIM

Biologic Mechanism Clinical trial type Clinical
trial
number

Patient group Outcome

rituximab
[39]

Monoclonal anti-CD20 antibody that
depletes B cells

Randomized, double-
blind, placebo-phase
trial

NCT001061
84

JDM and DM Higher proportion of JDM (87%)
patients treated with rituximab met
the definition of improvement
more quickly compared to adult
DM (78%)

belimumab Anti-B cell activating factor (BAFF)
monoclonal antibody

Multicentre double-
blind, placebo-
controlled trial

NCT0234
7891

Refractory IIM Evaluating the efficacy and safety

abatacept Modified fully human soluble
recombinant protein that consists of
cytotoxic T cell lymphocyte antigen-4
(CTLA4) fused with Fc region of hu-
man IgG1

Interventional clinical
trial

NCT02594
735
NCT03215
927
NCT029716
83

Refractory JDM
Myositis-
associated ILD
IIM

Clinical improvement
Evaluate efficacy and safety

bimagrumab
[41, 42]

Human recombinant monoclonal
anti-ACVR2B activin type 2 receptor
antibody

Phase IIb/III double-
blind, placebo-
controlled multicentre
study
Phase IIb/III Study

NCT019252
09
CBYM33
8B2203

IBM/IIM Improvement in muscle volume
and strength

spiponimod Oral selective sphingosine-1-
phosphate receptor modulator, acts
by preventing the migration of lym-
phocytes to inflammatory sites and
therefore reducing inflammation

Multicentre, phase 2,
double-blind, random-
ized, controlled trial

NCT020292
74
NCT0114
8810

IIM International Myositis Assessment
Study (IMACS) definition of
improvement

apremilast
[44]

Phosphodiesterase-4(PDE-4) inhibitor,
reduces the expression of pro-
inflammatory cytokines by increasing
cyclic adenosine monophosphate

Open-label, single-
centre study
Phase two, open-label,
single group assign-
ment, interventional
study

NCT011405
03,
NCT0352
9955

DM 30% reduction in the cutaneous
disease activity and severity index
(CDASI)
Safety, efficacy and clinical response

gevokizumab Humanised IgG2 monoclonal
antibody against human IL-1β

Proof-of-concept,
randomized, double-
blind, placebo-
controlled trial

EudraCT
number:
2012–
005772-34

IIM Prematurely terminated therefore
limited results

eculizumab
[46, 47]

Monoclonal humanised antibody
against terminal complement
components

Randomized, double-
blind, placebo-
controlled pilot study
Phase two,
randomized, placebo-
controlled, third-party-
blind study

NCT000055
71

IIM
DM

Improvement of global physician
score for cutaneous disease
Evaluation of safety and efficacy,
results pending.

basiliximab
[48]

IL-2R chimeric monoclonal antibody;
blocks Il-2 receptor on the surface of
activated T-cells

Open-label,
randomized, parallel
assignment without
masking, phase-2, sin-
gle center study

NCT031
92657

Amyopathic
dermatomyositis
(CADM) patients
with interstitial
pneumonia

Primary outcome measure is
survival at 52 weeks

sifalimumab
[49]

anti-IFNα monoclonal antibody Double-blind, phase 1b
multicentre randomized
control trial

NCT00533
091

DM and PM Neutralisation of IFN gene signature
suppression against disease
improvement
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associated with autoimmune disease risk, lie within the
IFN type I signalling pathway that in turn effect the pro-
duction and response of IFN-α. IFN-regulatory factor
(IRF) 5 was identified as a SLE risk gene as it has in-
creased expression and is activated in SLE patients [62–
64]. Other autoimmune diseases have specific risk genes
that associate with the IFN signature [65]. The third
mechanism proposes that regulation and control of plas-
macytoid dendritic cells (pDC) and the expression of
interferon regulatory genes (IRG) is not functioning cor-
rectly [61]. A decrease in reactive oxygen species (ROS)
production from monocytes can lead to enhanced auto-
immunity. In addition there is a predominant STAT1
signature in ROS deficient disease [66]. The relative con-
tribution of these three mechanisms may differ between
autoimmune disease, severity and patient.

Role of interferons in myositis
The most abundant IFN type I are IFN-α and IFN-β.
The IFNs bind to the IFN-α receptor (IFNAR) and acti-
vate the Janus kinase (JAK)-signal transducer and tran-
scription (STAT) pathway that in turn lead to the
transcription of IFN-stimulated genes (ISGs) [67, 68].
The over production of IFN in the blood and muscle is
an abnormality in the pathogenesis of dermatomyositis
[13, 14, 69]. The release of IFN type I leads to immune
cell activation and vasculopathy. A major source of IFN
type I is from plasmacytoid dendritic cells (pDC) after
activation by either self-DNA or viral nucleic acid [70,
71]. Plasmacytoid dendritic cells (pDC) have been identi-
fied in JDM muscle, but IFN type I is difficult to detect
in serum due to limits of sensitivity of existing assays
until recently [11, 72]. The Simoa assay developed by
Rodero et al. can detect IFN-α at differential levels and
determine cellular sources measured from lysed cell-
subsets [57]. Using this assay IFN-α levels were signifi-
cantly increased in sera from a JDM cohort compared to
a healthy cohort [57, 73].
Due to the difficulties in measuring IFN directly, gene

expression is often used as a marker of the activation of
the IFN type I pathway. An IFN score was developed to
encompass a selection of the IFN response genes, IFI27,
IFI44L, IFIT1, ISG15, RSAD2 and SIGLEC1, these are
measured by quantitative reverse transcription polymer-
ase chain reaction (qPCR) [74]. Other studies have also
measured expression of additional genes including
ISG15 ubiquitin-like modifier (G1P2), and interferon
regulatory factor 7 (IRF7) [51, 71]. Variations of this
score have been used to correlate with disease in mul-
tiple studies [53, 75, 76]. A signature of 43 genes was el-
evated in myositis compared to controls [14]. A positive
correlation has been shown between an IFN score (6
genes) compared to serum IFN-α levels (n = 24, Rs =
0.620, p = 0.0004) taken from JDM patients [57]. The

type II IFN signature also correlates to disease activity in
JDM and other chemokines [77]. This suggests that as a
whole the IFN family are upregulated in the context of
JDM and adult DM. The clinical trial of sifalimumab in
DM/PM showed suppression of the IFN gene signature
in blood and muscle tissue of the IIM patient cohort. Pa-
tients with 15% or greater improvement from baseline
manual muscle testing scores (MMT8) showed greater
neutralisation of the interferon gene signature than pa-
tients with less than 15% improvement [49]. This trial
highlights the potential for the therapeutic targeting of
interferon in DM and JDM.
Another indirect measure is the IFN-driven protein

signature which may include measurement of levels of
monocyte chemoattractant protein 1 (MCP-1), mono-
cyte chemoattractant protein 2 (MCP-2), interferon
gamma-induced protein 10 (IP-10), tumour necrosis fac-
tor receptor II (TNFRII), galectin 9 and chemokine (C-
XC motif) ligand 9 (CXCL9). These proteins, measured
in serum, significantly correlated with disease activity in
JDM [22, 78–80]. Chemokines and cytokines have
shown to correlate with the IFN signature in peripheral
blood mononuclear cells. A study in JDM showed an ex-
pansion of peripheral blood naïve immature B cells,
skewed to an inflammatory profile, in early disease, that
correlated with an IFN type I score taken from RNA-seq
analysis of B cells and downstream IFN proteins [81].
Circulating endothelial cells (CEC) have been detected

in peripheral blood and associated with vascular injury
[82]. An in vitro study has shown that IFN type I treat-
ment of HUVECs impaired endothelial cell function,
with significant reduction of tubule formation when
HUVECs were cultured with IFN type I + VEGF and
anti-IP10 [83]. A recent study in JDM, identified higher
CEC in both active and definite inactive disease (JDM
n = 90; median 96(IQR 40–192) cell/ml compared to
controls n = 79; median 12(IQR 8–24) cells/ml, p <
0.0001). They also showed a strong correlation with
other markers of vascular injury including endothelial
microparticles and galectin-9 [9]. Another study showed
that CEC correlated with extra muscular disease activity
but not muscular damage [84]. In JDM, CEC may prove
to be a useful biomarker for underlying disease
pathology.
Key sites of inflammation in JDM are the muscle and

skin. Both muscle and skin tissue biopsy material can
provide valuable insights to our understanding of an in-
dividual JDM patients disease [85–88]. These tissue sam-
ples are the key to understanding the pathophysiology of
disease at the tissue site. IFN type I and other cytokines
have been detected within the inflamed muscle [89]. The
IFN proteins (IFN-α,-β,-γ) themselves have been de-
tected in muscle, but also the IFN-stimulated proteins
ISG15, MxA and class I MHC [90–92]. Higher levels of
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ISG15 were quantified in JDM muscle tissue compared
to non-JDM [93]. Markers of disease activity and muscle
damage have been shown to correlate with the expres-
sion of MxA in the muscle tissue [94, 95]. Research has
been carried out to identify the direct effects that IFN
type I has on muscle tissue types. Muscle atrophy and
loss of myogenin has been detected on muscle myo-
tubes, reduced junctions and capillary growth on endo-
thelium [96]. A recent study has shown that these effects
have been blocked in vitro by the JAK inhibitor Ruxoliti-
nib [97]. These findings build a picture of the interfero-
nopathy at both the tissue site and the peripheral blood.

The JAK-STAT pathway – a therapeutic target
When IFN binds to its respective receptor, IFN-R, on
the cell surface membrane, this in turn activates the sig-
nalling cascade inducing the Janus kinase-signal trans-
ducers and activators of transcription (JAK-STAT)
pathway [98, 99] (Fig. 1). The JAK-STAT pathway con-
sists of JAK1–3, TYK2, and STAT1–6, of these JAK1
and TYK2 are directly activated by IFN type 1 proteins.
This signalling cascade triggers the receptor-associated
JAK to phosphorylate the receptor and other JAKs [100].
If specific tyrosine motifs are phosphorylated in the
cytokine receptor, then a docking-site for STATs is
opened enabling further phosphorylation of STATs.
When STATs are phosphorylated they dimerize through
their Src homology domain-2 (SH2) domains, this allows
them to translocate to the nucleus and activate specific
genes [101]. An individual receptor is made up of several

subunits, each is associated with a specific JAK. There-
fore, each receptor chain can have more or less specifi-
city to an individual JAK. The JAK-STAT pathway could
offer a potential target for the blockade of the transcrip-
tion of IFN genes [100].

JAK inhibition
JAKs are constructed from four domains made of seven
homologous regions (JH1–7) (Fig. 2). To date JAK inhib-
itors (JAK-inhibitors) have generally targeted the JH1
domain. JH1 is the active catalytic phosphotransferase
domain and competes with adenosine triphosphate at
the catalytic site [102]. JH2 is a pseudokinase domain
that supresses ligand-independent kinase activity, the
mode of action is direct interaction with JH1 and activa-
tion of ligand-induced JAK [103]. Deucravacitinib is an
example of a JAK inhibitor that targets the JH2 psuedo-
kinase domain [104, 105]. JH3/4 have a primary role in
stabilising the structure of the enzyme. JH5–7 associate
JAKs with their cognate receptors [106]. There have
been multiple JAK-inhibitors that have been or are in
development. These can be defined in two categories;
first-generation or next-generation JAK-inhibitors [100].
The first-generation exert pan-inhibition on all four of
the JAKs, these include; tofacitinib, ruxolitinib, bariciti-
nib, and oclacitinib [107]. The next-generation of JAK-
inhibitors are more specific in their target blockade,
these include; fedratinib, momelotinib, and pacritinib
[108]. This specificity should help with disease targeted
treatment and reduce associated side-effects.

Fig. 1 JAK-STAT pathway with JAK inhibitor targets. The activation of the JAK-STAT pathway after IFN type 1 has engaged with the associated
receptor, IFNR. This induces the transcription of proteins. Tofacitinib inhibits JAK1/2/3. Ruxolitinib and Baricitinib inhibit JAK 1/2, inhibtion prevents
STAT phosphorylation, dimeraziation and transolcation into the nucleuse. This in turn stops the transcription of pro-inflammatory proteins
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Inhibition of TYK2 is an example of a more specific
next-generation Jakinib. TYK2 has been associated with
several autoimmune conditions including; RA, JIA, SLE,
type 1 diabetes and MS [109–114]. A GWAS analysis of
IIM in Caucasian individuals identified that a non-
synonymous SNP rs2304256 in TYK2 was associated
with DM, IIM but not PM (Bonferroni correction p =
0.17, [115]. In a study of a Chinese Han population, ana-
lysis of TYK2 SNPS associated with DM and PM ex-
cluded TYK2 rs2304256 as it deviated from the Hardy-
Weinberg equilibrium (HWE) in healthy controls [116].
This SNP is in the protein FERM (4.1 protein, erzin,
radixin, moesin) domain, mediating interaction with JAK
and microtubule interacting proetin1, this is thought to
be increased in DM. Examples of TYK2 inhibitors
trialled in psoriasis include; brepocitinib, BMS-986165
and PF-06826647 [117]. TYK2 is just one proposed tar-
get for inhibition in IIM.

JAK inhibitor use in IIM – clinical trials
For the potential treatment of autoimmune conditions,
multiple JAK inhibitors have been developed, trialled or
approved [104, 107]. In adults the metabolism, pharma-
cokinetics and efficacy of JAK-inhibitors are highlighted
in Additional file 1: Supplementary Table 1. Clinical tri-
als are ongoing to determine the safety and efficacy of
the use of multiple JAK-inhibitors as a therapy for
treatment-resistant adult IIM. In addition to their small
open-label, proof-of concept study of tofacitinib in 10
treatment-resistant DM patients (6 were anit-TIF1-γ
positive), Paik et al. are carrying out a larger randomised
controlled trial, with results pending (NCT03002649).
Initial results from 10 participants showed they all met
the primary outcome DOI at 12 weeks, 5 of 10 (50%)
had moderate improvement and 5 of 10 (50%) had
minimal improvement according to the 2016 ACR/
EULAR myositis response criteria. The secondary
outcome showed a significant change in CDASI disease
activity score (mean average 28 ± 15.4 (baseline) vs.
9.5 ± 8.5 (12 weeks), p = 0.0005). There was also a trend
towards a reduction of CXCL9/10 in serum and STAT1
signalling in 3 of 9 skin biopsies [118]. Another case

report of 3 patients with refractory DM and calcinosis
treated with tofacitinib showed an improvement of their
calcinosis after 12 weeks (3 months) on treatment [119].
There is little know about the pathology of calcinosis
but if JAK-inhibitors are effective then the JAK-STAT
pathway may play a role in the underlying mechanism.
Chen et al. are conducting a single centre, open-label
clinical study of the use of tofacitinib in amyopathic
dermatomyositis-associated ILD (Chinese Clinical Trial
Registry number, ChiCTR-1,800,016,629). Initial results
showed that 26 week (6-month) survival after onset of
ILD was significantly higher in the prospective group
(18 of 18, 100%) compared to the historical controls
(25 of 32, 78%, p = 0.04), more conclusive results are
pending [120]. Another ongoing study of the use of
Baricitinib in adult IIM, is the MYOJAK study, a
phase II, multicentre, randomised treatment delayed-
start trial to receive active treatment (Baricitinib) or
delayed-start after 13 weeks (NCT04208464). These trials
are currently only including adult IIM patients of which
have different clinical features to that of juvenile disease.
Children have distinct developmental and physiological
differences to adults, as such it is important to test the
pharmokinectics and formulation of any given drug in the
appropriate age populations.

Evidence for the use of JAK inhibitors in JDM
There have been several reports and case series which
support the need to pursue testing JAK-inhibitors for
the future therapeutic use in juvenile DM (Table 3). The
potential for Ruxolitinib was shown in a report of com-
passionate treatment for a case of severe vasculopathic
refractory JDM. The thirteen year old patient presented
with severe disease and was admitted to ICU after 3
weeks of diagnosis with multi-symptom, systemic dis-
ease. Over a period of 78 weeks (18 months) the patient
was poorly controlled with combination therapy, and de-
veloped lower limb oedema and diffuse fascia calcinosis.
The IFN type I signature was investigated, which showed
IFN-α serum levels and IFN score were increased com-
pared to controls, this was also the case with constitutive
phosphorylation of STAT1/3 in T-cells and monocytes.

Fig. 2 JAK domains and homologous regions. JAKs are constructed from four domains made of seven homologous regions (JH1–7)
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From these results the patient was taken off MMF, ritux-
imab infusions were stopped, and switched to Ruxoliti-
nib (10 mg BD) with Prednisolone. After 2 table there
was a noted improvement in disease activity scores and

no reported adverse events. During the 52 weeks (12
months) of Ruxolitnib treatment the IFN measures did
not normalise, but there was decreased STAT 1 phos-
phorylation in T cells [121].

Table 3 Case studies or case series of JAK-inhibitors in juvenile dermatomyositis

Case study JAK-
inhibitors

Patient Disease course and prior treatment Outcome

Aeschilimann
et al. 2018
[121]

ruxolitinib 13 year old; JDM
(anti-NXP2)

- Un-controlled disease with admission to ICU
- Complexity of severe symptoms over 18 months
-Prednisolone dependant, refractory to treatment including;
methotrexate, IVIG, plasma exchange, MMF and rituximab
-Increased IFN scores and STAT1 phosphorylation of T-cells and
monocytes

After 52 weeks (12 months) of
treatment:
-Improvement of disease activity
scores
- decreased STAT1
phosphorylation in T-cells

Papadopoulou
et al. 2019
[122]

baricitinib 11 year old; JDM
(anti-TIF1-γ, anti-
Ro52)

- 7 year history of JDM (with calcinosis)
- steroid dependant; refractory to sequential treatment with
azathioprine, mycophenolate mofetil, infliximab, adalimumab,
rituximab, tacrolimus and cyclosporine, intravenous
immunoglobulin (IVIG)

- negative for class 4 and 5 variants of monogenic
interferonopathies

After 26 weeks (6 months) of
treatment:
- clear improvement of disease
- IFN biomarkers decreased
- decreased level of CEC

Sabbagh et al.
2019 [123]

tofacitinib 2 anti-MDA5 JDM
patients
12y/o male
15y/o female

Elevated 28-gene IFN score
Un-controlled disease:
Patient 1 – continuous flares after treatment with pulsed
methylprednisolone, IVIg, methotrexate, MMF, rituximab
Patient 2 – continuous flares after treatment with pulsed
methylprednisolone, IVIg, MMF, abatacept, cyclophosphamide,
rituximab and sildenafil

After 26 week (6 months) of
treatment:
- decrease in disease activity
score

- Decrease of IFN score and
STAT1 phosphorylation of T-cells
and monocytes

Yu et al. 2020
[124]

tofacitinib n = 3 JDM
11y/o fem (ANA 1:
320, anti-MDA5)
10y/o female (ANA
1:80, anti-Mi-2,
anti-Ro-52
10y/o male
(Negative)

Refractory JDM: patients failed ≥2 steroid sparing agents or
high-dose steroids.

After 26 week (6 months):
- Significant improvement of
clinical scores; CMAS, MMT8,
PGA, DAS and CHAQ

Le Voyer et al.
2021 [125]

baricitnib
ruxolitinib

n = 3 JDM
2/3 female
mean 8.7 years
[25–30]
NXP2 = 1
TIF1-y = 1
MDA5 = 1
No MSA = 0
n = 7 JDM
5/7 female
mean 9.1 years [1,
2, 25–33]
NXP2 = 3
TIF1-y = 2
MDA5 = 1
No MSA = 1

9 refractory disease and 1 new-onset
Refractory muscle involvement (n = 8)
Ulcerative skin disease (n = 2)

After 26 weeks (6 months):
→Improvement in clinical scores
→Clinically inactive disease
→Decrease in seral IFN-α

Ding et al.
2021 [126]

tofacitinib
7/25
(28%)
ruxolitinib
18/25
(72%)

n = 25 JDM
11/25 (44%)
female
Mean age of onset
4.6 ± 3.3 years
Mean age to start
JAK inhibitors
7.2 ± 4 years

All refractory
8/25 (32%) ineffective treatment
17/25 (68%) glucocorticoid dependant

25 patients followed up median
of 34 weeks (7 months) (range –
3-21 months)
→24/25 (96%) had rash
improvement, 16/24 (66.7%)
complete resolution
→7/25 (28%) improved CMAS

Kim et al. 2021
[127]

baricitinib 4 JDM
(5.8–20.7 years old)

→Chronically active disease
→Failed 3–6 immunomodulatory medications

After 24 weeks of treatment:
→Disease improvement assessed
by clinical score
→Down regulation of IRG
→Decrease in serum IP-10
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Positive results were seen in a compassionate case of
the use of the Jakinib, Baricitinib for an eleven year old
male with a seven year history of refractory JDM positive
for anti-TIF1-γ and anti-Ro52 autoantibodies. When
Baricitinib therapy was started clear improvement of
disease was recorded. The IFN biomarkers, IFN type I
signature and STAT1 phosphorylation in T cells and
monocytes, decreased to comparative levels seen in
controls. Also observed was a marked decrease of
CEC. To note this was a singular, very severe case,
however for the first time in seven years prednisolone
could be tapered down, progression of calcinosis was
halted and the disease improved as a whole [122].
Further prospective studies need to be carried out to
investigate the safety and efficacy of Baricitnib for the
use in the treatment of JDM.
A report of 2 patients with anti-MDA5 AB+ JDM with

uncontrolled disease were treated with tofacitinib. Dis-
ease activity scores decreased within 26 weeks (6
months) following the start of tofacitinib therapy; IFN
score, STAT1 phosphorylation of T-cells and monocytes
decreased. This report shows evidence that tofacitinib
improves JDM at an immunopathogenic level [123]. An-
other recent report of 3 cases of refractory JDM showed
that 26 weeks (6 months) of treatment with tofacitinib
was tolerated and the patients responded well to the
treatment. Comparing 0–26 weeks (0–6 months) on
treatment there were significant improvements in phys-
ician global VAS (p < 0.001), manual muscle testing-8
(MMT) (p = 0.002), child myositis assessment scale
(CMAS) (p = 0.006), C-HAQ (p < 0.001) and DAS (p =
0.002). This set of case reports showed that tofacitinib
treatment improved signs and symptoms of JDM and
could be a promising treatment option [124].
A recent retrospective study included nine refractory

and one new-onset JDM patients treated with ruxolitinib
(n = 7) or baricitinib (n = 3). At 26 weeks (6 months) of
follow up five of the ten patients (three Ruxolitnib and
two Baricitinib) had reached clinically inactive disease
(CID). In these patients the mean daily dose of steroids
decreased from 1.1 mg/kg (range 0.35–2) to 0.1 (range,
0–0.3, p = 0.008). Serum IFN-α levels normalised 26
weeks (6 months) after the start of treatment in all pa-
tients [125].
A larger case series of refractory JDM patients, 8/

25(35%) treatment was ineffective and 17/25 (68%)
glucocorticoid dependant, were treated with tofacitinib
7/25(28%) or ruxolitinib 18/25 (72%). All 25 patients
were followed up for a median of 30 weeks (7 months)
(range = 3–21 months). 24/25 (96%) of patients had im-
provement of their rash of which 16/24 (66.7%) the rash
completely resolved. The cutaneous assessment tool bin-
ary method score significantly decreased (7.0(3.0–10.0)
to 0.0(0.0–1.0) p < 0.001). As a measure of muscle

activity 7/25 (28%) of patients showed an improvement
of CMAS score (from 18.6 ± 15.0 to 35.7 ± 6.3, p =
0.018). As of follow-up in August 2019 7/25 (28%) of
patients had discontinued glucocorticoids. This case series
has shown promise for the use of both drugs especially to
improve skin disease [126].
Recently data has been published from a compassion-

ate use study (NCT01724580) for the treatment of JDM
with Baricitinib. Four JDM patients with chronically
active disease were assessed at regular intervals over a
24 week period. There was significant improvement in
clinical scores from 4 weeks (Physicians Global Assess-
ment, Pt Global activity and CDASI activity score) and
down-regulation of IRG score (28 genes) and serum
IP-10. In CD4+ and CD8+ T Cells there were lower
levels IFN-α stimulated pSTAT1 and interleukin-2
(IL-2) stimulated pSTAT5 IC50s. In CD4+ T cells and
CD19+ B cells there were lower levels of IL-10- stimulated
pSTAT3 IC50s [127].
Overall, these reports provide more supportive evi-

dence for the use of JAK-inhibitors in JDM, but these
are limited case studies with the use of several distinct
JAK-inhibitors. Along with specific clinical trials of the
use of JAK-inhibitors in the treatment of JDM, there is a
need for standardised outcome measures for both clin-
ical and pathological disease improvement.

The future of JAK inhibitors
Clinical trials currently only include adult IIM patients.
Successful results from these trials and validation of the
case studies in JDM should be translatable to trials and
treatment in juvenile disease. There are multiple JAK-
inhibitors that are being trialled as potential new thera-
peutics for adult IIM, but these differ in their JAK targets
and pharmokinetics. JAK-inhibitors provide one step
further towards more targeted treatment beyond IFN
blockade. It is vital to continue to investigate the exact
pathogenic mechanism of the JAK/STAT pathway in IIM.
If a more specific target can be found then a refined Jaki-
nib can be developed for clinical trial in juvenile disease.

Concluding remarks
There is a wealth of information and evidence for the
potential use of JAK-inhibitors as a therapy for JDM.
There is a desperate need for therapeutics that target
defined pathogenic pathways in JDM. The IFN pathway
is a clear point of target. JAK-inhibitors appear to be
promising, but there is still the question of safety and
efficacy for the use in JDM. The choice of agent will
need careful consideration before choice of trials of first
generation pan-JAK-inhibitors or next-generation JAK
specific inhibitors. An international collaborative approach,
or novel trial design for disease trials, may be required
in order to achieve clear evidence of efficacy.
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