
JAKET: Joint Pre-training of Knowledge Graph and
Language Understanding

Donghan Yu1*, Chenguang Zhu2*, Yiming Yang1, Michael Zeng2

1 Carnegie Mellon University
2 Microsoft Cognitive Services Research Group

dyu2@cs.cmu.edu, chezhu@microsoft.com

Abstract

Knowledge graphs (KGs) contain rich information about world
knowledge, entities, and relations. Thus, they can be great
supplements to existing pre-trained language models. How-
ever, it remains a challenge to efficiently integrate information
from KG into language modeling. And the understanding of
a knowledge graph requires related context. We propose a
novel joint pre-training framework, JAKET, to model both the
knowledge graph and language. The knowledge module and
language module provide essential information to mutually
assist each other: the knowledge module produces embed-
dings for entities in text while the language module generates
context-aware initial embeddings for entities and relations in
the graph. Our design enables the pre-trained model to easily
adapt to unseen knowledge graphs in new domains. Experi-
ment results on several knowledge-aware NLP tasks show that
our proposed framework achieves superior performance by
effectively leveraging knowledge in language understanding.

Introduction
Pre-trained language models (PLM) leverage large-scale unla-
beled corpora to conduct self-supervised training. They have
achieved remarkable performance in various NLP tasks, ex-
emplified by BERT (Devlin et al. 2019), RoBERTa (Liu et al.
2019b), XLNet (Yang et al. 2019), and GPT series (Radford
et al. 2018, 2019; Brown et al. 2020). It has been shown that
PLMs can effectively characterize linguistic patterns in text
and generate high-quality context-aware representations (Liu
et al. 2019a). However, these models struggle to grasp world
knowledge about entities and relations (Poerner, Waltinger,
and Schütze 2019; Talmor et al. 2019), which are clearly
important for language understanding.

Knowledge graphs (KGs) represent entities and relations
in a structural way. They can also solve the sparsity problem
in text modeling. For instance, a language model may require
many instances of the phrase “labrador is a kind of dog”
in its training corpus before it implicitly learns this fact. In
comparison, a knowledge graph can use two entity nodes
“labrador”, “dog” and a relation edge “is a” between these
nodes to precisely represent this fact.

*Equal contribution. Work done while Donghan Yu was an intern
at Microsoft.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recently, some efforts have been made to integrate knowl-
edge graphs into PLM. Most of them combine the token
representations in PLM with embeddings of aligned KG en-
tities. The entity embeddings in those methods are either
pre-computed based on an external source by a separate
model (Zhang et al. 2019; Peters et al. 2019), which may
not be easily aligned with the PLM embeddings, or directly
learned as model parameters (Févry et al. 2020; Verga et al.
2020), which often have an over-parameterization issue due
to the large number of entities. Moreover, all the previous
works share a common challenge: when the pre-trained model
is fine-tuned in a new domain with a previously unseen knowl-
edge graph, it struggles to adapt to the new entities, relations
and structure.

Therefore, we propose JAKET, a Joint pre-trAining frame-
work for KnowledgE graph and Text. Our framework con-
tains a knowledge module and a language module, which
mutually assist each other by providing required information
to achieve more effective semantic analysis. The knowledge
module is based on a graph attention network (Velickovic
et al. 2018) to provide structure-aware entity embeddings
for language modeling. And the language module produces
contextual representations as initial embeddings for KG enti-
ties and relations given their descriptive text. Thus, in both
modules, content understanding is based on related knowl-
edge and rich context. On one hand, the joint pre-training
effectively projects entities/relations and text into a shared
semantic latent space, which eases the semantic matching
between them. On the other hand, as the knowledge module
produces representations from descriptive text, it solves the
over-parameterization issue since entity embeddings are no
longer part of the model’s parameters.

In order to solve the cyclic dependency between the two
modules, we propose a novel two-step language module LM1

and LM2, respectively. LM1 provides embeddings for both
LM2 and KG. The entity embeddings from KG are also fed
into LM2, which produces the final representation. LM1 and
LM2 can be easily established as the first several transformer
layers and the rest layers of a pre-trained language model
such as BERT and RoBERTa. Furthermore, we design an en-
tity context embedding memory with periodic update which
speeds up the pre-training by about 15x.

The pre-training tasks are all self-supervised, including
entity category classification and relation prediction for the

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

11630

Language
Module

Knowledge
Information

Context
Information

Pretraining: Fine-tuning:

KG A

Knowledge
Module

…

KG B

KG A

Figure 1: A simple illustration on the novelty of our proposed
model JAKET: (1) The language module and knowledge
module mutually assist each other; (2) JAKET can adapt to
unseen knowledge graphs during fine-tuning.

knowledge module, and masked token prediction and masked
entity prediction for the language module.

A great benefit of our framework is that it can easily adapt
to unseen knowledge graphs in the fine-tuning phase. As the
initial embeddings of entities and relations come from their
descriptive text, JAKET is not confined to any fixed KG. With
the learned ability to integrate structural information during
pre-training, the framework is extensible to novel knowledge
graphs with previously unseen entities and relations, as illus-
trated in Fig.1.

We conduct empirical studies on several knowledge-aware
natural language understanding (NLU) tasks, including few-
shot relation classification, question answering over KG and
entity classification. The results show that JAKET achieves
the best performance compared with strong baseline methods
on all the tasks, including those with a previously unseen
knowledge graph.

Related Work
Pre-trained language models have been shown to be very
effective in various NLP tasks, including ELMo (Peters et al.
2018), GPT (Radford et al. 2018), BERT (Devlin et al. 2019),
RoBERTa (Liu et al. 2019b) and XLNet (Yang et al. 2019).
Built upon large-scale corpora, these pretrained models learn
effective representations for various semantic structures and
linguistic relationships. They are trained on self-supervised
tasks like masked language modeling and next sentence pre-
diction.

Recently, a lot of efforts have been made on investigating
how to integrate knowledge into PLMs (Levine et al. 2020;
Baldini Soares et al. 2019; Liu et al. 2020; Guu et al. 2020;
Xu et al. 2021; Wang et al. 2021; Yu et al. 2020). These
approaches can be grouped into two categories:

a. Explicitly injecting entity representation into the lan-
guage model, where the representations are either pre-
computed from external sources (Yu et al. 2021; Peters et al.
2019) or directly learned as model parameters (Fang et al.

2021; Verga et al. 2020). For example, ERNIE (THU) (Zhang
et al. 2019) pre-trains the entity embeddings on a knowledge
graph using TransE (Bordes et al. 2013), while EAE (Févry
et al. 2020) learns the representation from pre-training objec-
tives with all the other model parameters. K-BERT (Liu et al.
2020) represents the entities by the embeddings of surface
form tokens (i.e. entity names), which contains much less
semantic information compared with description text. More-
over, it only injects KG during fine-tuning phase instead of
joint-pretraining KG and text. The most related work is Co-
LAKE (Sun et al. 2020a). However, there are two main differ-
ences between JAKET and CoLAKE: (1) The entity embed-
dings of CoLAKE are initialized by a fixed language model,
while JAKET initializes entity embedding by a dynamically
updated language model, which allows better adaptation on
unseen entities; (2) CoLAKE uses a shared Transformer to
model both text and KG, while JAKET contains two separate
modules, with more model flexibility.

b. Implicitly modeling knowledge information, including
entity-level masked language modeling (Sun et al. 2019;
Shen et al. 2020), entity-based replacement prediction (Xiong
et al. 2020) and knowledge embedding loss as regulariza-
tion (Wang et al. 2019b). For example, besides token-level
masked language modeling, ERNIE (Baidu) (Sun et al. 2019)
uses phrase-level and entity-level masking to predict all the
masked slots. KEPLER (Wang et al. 2019b) calculates en-
tity embeddings using a pre-trained language model based
on the description text, which is similar to our work. How-
ever, they use the entity embeddings for the knowledge graph
completion task instead of injecting them into the language
model.

Some works (Ding et al. 2019; Lv et al. 2020) investigated
the combination of graph neural network (GNN) and PLM.
For example, (Lv et al. 2020) uses XLNet to generate initial
node representation based on node context and feeds them
into a GNN. However, these approaches do not integrate
knowledge into language modeling, and they are designed for
specific NLP tasks such as reading comprehension or com-
monsense reasoning. In comparison, we jointly pre-train both
the knowledge graph representation and language modeling
and target for general knowledge-aware NLU tasks.

Method
In this section, we introduce the JAKET framework of joint
pre-training knowledge graph and language understanding.
We begin by defining the mathematical notations, and then
present our model architecture with the knowledge module
and language module. Finally, we introduce how to pre-train
our model and fine-tune it for downstream tasks. The frame-
work is illustrated in Fig.2.

Definition
A knowledge graph is denoted by KG = (E ,R, T), where
E = {e1 . . . eN} is the set of entities and R = {r1 . . . rP }
is the set of relations. T = {(et1i , rt2i , et3i)|1 ≤ i ≤
T, et1i , et3i ∈ E , rt2i ∈ R} stands for the set of head-relation-
tail triplets. Nv = {(r, u)|(v, r, u) ∈ T } represents the set
of neighboring relations and entities of an entity v.

11631

Masked entity prediction
Earth → E: Earth

Language model 2

Input text

Graph neural network

Entity description text

Masked token prediction
[MASK] → source

Entity category prediction
E: Earth → C: Planet

Relation prediction
(E: Earth, E: Solar System) → R: part_of

Sun is the most important [MASK]
of energy for life on Earth.

The Sun is the star at the
center of the Solar System…

Earth is the third pl-
anet from the Sun…

R: support

categoryR: part_of

E: Sun E: Earth

E: Solar system C: Star

Information fusion

Language
model 1

Knowledge graph

Pre-training tasks Pre-training tasks

Context representation Entity representation

1

2

3
4

Language
model 1

tie

Entity context
embedding memory

Figure 2: A demonstration for the structure of JAKET, where the language module is on the left side while the knowledge module
is on the right side. Symbol i© indicates the steps to compute context representations. “E:”, “R:” and “C:” stand for Entities,
Relations and Categories in KG respectively. Entity mentions in text are marked red and bold such as Sun.

We define V = {[MASK], [CLS], [EOS], w1 . . . wV }
as a vocabulary of tokens and the contextual text x =
[x1, x2, . . . , xL] as a sequence of tokens where xi ∈ V . In
the vocabulary, [MASK] is the special token for masked lan-
guage modeling (Devlin et al. 2019) and [CLS], [EOS] are
the special tokens indicating the beginning and end of the se-
quence. We define F as the dimension of token embeddings,
which is equal to the dimension of entity/relation embeddings
from the KG.

The text x has a list of entity mentions m =
[m1, . . . ,mM], where each mention mi = (emi , smi , omi):
emi

is the corresponding entity and smi
, omi

are the start
and end index of this mention in the context. In other words,
[xsmi

, . . . , xomi
] is linked with entity emi

1. We assume the
span of mentions are disjoint for a given text sequence.

As entities in the knowledge graph are represented by
nodes without context, we use entity description text to de-
scribe the concept and meaning of entities. For each entity ei,
its description text xei describes this entity. The mention of
ei in xei is denoted as mei = (ei, s

e
i , o

e
i), similarly defined

as above. For instance, the description text for the entity “sun”
can be “[CLS] The Sun is the star at the center of the Solar
System [EOS]”. Then the mention is mSun = (Sun, 3, 3).
If there are multiple mentions of ei in its description text,
we choose the first one. If there’s no mention of ei in its
description text, we set sei = oei = 1. Similarly, we define
relation description text as the text that can describe each
relation.

Knowledge Module
The goal of the knowledge module (KM) is to model the
knowledge graph to generate knowledge-based entity repre-
sentations.

To compute entity node embeddings, we employ the Graph

1We do not consider discontinous entity mentions in this work.

Attention Network (GAT) (Velickovic et al. 2018)2, which
uses the self-attention mechanism to specify different weights
for different neighboring nodes. However, the vanilla GAT is
designed for homogeneous graphs with single-relation edges.
To leverage the multi-relational information, we adopt the
idea of composition operator (Vashishth et al. 2020) to com-
pose entity embeddings and relation embeddings. In detail, in
the l-th layer of KM, we update the embedding E(l)

v of entity
v as follows: First for each relation entity pair (r, u) ∈ Nv,
we combine the embedding of entity u with the embedding
of relation r:

M (l−1)
u,r = f(E(l−1)

u , Rr) (1)

Note that the relation embeddingRr is shared across different
layers. The function f(·, ·) : RF × RF → RF merges a pair
of entity and relation embeddings into one representation.
Here, we set f(x, y) = x + y inspired by TransE (Bordes
et al. 2013). More complicated functions like MLP network
can also be applied. Then the combined embeddings are
aggregated by graph attention mechanism:

mk
v = σ

 ∑
(r,u)∈Nv

αk
v,r,uW

kM (l−1)
u,r

 (2)

where k is the index of attention head and W k is the model
parameter. The attention score αk

v,r,u is calculated by:

Su,r = aT
[
W kE(l−1)

v ⊕W kM (l−1)
u,r

]
(3)

αk
v,r,u =

exp (LeakyReLU (Su,r))∑
(r′,u′)∈Nv

exp (LeakyReLU (Su′,r′))
(4)

2We also tried Graph Convolutional Network (GCN) (Kipf and
Welling 2017) but it performs worse than GAT on the pre-training
tasks.

11632

Finally the embedding of entity v is updated through com-
bining the message representation mk

v and its embedding in
layer (l − 1):

E(l)
v = LayerNorm

(
K⊕

k=1

mk
v + E(l−1)

v

)
(5)

where LayerNorm stands for layer normalization (Ba, Kiros,
and Hinton 2016).

⊕
means concatenation and K is the

number of attention heads.
The initial entity embeddings E(0) and relation embed-

dings R are generated from our language module, which
will be introduced in Section “Solving the Cyclic Depen-
dency”. Then, the output entity embeddings from the last
GAT layer are used as the final entity representations EKM.
Note that the knowledge graph can be very large, making the
embedding update over all the entities not tractable. Thus we
follow the minibatch setting (Hamilton, Ying, and Leskovec
2017): given a set of input entities, we perform neighborhood
sampling to generate their multi-hop neighbor sets and we
compute representations only on the entities and relations
that are necessary for the embedding update.

Language Module
The goal of the language module (LM) is to model text data
and learn context-aware representations. The language mod-
ule can be any model for language understanding, e.g. BERT
(Devlin et al. 2019). In this work, we use the pre-trained
model RoBERTa-base (Liu et al. 2019b) as the language
module.

Solving the Cyclic Dependency
In our framework, the knowledge and language modules mu-
tually benefit each other: the language module LM outputs
context-aware embedding to initialize the embeddings of en-
tities and relations in the knowledge graph given the descrip-
tion text; the knowledge module (KM) outputs knowledge-
based entity embeddings for the language module.

However, there exists a cyclic dependency which prevents
computation and optimization in this design. To solve this
problem, we propose a decomposed language module which
includes two language models: LM1 and LM2. We employ
the first 6 layers of RoBERTa as LM1 and the remaining 6
layers as LM2. The computation proceeds as follows:

1. LM1 operates on the input text x and generates contextual
embeddings Z.

2. LM1 generates initial entity and relation embeddings for
KM given description text.

3. KM produces its output entity embeddings to be combined
with Z and sent into LM2.

4. LM2 produces the final embeddings of x, which includes
both contextual and knowledge information.

In detail, in step 1, suppose the context x is embedded
as Xembed. LM1 takes Xembed as input and outputs hidden
representations:

Z = LM1(X
embed) (6)

In step 2, suppose xej is the entity description text for en-
tity ej , and the corresponding mention is mej = (ej , s

e
j , o

e
j).

LM1 takes the embedding of xej and produces the contextual
embedding Zej . Then, the average of embeddings at position
sej and oej is used as the initial entity embedding of ej , i.e.

E
(0)
j = (Z

ej
sej

+ Z
ej
oej
)/2 (7)

The knowledge graph relation embeddings R are generated
in a similar way using its description text.

In step 3, KM computes the final entity embeddings EKM,
which is then combined with the output Z from LM1. In
detail, suppose the mentions in x are m = [m1, . . . ,mM].
Z and EKM are combined at positions of mentions: for each
position index k, if ∃i ∈ {1, 2, . . . ,M} s.t. smi

≤ k ≤ omi
,

Zmerge
k = Zk + EKM

emi
(8)

where EKM
emi

is the output embedding of entity emi from
KM. For other positions which do not have corresponding
mentions, we keep the original embeddings: Zmerge

k = Zk.
Then we apply layer normalization (Ba, Kiros, and Hinton
2016) on Zmerge:

Z ′ = LayerNorm(Zmerge) (9)

Finally, Z ′ is fed into LM2.
In step 4, LM2 operates on the input Z ′ and obtains the

final embeddings:

ZLM = LM2(Z
′) (10)

The four steps are marked by the symbol X© in Fig.2 for
better illustration.

Entity Context Embedding Memory
Many knowledge graphs contain a large number of entities.
Thus, even for one sentence, the number of entities plus their
multi-hop neighbors can grow exponentially with the number
of layers in the graph neural network. As a result, it’s very
time-consuming for the language module to compute context
embeddings based on the description text of all involved
entities in a batch on the fly.

To solve this problem, we construct an entity context em-
bedding memory, Econtext, to store the initial embeddings
of all KG entities. Firstly, the language module pre-computes
the context embeddings for all entities and places them into
the memory. The knowledge module only needs to retrieve
required embeddings from the memory instead of computing
them, i.e. E(0) ← Econtext.

However, as embeddings in the memory are computed
from the “old” (initial) language module while the token
embeddings during training are computed from the updated
language module, there will be an undesired discrepancy.
Thus, we propose to update the whole embedding memory
Econtext with the current language module every T (i) steps,
where i is the number of times that the memory has been
updated (starting from 0). T (i) is set as follows:

T (i) = min(Iinit ∗ abi/rc, Imax) (11)

11633

where Iinit is the initial number of steps before the first
update and a is the increasing ratio of updating intervals.
r is the number of repeated times of the current updat-
ing interval. Imax is the maximum number of steps be-
tween updates. b·c means the operation of rounding down.
In our experiments, we set Iinit = 10, a = 2, r =
3, Imax = 500, and the corresponding sequence of T
is [10, 10, 10, 20, 20, 20, 40, 40, 40, . . . , 500, 500]. Note that
we choose a > 1 because the model parameters usually
change less as training proceeds.

Moreover, we propose a momentum update to make
Econtext evolve more smoothly. Suppose the newly calcu-
lated embedding memory by LM is Econtext

new , then the updat-
ing rule is:

Econtext ← mEcontext + (1−m)Econtext
new (12)

where m ∈ [0, 1) is a momentum coefficient which is set as
0.8 in experiment.

This memory design speeds up our model by about 15x
during pre-training while keeping the effectiveness of entity
context embeddings. For consideration of efficiency, we use
relation embeddings only during fine-tuning.

Pre-training
During pre-training, both the knowledge module and lan-
guage module are optimized based on several self-supervised
learning tasks listed below. The examples of all the training
tasks are shown in Fig.2.

At each pre-training step, we first sample a batch of root
entities and perform random-walk sampling on each root
entity. The sampled entities are fed into KM for the following
two tasks.

Entity category prediction. The knowledge module is
trained to predict the category label of entities based on
the output entity embeddings EKM. This task has been
demonstrated to be effective in pre-training graph neural
networks (Hu et al. 2020). The loss function is cross-entropy
for multi-class classification, denoted as Lc.

Relation prediction. KM is also trained to predict the re-
lation between a given entity pair based on EKM. The loss
function is cross-entropy for multi-class classification, de-
noted as Lr.

Then, we uniformly sample a batch of text sequences and
their entities for the following two tasks.

Masked token prediction. Similar to BERT, We ran-
domly mask tokens in the sequence and predict the original
tokens based on the output ZLM of the language module. We
denote the loss as Lt.

Masked entity prediction. The language module is also
trained to predict the corresponding entity of a given mention.
For the input text, we randomly remove 15% of the mentions
m. Then for each removed mention mr = (er, sr, or), the
model predicts the masked entity er based on the mention’s
embedding. In detail, it predicts the entity whose embedding
in Econtext is closest to q = g((ZLM

sr + ZLM
or)/2), where

g(x) = GELU(xW1)W2 is a transformation function. GELU
is an activation function proposed by (Hendrycks and Gimpel
2016). Since the number of entities can be very large, we
use er’s neighbours and other randomly sampled entities

as negative samples. The loss function Le is cross entropy
based on the inner product between q and each candidate
entity’s embedding. Fig.2 shows an concrete example, where
the mention “Earth” is not marked in the input text since it’s
masked and the task is to link the mention “Earth” to entity
“Q2: Earth”.

Fine-tuning
During fine-tuning, our model supports using either the
knowledge graph employed during pre-training or a novel
custom knowledge graph with previously unseen entities3. If
a custom KG is used, the entity context embedding memory
is recomputed by the pre-trained language module using the
new entity description text.

Our model also supports KG-only tasks such as entity
classification or link prediction where the input data are entity
description text and KG without context corpus. In this case,
the Language Model 1 takes entity description text as input
and output entity embeddings into the knowledge module (i.e.
graph neural network) for downstream tasks. The Language
Model 2 will not be used.

In this work, we do not update the entity context memory
during fine-tuning for consideration of efficiency. We also
compute the relation context embedding memory using the
pre-trained language model.

Experiment
Basic Settings
Data for Pre-training. We use the English Wikipedia as
the text corpus, Wikidata (Vrandečić and Krötzsch 2014) as
the knowledge graph, and SLING (Ringgaard, Gupta, and
Pereira 2017) to identify entity mentions. For each entity,
we use the first 64 consecutive tokens of its Wikipedia page
as its description text and we filter out entities without a
corresponding Wikipedia page. We also remove entities that
have fewer than 5 neighbors in the Wikidata KG and fewer
than 5 mentions in the Wikipedia corpus. The final knowl-
edge graph contains 3,657,658 entities, 799 relations and
20,113,978 triplets. We use the instance of relation to find
the category of each entity. In total, 3,039,909 entities have
category labels of 19,901 types. The text corpus contains
about 4 billion tokens.

Implementation Details. We initialize the language mod-
ule with the pre-trained RoBERTa-base (Liu et al. 2019b)
model. The knowledge module is initialized randomly. Our
implementation is based on the HuggingFace framework
(Wolf et al. 2019) and DGL (Wang et al. 2019a). For the
knowledge module, we grid-search the number of layers
within [1, 2] (we do not consider more than 2 layers due to
model efficiency), the number of attention heads in GAT in [1,
4, 8, 12]. We choose the best performing hyper-parameters
based on the validation loss of pre-training tasks after training
for 1 epoch: the number of layers is 2 and the number of at-
tention heads is 8. The number of sampled neighbors in each

3We assume the custom domain comes with NER and entity
linking tools which can annotate entity mentions in text. The training
of these systems is beyond the scope of this work.

11634

hop is 10. The dimension of hidden states in the knowledge
module is 768, the same as the language module. The number
of parameters of the whole model is 111M, which is almost
the same as RoBERTa-base.

During pre-training, the batch size and length of text se-
quences are 1024 and 512 respectively. The batch size of KG
entities is 16,384. The number of training epochs is 8. JAKET
is optimized by AdamW (Loshchilov and Hutter 2019) using
the following parameters: β1 = 0.9, β2 = 0.999, ε = 1e-8,
and weight decay of 0.01. The learning rate of the language
module is warmed up over the first 3,000 steps to a peak
value of 1e-5, and then linearly decayed. The learning rate
of our knowledge module starts from 1e-4 and then linearly
decayed. The computing infrastructure we use is the NVIDIA
V100 GPU in all the experiments.

Baselines. We compare our proposed model JAKET
with the pre-trained RoBERTa-base (Liu et al. 2019b)
and four knowledge-enhanced pre-trained model ERNIE
(THU) (Zhang et al. 2019), KnowBERT (Peters et al. 2019),
KEPLER (Wang et al. 2019b) and CoLAKE (Sun et al.
2020a) using their officially released models which are also
pre-trained on English Wikipedia corpus and Wikidata KG.
We also test two variants of our model: RoBERTa+GNN
and RoBERTa+GNN+M. The two models have the same
model structure as JAKET, but they are not pre-trained on
our data. Moreover, the entity and relation context embed-
ding memories of RoBERTa+GNN are randomly generated
while the memories of RoBERTa+GNN+M are computed by
RoBERTa.

Downstream Tasks
Few-shot Relation Classification Relation classification
requires the model to predict the relation between two enti-
ties in text. Few-shot relation classification takes the N -way
K-shot setting. For each query instance, N relations with K
supporting examples for each relation are given. The model
is required to classify the instance into one of the N rela-
tions. In this paper, we evaluate our model on a widely used
benchmark dataset FewRel 1.0 (Han et al. 2018).

We use the pre-trained knowledge graph for FewRel as it
comes with entity mentions from Wikidata knowledge graph.
To predict the relation label, we build a sequence classifi-
cation layer on top of the output of LM. More specifically,
we use the PAIR framework proposed by (Gao et al. 2019),
which pairs each query instance with all the supporting in-
stances, concatenate each pair as one sequence, and send the
concatenated sequence to our sequence classification model
to get the score of the two instances expressing the same
relation. We do not use relation embeddings in this task to
avoid information leakage.

As shown in Table 1, in all three few-shot settings, our
model consistently outperforms both ERNIE and Know-
BERT, and performs on par with KEPLER. We didn’t com-
pare with CoLAKE since its original paper tests on this
dataset in a different setting. Comparing the results between
RoBERTa and RoBERTa+GNN, we see that adding GNN
with randomly generated entity features does not improve the
performance. The difference between RoBERTa+GNN+M
and RoBERTa+GNN demonstrates the importance of gener-

ating context embedding memory by the language module,
while JAKET can further improve the performance by pre-
training.

Question Answering over KG The Question Answering
over KG (KGQA) task is to answer natural language ques-
tions related to a knowledge graph. The answer to each ques-
tion is an entity in the KG. This task requires an understand-
ing over the question and reasoning over multiple entities and
relations.

We use the vanilla version of the MetaQA (Zhang et al.
2018) dataset, which contains questions requiring multi-hop
reasoning over a novel movie-domain knowledge graph. Each
question is provided with one entity mention and the question
is named as a k-hop question if the answer entity is a k-
hop neighbor of the question entity. We define all the k-
hop neighbor entities of the question entity as the candidate
entities for the question. We also consider a more realistic
setting where we simulate an incomplete KG by randomly
dropping a triplet with a probability 50%. This setting is
called KG-50%, compared with the full KG setting KG-Full.
For each entity, we randomly sample one question containing
it as the entity’s description context. We manually write the
description for each relation since the number of relations
is very small. We use the output embedding of [CLS] token
from LM as the question embedding, and then find the entity
with the closest context embedding.

As shown in Table 2, RoBERTa+GNN+M outperforms
RoBERTa, demonstrating the effectiveness of KM+LM struc-
ture. JAKET further improves the accuracy by 0.6% to
2.5% under both KG settings, showing the benefits of our
proposed joint pre-training. Note that the baseline models
ERNIE, KnowBERT and KEPLER even performs worse than
RoBERTa. We argue that this is caused by the discrepancy
between the KG used in pre-training and the downstream
KG. In comparison, our model has learned the capability to
quickly adapt to unseen knowledge graphs in target tasks.
JAKET performs consistently better than CoLAKE, which
demonstrates its stronger adaptation ability.

Entity Classification To further evaluate our model’s capa-
bility to reason over unseen knowledge graphs, we design an
entity classification task. Here, the model is given a portion of
the Wikidata knowledge graph unseen during pre-training, de-
noted as KG′. It needs to predict the category labels of these
unseen entities. Our entity classification dataset contains a
KG with 23,046 entities and 316 relations. The number of
triplets is 38,060. Among all the entities, 16,529 of them have
category labels and the total number of distinct labels is 1,291.
We conduct experiments under a semi-supervised transduc-
tive setting by splitting the entities in KG′ into train/dev/test
splits of 20%, 20% and 60%. To further test the robustness of
models to the size of training data, we also evaluate models
when using 20% and 5% of the original training set.

In this task, RoBERTa takes the entity description text
as input for label prediction while neglecting the structure
information of KG. JAKET and RoBERTa+GNN+M make
predictions based on the entity representation output from the
GNN of the knowledge module. We also include vanilla GNN
as a baseline, which uses the same GAT-based structure as

11635

Model 5-way 1-shot 5-way 5-shot 10-way 1-shot
BERT (Devlin et al. 2019) 85.7 89.5 76.8
ERNIE (Zhang et al. 2019) 86.9 91.4 78.6
KnowBERT (Peters et al. 2019) 86.2 90.3 77.0
KEPLER (Peters et al. 2019) 87.3 90.5 79.4
RoBERTa (Liu et al. 2019b) 86.4 90.3 77.3
RoBERTa+GNN 86.3 - -
RoBERTa+GNN+M 86.9 - -
JAKET 87.4 92.1 78.9

Table 1: Accuracy results (mean across 5 different runs) on the dev set of FewRel 1.0. All the models are equipped with the
same state-of-the-art few-shot framework PAIR (Gao et al. 2019).

Model KG-Full KG-50%

1-hop 2-hop 1-hop 2-hop
ERNIE 89.8 70.1 61.2 38.7
KnowBERT 89.5 69.3 61.1 38.3
KEPLER 90.1 70.3 60.7 38.1
CoLAKE 92.4 72.1 62.5 40.6
RoBERTa 90.2 70.8 61.5 39.3
RoB+G+M 91.4 72.6 62.5 40.8
JAKET 93.9 73.2 63.1 41.9

Table 2: Hits@1 results (mean across 5 different runs) on
the MetaQA dataset over 1-hop and 2-hop questions under
different KG settings. RoB+G+M is the abbreviation for the
baseline model RoBERTa+GNN+M.

Model Training Size

100% 20% 5%
GNN 48.2 - -
RoBERTa 33.4 - -
RoB+G+M 79.1 66.7 53.5
JAKET 81.6 70.6 58.4

Table 3: Accuracy results (mean across 5 different runs) on
the entity classification task over an unseen Wikidata knowl-
edge graph. RoB+G+M is the abbreviation for the baseline
model RoBERTa+GNN+M.

our knowledge module, but with randomly initialized model
parameters and context embedding memory.

As shown in Table 3, our model achieves the best
performance under all the settings. The performance
of GNN or RoBERTa alone is significantly lower than
RoBERTa+GNN+M, which demonstrates the importance of
integrating both context and knowledge information using
our proposed framework. Also, the gap between JAKET and
RoBERTa+GNN+M increases when there’s less training data,
showing that the joint pre-training can reduce the model’s
dependence on downstream training data.

Computation Analysis
The computation of the KG module is much less than the LM
module. For the RoBERTa-base model, the number of infer-
ence computation flops (#flops) over each sequence (length

128) is over 22 billion (Sun et al. 2020b). Here, we theo-
retically compute the number of flops of the KG module
as follows: The sequence length N = 128, and hidden di-
mension H = 768. The number of entities in a sequence is
usually less than N/5. The number of sampled neighbors per
entity r = 10. And the number of layers of the GNN based
KG module L = 2. It follows that the #flops of KG module
is about N/5× rL × 2H2 ≈ 3 billion, less than 1/7 of the
language module computation. If we set r = 5, the #flops
can be further reduced to about 1/30 of LM computation.

During pre-training, another computation overhead is en-
tity context embedding memory update (Section 3.5): Firstly,
the number of entities is about 3 million and the update step
interval is about 500. Thus for each step on average the model
processes the description text of 3×106/500 = 6000 entities.
Secondly, the length of description text is 64, much smaller
than the length of input text 512, and we only use LM1 (the
first half of LM module) for entity context embedding gen-
eration, which saves half of the computation time compared
to using the whole LM module. Thirdly, the embedding up-
date only requires forward propagation, costing only half of
computation compared to training process which requires
both forward and backward propagation. Thus, generating
context embedding of 6k entities consumes about the same
number of flops as training 6000× 64/(512× 2× 2) ≈ 200
input texts, much smaller than the batch size 1024. In short,
the entity context embedding memory update only costs
200/1024 ≈ 1/5 additional computation. Note this com-
putation overhead only exists during pre-training, since entity
embedding memory will not be updated during fine-tuning.

Conclusion
This paper presents a novel framework, JAKET, to jointly
pre-train models for knowledge graph and language under-
standing. Under our framework, the knowledge module and
language module both provide essential information for each
other. After pre-training, JAKET can quickly adapt to unseen
knowledge graphs in new domains. Moreover, we design the
entity context embedding memory which speeds up the pre-
training by 15x. Experiments show that JAKET outperforms
baseline methods in several knowledge-aware NLU tasks:
few-shot relation classification, KGQA and entity classifi-
cation. In the future, we plan to extend our framework to
natural language generation tasks.

11636

Acknowledgments
Donghan Yu and Yiming Yang are supported in part by the
National Science Foundation (NSF) under grant IIS-1546329,
and by the United States Department of Energy via the
Brookhaven National Laboratory under Contract No. 384608.

References
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer normal-
ization. arXiv preprint arXiv:1607.06450.

Baldini Soares, L.; FitzGerald, N.; Ling, J.; and Kwiatkowski,
T. 2019. Matching the Blanks: Distributional Similarity for
Relation Learning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, 2895–
2905. Florence, Italy: Association for Computational Lin-
guistics.

Bordes, A.; Usunier, N.; Garcı́a-Durán, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating Embeddings for Modeling
Multi-relational Data. In Burges, C. J. C.; Bottou, L.; Ghahra-
mani, Z.; and Weinberger, K. Q., eds., Advances in Neural
Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013. Proceed-
ings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, 2787–2795.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–4186. Minneapolis,
Minnesota: Association for Computational Linguistics.

Ding, M.; Zhou, C.; Chen, Q.; Yang, H.; and Tang, J. 2019.
Cognitive Graph for Multi-Hop Reading Comprehension
at Scale. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, 2694–2703.
Florence, Italy: Association for Computational Linguistics.

Fang, Y.; Wang, S.; Xu, Y.; Xu, R.; Sun, S.; Zhu, C.; and
Zeng, M. 2021. Leveraging Knowledge in Multilingual Com-
monsense Reasoning. arXiv preprint arXiv:2110.08462.

Févry, T.; Baldini Soares, L.; FitzGerald, N.; Choi, E.; and
Kwiatkowski, T. 2020. Entities as Experts: Sparse Mem-
ory Access with Entity Supervision. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 4937–4951. Online: Association for
Computational Linguistics.

Gao, T.; Han, X.; Zhu, H.; Liu, Z.; Li, P.; Sun, M.; and Zhou,
J. 2019. FewRel 2.0: Towards More Challenging Few-Shot
Relation Classification. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 6250–6255. Hong
Kong, China: Association for Computational Linguistics.

Guu, K.; Lee, K.; Tung, Z.; Pasupat, P.; and Chang, M.-
W. 2020. Realm: Retrieval-augmented language model pre-
training. arXiv preprint arXiv:2002.08909.
Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In Guyon, I.; von
Luxburg, U.; Bengio, S.; Wallach, H. M.; Fergus, R.; Vish-
wanathan, S. V. N.; and Garnett, R., eds., Advances in Neural
Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, 1024–1034.
Han, X.; Zhu, H.; Yu, P.; Wang, Z.; Yao, Y.; Liu, Z.; and Sun,
M. 2018. FewRel: A Large-Scale Supervised Few-Shot Rela-
tion Classification Dataset with State-of-the-Art Evaluation.
In Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, 4803–4809. Brussels,
Belgium: Association for Computational Linguistics.
Hendrycks, D.; and Gimpel, K. 2016. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415.
Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V. S.;
and Leskovec, J. 2020. Strategies for Pre-training Graph Neu-
ral Networks. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In 5th In-
ternational Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.
Levine, Y.; Lenz, B.; Dagan, O.; Ram, O.; Padnos, D.; Sharir,
O.; Shalev-Shwartz, S.; Shashua, A.; and Shoham, Y. 2020.
SenseBERT: Driving Some Sense into BERT. In Proceed-
ings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, 4656–4667. Online: Association for
Computational Linguistics.
Liu, N. F.; Gardner, M.; Belinkov, Y.; Peters, M. E.; and
Smith, N. A. 2019a. Linguistic knowledge and trans-
ferability of contextual representations. arXiv preprint
arXiv:1903.08855.
Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; and
Wang, P. 2020. K-bert: Enabling language representation with
knowledge graph. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 2901–2908.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy,
O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019b.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692.
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight Decay
Regularization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.
Lv, S.; Guo, D.; Xu, J.; Tang, D.; Duan, N.; Gong, M.; Shou,
L.; Jiang, D.; Cao, G.; and Hu, S. 2020. Graph-based reason-
ing over heterogeneous external knowledge for commonsense
question answering. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 8449–8456.
Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.;
Lee, K.; and Zettlemoyer, L. 2018. Deep Contextualized

11637

Word Representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), 2227–2237. New Orleans,
Louisiana: Association for Computational Linguistics.
Peters, M. E.; Neumann, M.; Logan, R.; Schwartz, R.; Joshi,
V.; Singh, S.; and Smith, N. A. 2019. Knowledge Enhanced
Contextual Word Representations. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), 43–54. Hong
Kong, China: Association for Computational Linguistics.
Poerner, N.; Waltinger, U.; and Schütze, H. 2019. Bert is not a
knowledge base (yet): Factual knowledge vs. name-based rea-
soning in unsupervised qa. arXiv preprint arXiv:1911.03681.
Radford, A.; Narasimhan, K.; Salimans, T.; and
Sutskever, I. 2018. Improving language understand-
ing by generative pre-training. https://s3-us-west-
2.amazonaws.com/openai-assets/research-covers/language-
unsupervised/language understanding paper.pdf.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised multi-
task learners. OpenAI Blog, 1(8): 9.
Ringgaard, M.; Gupta, R.; and Pereira, F. C. 2017. SLING:
A framework for frame semantic parsing. arXiv preprint
arXiv:1710.07032.
Shen, T.; Mao, Y.; He, P.; Long, G.; Trischler, A.; and Chen,
W. 2020. Exploiting Structured Knowledge in Text via Graph-
Guided Representation Learning. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 8980–8994. Online: Association for Com-
putational Linguistics.
Sun, T.; Shao, Y.; Qiu, X.; Guo, Q.; Hu, Y.; Huang, X.;
and Zhang, Z. 2020a. Colake: Contextualized language and
knowledge embedding. arXiv preprint arXiv:2010.00309.
Sun, Y.; Wang, S.; Li, Y.; Feng, S.; Chen, X.; Zhang, H.; Tian,
X.; Zhu, D.; Tian, H.; and Wu, H. 2019. Ernie: Enhanced
representation through knowledge integration. arXiv preprint
arXiv:1904.09223.
Sun, Z.; Yu, H.; Song, X.; Liu, R.; Yang, Y.; and Zhou, D.
2020b. Mobilebert: a compact task-agnostic bert for resource-
limited devices. arXiv preprint arXiv:2004.02984.
Talmor, A.; Elazar, Y.; Goldberg, Y.; and Berant, J. 2019.
oLMpics–On what Language Model Pre-training Captures.
arXiv preprint arXiv:1912.13283.
Vashishth, S.; Sanyal, S.; Nitin, V.; and Talukdar, P. P. 2020.
Composition-based Multi-Relational Graph Convolutional
Networks. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In
6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Verga, P.; Sun, H.; Soares, L. B.; and Cohen, W. W.
2020. Facts as Experts: Adaptable and Interpretable Neu-
ral Memory over Symbolic Knowledge. arXiv preprint
arXiv:2007.00849.
Vrandečić, D.; and Krötzsch, M. 2014. Wikidata: a free
collaborative knowledgebase. Communications of the ACM,
57(10): 78–85.
Wang, H.; Liu, Y.; Zhu, C.; Shou, L.; Gong, M.; Xu, Y.;
and Zeng, M. 2021. Retrieval Enhanced Model for Com-
monsense Generation. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, 3056–3062.
Online: Association for Computational Linguistics.
Wang, M.; Yu, L.; Zheng, D.; Gan, Q.; Gai, Y.; Ye, Z.; Li, M.;
Zhou, J.; Huang, Q.; Ma, C.; et al. 2019a. Deep graph library:
Towards efficient and scalable deep learning on graphs. arXiv
preprint arXiv:1909.01315.
Wang, X.; Gao, T.; Zhu, Z.; Liu, Z.; Li, J.; and Tang, J.
2019b. KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. arXiv preprint
arXiv:1911.06136.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; Davi-
son, J.; Shleifer, S.; von Platen, P.; Ma, C.; Jernite, Y.; Plu, J.;
Xu, C.; Scao, T. L.; Gugger, S.; Drame, M.; Lhoest, Q.; and
Rush, A. M. 2019. HuggingFace’s Transformers: State-of-
the-art Natural Language Processing. ArXiv, abs/1910.03771.
Xiong, W.; Du, J.; Wang, W. Y.; and Stoyanov, V. 2020.
Pretrained Encyclopedia: Weakly Supervised Knowledge-
Pretrained Language Model. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.
Xu, Y.; Zhu, C.; Xu, R.; Liu, Y.; Zeng, M.; and Huang, X.
2021. Fusing Context Into Knowledge Graph for Common-
sense Question Answering. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, 1201–1207.
Online: Association for Computational Linguistics.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov,
R. R.; and Le, Q. V. 2019. Xlnet: Generalized autoregressive
pretraining for language understanding. Advances in neural
information processing systems, 32.
Yu, W.; Zhu, C.; Fang, Y.; Yu, D.; Wang, S.; Xu, Y.; Zeng,
M.; and Jiang, M. 2021. Dict-BERT: Enhancing Lan-
guage Model Pre-training with Dictionary. arXiv preprint
arXiv:2110.06490.
Yu, W.; Zhu, C.; Li, Z.; Hu, Z.; Wang, Q.; Ji, H.; and Jiang,
M. 2020. A survey of knowledge-enhanced text generation.
arXiv preprint arXiv:2010.04389.
Zhang, Y.; Dai, H.; Kozareva, Z.; Smola, A. J.; and Song,
L. 2018. Variational reasoning for question answering with
knowledge graph. In Thirty-Second AAAI Conference on
Artificial Intelligence.
Zhang, Z.; Han, X.; Liu, Z.; Jiang, X.; Sun, M.; and Liu,
Q. 2019. ERNIE: Enhanced Language Representation with
Informative Entities. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
1441–1451. Florence, Italy: Association for Computational
Linguistics.

11638

