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ABSTRACT

Knowledge graphs (KGs) contain rich information about world knowledge, en-
tities, and relations. Thus, they can be great supplements to existing pre-trained
language models. However, it remains a challenge to efficiently integrate infor-
mation from KG into language modeling. And the understanding of a knowledge
graph requires related context. We propose a novel joint pre-training framework,
JAKET, to model both the knowledge graph and language. The knowledge mod-
ule and language module provide essential information to mutually assist each
other: the knowledge module produces embeddings for entities in text while the
language module generates context-aware initial embeddings for entities and re-
lations in the graph. Our design enables the pre-trained model to easily adapt
to unseen knowledge graphs in new domains. Experimental results on several
knowledge-aware NLP tasks show that our proposed framework achieves superior
performance by effectively leveraging knowledge in language understanding.

1 INTRODUCTION

Pre-trained language models (PLM) leverage large-scale unlabeled corpora to conduct self-
supervised training. They have achieved remarkable performance in various NLP tasks, exemplified
by BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019b), XLNet (Yang et al., 2019), and GPT
series (Radford et al., 2018; 2019; Brown et al., 2020). It has been shown that PLMs can effectively
characterize linguistic patterns in text and generate high-quality context-aware representations (Liu
et al., 2019a). However, these models struggle to grasp world knowledge about entities and rela-
tions (Poerner et al., 2019; Talmor et al., 2019), which are very important in language understanding.

Knowledge graphs (KGs) represent entities and relations in a structural way. They can also solve
the sparsity problem in text modeling. For instance, a language model may require tens of instances
of the phrase “labrador is a kind of dog” in its training corpus before it implicitly learns this fact.
In comparison, a knowledge graph can use two entity nodes “labrador”, “dog” and a relation edge
“is a” between these nodes to precisely represent this fact.

Recently, some efforts have been made to integrate knowledge graphs into PLM. Most of them
combine the token representations in PLM with representations of aligned KG entities. The entity
embeddings in those methods are either pre-computed based on an external source by a separate
model (Zhang et al., 2019; Peters et al., 2019), which may not be easily aligned with the language
representation space, or directly learned as model parameters (Févry et al., 2020; Verga et al., 2020),
which often have an over-parameterization issue due to the large number of entities. Moreover, all
the previous works share a common challenge: when the pre-trained model is fine-tuned in a new
domain with a previously unseen knowledge graph, it struggles to adapt to the new entities, relations
and structure.

Therefore, we propose JAKET, a Joint pre-trAining framework for KnowledgE graph and Text.
Our framework contains a knowledge module and a language module, which mutually assist each
other by providing required information to achieve more effective semantic analysis. The knowl-
edge module leverages a graph attention network (Veličković et al., 2017) to provide structure-aware
entity embeddings for language modeling. And the language module produces contextual represen-
tations as initial embeddings for KG entities and relations given their descriptive text. Thus, in both
modules, content understanding is based on related knowledge and rich context. On one hand, the
joint pre-training effectively projects entities/relations and text into a shared semantic latent space,

1



Under review as a conference paper at ICLR 2021

Language 
Module

Knowledge Information

Context Information

Pretraining:

Fine-tuning:

KG A

KG A KG B

Knowledge 
Module

KG C …

Figure 1: A simple illustration on the novelty of our proposed model JAKET.

which eases the semantic matching between them. On the other hand, as the knowledge module
produces representations from descriptive text, it solves the over-parameterization issue since entity
embeddings are no longer part of the model’s parameters.

In order to solve the cyclic dependency between the two modules, we propose a novel two-step
language module LM1 and LM2, respectively. LM1 provides embeddings for both LM2 and KG.
The entity embeddings from KG are also fed into LM2, which produces the final representation.
LM1 and LM2 can be easily established as the first several transformer layers and the rest layers of a
pre-trained language model such as BERT and RoBERTa. Furthermore, we design an entity context
embedding memory with periodic update which speeds up the pre-training by 15x.

The pre-training tasks are all self-supervised, including entity category classification and relation
type prediction for the knowledge module, and masked token prediction and masked entity predic-
tion for the language module.

A great benefit of our framework is that it can easily adapt to unseen knowledge graphs in the fine-
tuning phase. As the initial embeddings of entities and relations come from their descriptive text,
JAKET is not confined to any fixed KG. With the learned ability to integrate structural information
during pre-training, the framework is extensible to novel knowledge graphs with previously unseen
entities and relations, as illustrated in Figure 1.

We conduct empirical studies on several knowledge-aware natural language understanding (NLU)
tasks, including few-shot relation classification, question answering and entity classification. The
results show that JAKET achieves the best performance compared with strong baseline methods on
all the tasks, including those with a previously unseen knowledge graph.

2 RELATED WORK

Pre-trained language models have been shown to be very effective in various NLP tasks, including
ELMo (Peters et al., 2018), GPT (Radford et al., 2018), BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019b) and XLNet (Yang et al., 2019). Built upon large-scale corpora, these pretrained models
learn effective representations for various semantic structures and linguistic relationships. They are
trained on self-supervised tasks like masked language modeling and next sentence prediction.

Recently, a lot of efforts have been made on investigating how to integrate knowledge into
PLMs (Levine et al., 2019; Soares et al., 2019; Liu et al., 2020; Guu et al., 2020). These approaches
can be grouped into two categories:

1. Explicitly injecting entity representation into the language model, where the representations are
either pre-computed from external sources (Zhang et al., 2019; Peters et al., 2019) or directly learned
as model parameters (Févry et al., 2020; Verga et al., 2020). For example, ERNIE (THU) (Zhang
et al., 2019) pre-trains the entity embeddings on a knowledge graph using TransE (Bordes et al.,
2013), while EAE (Févry et al., 2020) learns the representation from pre-training objectives with
all the other model parameters. K-BERT (Liu et al., 2020) represents the entities by the embed-
dings of surface form tokens (i.e. entity names), which contains much less semantic information
compared with description text. Moreover, it only injects KG during fine-tuning phase instead of
joint-pretraining KG and text.
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Figure 2: A demonstration for the structure of JAKET, where the language module is on the left side
marked green while the knowledge module is on the right side marked blue. Symbol X© indicates
the steps to compute context representations introduced in Section 3.4. “QX”, “PX” and “CX” are
the indices for entities, relations and categories in KG respectively. Entity mentions in text are
underlined and italicized such as Sun.

2. Implicitly modeling knowledge information, including entity-level masked language model-
ing (Sun et al., 2019b; Shen et al., 2020), entity-based replacement prediction (Xiong et al., 2019)
and knowledge embedding loss as regularization (Wang et al., 2019b). For example, besides token-
level masked language modeling, ERNIE (Baidu) (Sun et al., 2019b) uses phrase-level and entity-
level masking to predict all the masked slots. KEPLER (Wang et al., 2019b) calculates entity em-
beddings using a pre-trained language model based on the description text, which is similar to our
work. However, they use the entity embeddings for the knowledge graph completion task instead of
injecting them into the language model.

Some works (Ding et al., 2019; Lv et al., 2020) investigated the combination of GNN and PLM. For
example, Lv et al. (2020) uses XLNet to generate initial node representation based on node context
and feeds them into a GNN. However, these approaches do not integrate knowledge into language
modeling, and they are designed for specific NLP tasks such as reading comprehension or common-
sense reasoning. In comparison, we jointly pre-train both the knowledge graph representation and
language modeling and target for general knowledge-aware NLU tasks.

3 METHOD

In this section, we introduce the JAKET framework of joint pre-training knowledge graph and lan-
guage understanding. We begin by defining the mathematical notations, and then present our model
architecture with the knowledge module and language module. Finally, we introduce how to pre-
train our model and fine-tune it for downstream tasks. The framework is illustrated in Figure 2.

3.1 DEFINITION

A knowledge graph is denoted by KG = (E ,R, T ), where E = {e1 . . . eN} is the set of entities and
R = {r1 . . . rP } is the set of relations. T = {(et1i , rt2i , et3i )|1 ≤ i ≤ T, et1i , et3i ∈ E , rt2i ∈ R}
stands for the set of head-relation-tail triplets. Nv = {(r, u)|(v, r, u) ∈ T } represents the set of
neighboring relations and entities of an entity v.

We define V = {[MASK], [CLS], [EOS], w1 . . . wV } as a vocabulary of tokens and the contextual
text x = [x1, x2, . . . , xL] as a sequence of tokens where xi ∈ V . In the vocabulary, [MASK] is the
special token for masked language modeling (Devlin et al., 2018) and [CLS], [EOS] are the special
tokens indicating the beginning and end of the sequence. We define F as the dimension of token
embeddings, which is equal to the dimension of entity/relation embeddings from the KG.

The text x has a list of entity mentions m = [m1, . . . ,mM ], where each mention mi =
(emi , smi , omi): emi is the corresponding entity and smi , omi are the start and end index of this
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mention in the context. In other words, [xsmi
, . . . , xomi

] is linked with entity emi
1. We assume the

span of mentions are disjoint for a given text sequence.

As entities in the knowledge graph are represented by nodes without context, we use entity descrip-
tion text to describe the concept and meaning of entities. For each entity ei, its description text xei

describes this entity. The mention of ei in xei is denoted as mei = (ei, s
e
i , o

e
i ), similarly defined

as above. For instance, the description text for the entity “sun” can be “[CLS] The Sun is the star
at the center of the Solar System [EOS]”. Then the mention is mSun = (Sun, 3, 3). If there are
multiple mentions of ei in its description text, we choose the first one. If there’s no mention of ei
in its description text, we set sei = oei = 1. Similarly, we define relation description text as the text
that can describe each relation.

3.2 KNOWLEDGE MODULE

The goal of the knowledge module (KM) is to model the knowledge graph to generate knowledge-
based entity representations.

To compute entity node embeddings, we employ the graph attention network (GAT) (Veličković
et al., 2017), which uses the self-attention mechanism to specify different weights for different
neighboring nodes. However, the vanilla GAT is designed for homogeneous graphs with single-
relation edges. To leverage the multi-relational information, we adopt the idea of composition op-
erator (Vashishth et al., 2019) to compose entity embeddings and relation embeddings. In detail, in
the l-th layer of LM, we update the embedding E(l)

v of entity v as follows:

E(l)
v = LayerNorm

 K⊕
k=1

σ

 ∑
(r,u)∈Nv

αk
v,r,uW

kf(E(l−1)
u , Rr)

+ E(l−1)
v

 (1)

αk
v,r,u =

exp
(

LeakyReLU
(
aT
[
W kE

(l−1)
v ⊕W kf(E

(l−1)
u , Rr)

]))
∑

(r′,u′)∈Nv
exp

(
LeakyReLU

(
aT
[
W kE

(l−1)
u ⊕W kf(E

(l−1)

u′ , Rr′)
])) (2)

where LayerNorm stands for layer normalization (Ba et al., 2016).
⊕

means concatenation and K
is the number of attention heads. W k is the model parameter and Rr is the embedding of relation
r. Note that the relation embeddings are shared across different layers. The function f(·, ·) : RF ×
RF → RF merges a pair of entity and relation embeddings into one representation. Here, we set
f(x, y) = x + y inspired by TransE (Bordes et al., 2013). More complicated functions like MLP
network can also be applied.

The initial entity embeddings E(0) and relation embeddings R are generated from our language
module, which will be introduced in Section 3.4. Then, the output entity embeddings from the last
GAT layer are used as the final entity representations EKM. Note that the knowledge graph can be
very large, making the embedding update over all the entities in Equation (1) not tractable. Thus
we follow the minibatch setting (Hamilton et al., 2017): given a set of input entities, we perform
neighborhood sampling to generate their multi-hop neighbor sets and we compute representations
only on the entities and relations that are necessary for the embedding update.

3.3 LANGUAGE MODULE

The goal of the language module (LM) is to model text data and learn context-aware representations.
The language module can be any model for language understanding, e.g. BERT (Devlin et al.,
2018). In this work, we use the pre-trained model RoBERTa-base (Liu et al., 2019b) as the language
module.

3.4 SOLVING THE CYCLIC DEPENDENCY

In our framework, the knowledge and language modules mutually benefit each other: the language
module LM outputs context-aware embedding to initialize the embeddings of entities and relations
in the knowledge graph given the description text; the knowledge module (KM) outputs knowledge-
based entity embeddings for the language module.

1We do not consider discontinous entity mentions in this work.
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However, there exists a cyclic dependency which prevents computation and optimization in this
design. To solve this problem, we propose a decomposed language module which includes two lan-
guage models: LM1 and LM2. We employ the first 6 layers of RoBERTa as LM1 and the remaining
6 layers as LM2. The computation proceeds as follows:

1. LM1 operates on the input text x and generates contextual embeddings Z.

2. LM1 generates initial entity and relation embeddings for KM given description text.

3. KM produces its output entity embeddings to be combined with Z and sent into LM2.

4. LM2 produces the final embeddings of x, which includes both contextual and knowledge
information.

In detail, in step 1, suppose the context x is embedded as Xembed. LM1 takes Xembed as input and
outputs hidden representations Z = LM1(X

embed).

In step 2, suppose xej is the entity description text for entity ej , and the corresponding mention is
mej = (ej , s

e
j , o

e
j). LM1 takes the embedding of xej and produces the contextual embedding Zej .

Then, the average of embeddings at position sej and oej is used as the initial entity embedding of ej ,

i.e. E(0)
j = (Z

ej
sej

+Z
ej
oej
)/2. The knowledge graph relation embeddings R are generated in a similar

way using its description text.

In step 3, KM computes the final entity embeddingsEKM, which is then combined with the output Z
from LM1. In detail, suppose the mentions in x are m = [m1, . . . ,mM ]. Z and EKM are combined
at positions of mentions:

Zmerge
k =

{
Zk + EKM

emi
if ∃i s.t. smi

≤ k ≤ omi

Zk otherwise
(3)

whereEKM
emi

is the output embedding of entity emi from KM. Then we apply layer normalization (Ba
et al., 2016) on Zmerge: Z ′ = LayerNorm(Zmerge). Finally, Z ′ is fed into LM2.

In step 4, LM2 operates on the input Z ′ and obtains the final embeddings ZLM = LM2(Z
′). The

four steps are marked by the symbol X© in Figure 2 for better illustration.

3.5 ENTITY CONTEXT EMBEDDING MEMORY

Many knowledge graphs contain a large number of entities. Thus, even for one sentence, the number
of entities plus their multi-hop neighbors can grow exponentially with the number of layers in the
graph neural network. As a result, it’s very time-consuming for the language module to compute
context embeddings based on the description text of all involved entities in a batch on the fly.

To solve this problem, we construct an entity context embedding memory, Econtext, to store the
initial embeddings of all KG entities. Firstly, the language module pre-computes the context em-
beddings for all entities and places them into the memory. The knowledge module only needs to
retrieve required embeddings from the memory instead of computing them, i.e. E(0) ← Econtext.

However, as embeddings in the memory are computed from the “old” (initial) language module
while the token embeddings during training are computed from the updated language module,
there will be an undesired discrepancy. Thus, we propose to update the whole embedding mem-
ory Econtext with the current language module every T (i) steps, where i is the number of times that
the memory has been updated (starting from 0). T (i) is set as follows:

T (i) = min(Iinit ∗ abi/rc, Imax) (4)

where Iinit is the initial number of steps before the first update and a is the increasing ratio of
updating intervals. r is the number of repeated times of the current updating interval. Imax is the
maximum number of steps between updates. b·c means the operation of rounding down. In our
experiments, we set Iinit = 10, a = 2, r = 3, Imax = 500, and the corresponding sequence of T
is [10, 10, 10, 20, 20, 20, 40, 40, 40, . . . , 500, 500]. Note that we choose a > 1 because the model
parameters usually change less as training proceeds.
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Moreover, we propose a momentum update to make Econtext evolve more smoothly. Suppose the
newly calculated embedding memory by LM is Econtext

new , then the updating rule is:

Econtext ← mEcontext + (1−m)Econtext
new , (5)

where m ∈ [0, 1) is a momentum coefficient which is set as 0.8 in experiment.

This memory design speeds up our model by about 15x during pre-training while keeping the effec-
tiveness of entity context embeddings. For consideration of efficiency, we use relation embeddings
only during fine-tuning.

3.6 PRE-TRAINING

During pre-training, both the knowledge module and language module are optimized based on sev-
eral self-supervised learning tasks listed below. The examples of all the training tasks are shown in
Figure 2.

At each pre-training step, we first sample a batch of root entities and perform random-walk sampling
on each root entity. The sampled entities are fed into KM for the following two tasks.

Entity category prediction. The knowledge module is trained to predict the category label of
entities based on the output entity embeddings EKM. The loss function is cross-entropy for multi-
class classification, denoted as Lc.

Relation type prediction. KM is also trained to predict the relation type between a given entity pair
based on EKM. The loss function is cross-entropy for multi-class classification, denoted as Lr.

Then, we uniformly sample a batch of text sequences and their entities for the following two tasks.

Masked token prediction. Similar to BERT, We randomly mask tokens in the sequence and predict
the original tokens based on the output ZLM of the language module. We denote the loss as Lt.

Masked entity prediction. The language module is also trained to predict the corresponding entity
of a given mention. For the input text, we randomly remove 15% of the mentions m. Then for
each removed mention mr = (er, sr, or), the model predicts the masked entity er based on the
mention’s embedding. In detail, it predicts the entity whose embedding in Econtext is closest to
q = g((ZLM

sr + ZLM
or )/2), where g(x) = GELU(xW1)W2 is a transformation function. GELU is an

activation function proposed by Hendrycks & Gimpel (2016). Since the number of entities can be
very large, we use er’s neighbours and other randomly sampled entities as negative samples. The
loss function Le is cross entropy based on the inner product between q and each candidate entity’s
embedding. Figure 2 shows an concrete example, where the mention “Earth” is not marked in the
input text since it’s masked and the task is to link the mention “Earth” to entity “Q2: Earth”.

3.7 FINE-TUNING

During fine-tuning, our model supports using either the knowledge graph employed during pre-
training or a novel custom knowledge graph with previously unseen entities2. If a custom KG
is used, the entity context embedding memory is recomputed by the pre-trained language module
using the new entity description text. In this work, we do not update the entity context memory
during fine-tuning for consideration of efficiency. We also compute the relation context embedding
memory using the pre-trained language model.

4 EXPERIMENT

4.1 BASIC SETTINGS

Data for Pre-training. We use the English Wikipedia as the text corpus, Wikidata (Vrandečić &
Krötzsch, 2014) as the knowledge graph, and SLING (Ringgaard et al., 2017) to identify entity men-
tions. For each entity, we use the first 64 consecutive tokens of its Wikipedia page as its description
text and we filter out entities without a corresponding Wikipedia page. We also remove entities that

2We assume the custom domain comes with NER and entity linking tools which can annotate entity men-
tions in text. The training of these systems is beyond the scope of this work.
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Model 5-way 1-shot 5-way 5-shot 10-way 1-shot
PAIR (BERT)? 85.7 89.5 76.8
PAIR (RoBERTa) 86.4 90.3 77.3
PAIR (RoBERTa+GNN) 86.3 - -
PAIR (RoBERTa+GNN+M) 86.9 - -
PAIR (KnowBERT) 86.2 90.3 77.0
PAIR (JAKET) 87.4 92.1 78.9

Table 1: Accuracy results on the dev set of FewRel 1.0. ? indicates the results are taken from Gao
et al. (2019). PAIR is the framework proposed by Gao et al. (2019).

have fewer than 5 neighbors in the Wikidata KG and fewer than 5 mentions in the Wikipedia cor-
pus. The final knowledge graph contains 3,657,658 entities, 799 relations and 20,113,978 triplets.
We use the instance of relation to find the category of each entity. In total, 3,039,909 entities have
category labels of 19,901 types. The text corpus contains about 4 billion tokens.

Implementation Details. We initialize the language module with the pre-trained RoBERTa-
base (Liu et al., 2019b) model. The knowledge module is initialized randomly. Our implementation
is based on the HuggingFace framework (Wolf et al., 2019) and DGL (Wang et al., 2019a). For the
knowledge module, we use a 2-layer graph neural network, which aggregates 2-hop neighbors. The
number of sampled neighbors in each hop is 10. More details are presented in the Appendix.

Baselines. We compare our proposed model JAKET with the pre-trained RoBERTa-base (Liu et al.,
2019b) and two variants of our model: RoBERTa+GNN and RoBERTa+GNN+M. The two models
have the same model structure as JAKET, but they are not pre-trained on our data. Moreover, the
entity and relation context embedding memories of RoBERTa+GNN are randomly generated while
the memories of RoBERTa+GNN+M are computed by RoBERTa.

4.2 DOWNSTREAM TASKS

Few-shot Relation Classification. Relation classification requires the model to predict the rela-
tion between two entities in text. Few-shot relation classification takes the N -way K-shot setting.
Relations in the test set are not seen in the training set. For each query instance, N relations with
K supporting examples for each relation are given. The model is required to classify the instance
into one of the N relations based on the N × K samples. In this paper we evaluate our model on
FewRel (Han et al., 2018), which is a widely used benchmark dataset for few-shot relation classifi-
cation, containing 100 relations and 70,000 instances.

We use the pre-trained knowledge graph for FewRel as it comes with entity mentions from Wikidata
knowledge graph. To predict the relation label, we build a sequence classification layer on top of the
output of LM. More specifically, we use the PAIR framework proposed by Gao et al. (2019), which
pairs each query instance with all the supporting instances, concatenate each pair as one sequence,
and send the concatenated sequence to our sequence classification model to get the score of the two
instances expressing the same relation. We do not use relation embeddings in this task to avoid
information leakage.

As shown in Table 1, our model achieves the best results in all three few-shot settings. Comparing
the results between RoBERTa and RoBERTa+GNN, we see that adding GNN with randomly gener-
ated entity features does not improve the performance. The difference between RoBERTa+GNN+M
and RoBERTa+GNN demonstrates the importance of generating context embedding memory by
the language module, while JAKET can further improve the performance by pre-training. We also
compare with a strong knowledge-enhanced PLM KnowBERT (Peters et al., 2019), which is also
pretrained on English Wikipedia and Wikidata KG. The results show that JAKET consistently out-
perform KnowBERT in different few-shot settings.

KGQA. The Question Answering over KG (KGQA) task is to answer natural language questions
related to a knowledge graph. The answer to each question is an entity in the KG. This task requires
an understanding over the question and reasoning over multiple entities and relations.

We use the vanilla version of the MetaQA (Zhang et al., 2017) dataset, which contains questions
requiring multi-hop reasoning over a novel movie-domain knowledge graph. The KG contains 135k
triplets, 43k entities and 9 relations. Each question is provided with one entity mention and the
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Model KG-Full KG-50%

1-hop 2-hop 1-hop 2-hop
RoBERTa 90.2 70.8 61.5 39.3
RoB+G+M 91.4 72.6 62.5 40.8
JAKET 93.9 73.2 63.1 41.9

Table 2: Results on the MetaQA dataset over 1-
hop and 2-hop questions under KG-Full and KG-
50% settings. RoB+G+M is the abbreviation for
the baseline model RoBERTa+GNN+M.

Model 100% 20% 5%
GNN 48.2 - -
RoBERTa 33.4 - -
RoB+G+M 79.1 66.7 53.5
JAKET 81.6 70.6 58.4

Table 3: Results on the entity classifica-
tion task over an unseen Wikidata knowledge
graph. RoB+G+M is the abbreviation for the
baseline model RoBERTa+GNN+M.

question is named as a k-hop question if the answer entity is a k-hop neighbor of the question
entity. We define all the k-hop neighbor entities of the question entity as the candidate entities for
the question. We also consider a more realistic setting where we simulate an incomplete KG by
randomly dropping a triplet with a probability 50%. This setting is called KG-50%, compared with
the full KG setting KG-Full. For each entity, we randomly sample one question containing it as the
entity’s description context. We manually write the description for each relation since the number
of relations is very small. We use the output embedding of [CLS] token from LM as the question
embedding, and then find the entity with the closest context embedding.

As shown in Table 2, RoBERTa+GNN+M outperforms RoBERTa, demonstrating the effectiveness
of KM+LM structure. JAKET further improves the accuracy by 0.6% to 2.5% under both KG
settings, showing the benefits of our proposed joint pre-training.3

Entity Classification. To further evaluate our model’s capability to reason over unseen knowledge
graphs, we design an entity classification task. Here, the model is given a portion of the Wikidata
knowledge graph unseen during pre-training, denoted as KG′. It needs to predict the category labels
of these novel entities. The entity context embeddings are obtained in the same way as in pre-
training. The relation context embeddings are generated by its surface text. The number of entities
and relations in the KG′ are 23,046 and 316 respectively. The number of triplets is 38,060. Among
them, 16,529 entities have 1,291 distinct category labels. We conduct experiments under a semi-
supervised transductive setting by splitting the entities in KG′ into train/dev/test splits of 20%, 20%
and 60%. To test the robustness of models to the size of training data, we evaluate models when
using 20% and 5% of the original training set.

In this task, RoBERTa takes the entity description text as input for label prediction while neglecting
the structure information of KG. JAKET and RoBERTa+GNN+M make predictions based on the
entity representation output from the knowledge module. We also include GNN as a baseline, which
uses the same GAT-based structure as our knowledge module, but with randomly initialized model
parameters and context embedding memory. GNN then employs the final entity representations for
entity category prediction.

As shown in Table 3, our model achieves the best performance under all the settings. The per-
formance of GNN or RoBERTa alone is significantly lower than JAKET and RoBERTa+GNN+M,
which demonstrates the importance of integrating both context and knowledge information using
our proposed framework. Also, the gap between JAKET and RoBERTa+GNN+M increases when
there’s less training data, showing that the joint pre-training can reduce the model’s dependence on
downstream training data.

5 CONCLUSION

This paper presents a novel framework, JAKET, to jointly pre-train models for knowledge graph and
language understanding. Under our framework, the knowledge module and language module both
provide essential information for each other. After pre-training, JAKET can quickly adapt to unseen
knowledge graphs in new domains. Moreover, we design the entity context embedding memory
which speeds up the pre-training by 15x. Experiments show that JAKET outperforms baseline
methods in several knowledge-aware NLU tasks: few-shot relation classification, KGQA and entity
classification. In the future, we plan to extend our framework to natural language generation tasks.

3For fair comparison, we do not include models which incorporate a dedicated graph retrieval module (Sun
et al., 2018; 2019a)
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The dimension of hidden states in the knowledge module is 768, the same as RoBERTa-base, and the
number of attention heads is 8. During pre-training, the batch size and length of text sequences are
1024 and 512 respectively. The batch size of KG entities is 16,384. The number of training epochs
is 8. JAKET is optimized by AdamW (Loshchilov & Hutter, 2017) using the following parameters:
β1 = 0.9, β2 = 0.999, ε = 1e-8, and weight decay of 0.01. The learning rate of the language
module is warmed up over the first 3,000 steps to a peak value of 1e-5, and then linearly decayed.
The learning rate of our knowledge module starts from 1e-4 and then linearly decayed.

A.2 COMPUTATION ANALYSIS

The computation of the KG module is much less than the LM module. For BERT-base or RoBERTa-
base, the number of inference computation flops (#flops) over each sequence (length 128) is over 22
billion [1, 2]. Here, we theoretically compute the number of flops of the KG module as follows: The
sequence length N = 128, and hidden dimension H = 768. The number of entities in a sequence
is usually less than N/5. The number of sampled neighbors per entity r = 10. And the number
of layers of the GNN based KG module L = 2. It follows that the #flops of KG module is about
N/5× rL × 2H2 ≈ 3 billion, less than 1/7 of LM computation. If we set r = 5, the #flops can be
further reduced to about 1/30 of LM computation.

During pre-training, another computation overhead is entity context embedding memory update
(Section 3.5): Firstly, the number of entities is about 3 million and the update step interval is 500.
Thus for each step on average the model processes the description text of 3e6/500 = 6e3 entities.
Secondly, the length of description text is 64, much smaller than the length of input text 512, and we
only use LM1 (the first half of LM module) for entity context embedding generation, which saves
half of the computation time compared to using the whole LM module. Thirdly, the embedding up-
date only requires forward propagation, costing only half of computation compared to training pro-
cess which requires both forward and backward propagation. Thus, generating context embedding
of 6k entities consumes about the same number of flops as training 6000× 64/(512× 2× 2) ≈ 200
input texts, much smaller than the batch size 1024. In short, the entity context embedding memory
update only costs 200/1024 ≈ 1/5 additional computation. Note this computation overhead only
exists during pre-training, since entity embedding memory is not updated when fine-tuning.
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