
JAM: Java Agents for Meta-Learning over Distributed Databases*

Salvatore Stolfo, Andreas L. Prodromidis¢
Shelley Tselepis, Wenke Lee, Dave W. Fan

Department of Computer Science
Columbia University
New York, NY 10027

{sal, andreas, sat, wenke, wfan}@cs.columbia.edu

Philip K. Chan
Computer Science

Florida Institute of Technology
Melbourne, FL 32901

pkc@cs.fit.edu

Abstract

In this paper, we describe the JAM system, a dis-
tributed, scalable and portable agent-based data
mining system that employs a general approach
to scaling data mining applications that we call
meta-learning. JAM provides a set of learning
programs, implemented either as JAVA applets
or applications, that compute models over data
stored locally at a site. JAM also provides a
set of meta-learning agents for combining mul-
tiple models that were learned (perhaps) at dif-
ferent sites. It employs a special distribution
mechanism which allows the migration of the de-
rived models or classifier agents to other remote
sites. We describe the overall architecture of the
JAM system and the specific implementation cur-
rently under development at Columbia Univer-
sity. One of JAM’s target applications is fraud
and intrusion detection in financial information
systems. A brief description of this learning
task and JAM’s applicability are also described.
Interested users may download JAM from
http://www.cs.columbia.edu/,-~sal/JAM/PRO JECT.

Introduction
One means of acquiring new knowledge from databases
is to apply various machine learning algorithms that
compute descriptive representations of the data as well
as patterns that may be exhibited in the data. The
field of machine learning has made substantial progress
over the years and a number of algorithms have been
popularized and applied to a host of applications in
diverse fields. There are numerous algorithms rang-
ing from those based upon stochastic models, to al-
gorithms based upon purely symbolic descriptions like
rules and decision trees. Thus, we may simply apply
the current generation of learning algorithms to very
large databases and wait for a response! However,
the question is how long might we wait? Indeed, do

*This research is supported by the Intrusion Detection
Program (BAA9603) from DARPA (F30602-96-1-0311),
NSF (IRI-96-32225 and CDA-96-25374) and NYSSTF
(423115-445).

tSupported in part by IBM.

the current generation of machine learning algorithms
scale from tasks common today that include thou-
sands of data items to new learning tasks encompassing
as much as two orders of magnitude or more of data
that is physically distributed? Furthermore, many ex-
isting learning algorithms require all the data to be
resident in main memory, which is clearly untenable in
many realistic databases. In certain cases, data is in-
herently distributed and cannot be localized on any one
machine (even by a trusted third party) for a variety
practical reasons including physically dispersed mobile
platforms like an armada of ships, security and fault
tolerant distribution of data and services, competitive
(business) reasons, as well as statutory constraints im-
posed by law. In such situations, it may not be possi-
ble, nor feasible, to inspect all of the data at one pro-
cessing site to compute one primary "global" classifier.
We call the problem of learning useful new knowledge
from large inherently distributed databases the sealing
problem for machine learning. We propose to solve the
scaling problem by way of a technique we have come
to call "meta-learning". Meta-learning seeks to com-
pute a number of independent classifiers by applying
learning programs to a collection of independent and
inherently distributed databases in parallel. The "base
classifiers" computed are then integrated by another
learning process. Here meta-learning seeks to compute
a "meta-classifier" that integrates in some principled
fashion the separately learned classifiers to boost over-
all predictive accuracy.

In the following pages, we present an overview of
meta-learning and we describe JAM (Java Agents for
Meta-Learning), a system that employs meta-learning
to address large scale distributed applications. The
JAM architecture reveals a powerful, portable and ex-
tensible network agent-based system that computes
meta-classifiers over distributed data. JAM is being
engaged in experiments dealing with real-world learn-
ing tasks such as solving key problems in fraud and
intrusion detection in financial information systems.

Meta-Learning
Meta-learning provides a unifying and scalable solution

91

From: AAAI Technical Report WS-97-07. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

that improves the efficiency and accuracy of inductive
learning when applied to large amounts of data in wide
area computing networks for a range of different appli-
cations.

Our approach to improve efficiency is to execute a
number of learning processes (each implemented as
distinct serial program) on a number of data subsets
(a data reduction technique) in parallel (eg. over
network of separate processing sites) and then to com-
bine the collective results through meta-learning. This
approach has two advantages, first it uses the same se-
rial code at multiple sites without the time-consuming
process of writing parallel programs and second, the
learning process uses small subsets of data that can fit
in main memory. The accuracy of the learned concepts
by the separate learning process might be lower than
that of the serial version applied to the entire data
set since a considerable amount of information may
not be accessible to each of the independent and sep-
arate learning processes. On the other hand, combin-
ing these higher level concepts via meta-learning, may
achieve accuracy levels, comparable to that reached by
the aforementioned serial version applied to the entire
data set. Furthermore, this approach may use a variety
of different learning algorithms on different computing
platforms. Because of the proliferation of networks of
workstations and the growing number of new learning
algorithms, our approach does not rely on any specific
parallel or distributed architecture, nor on any particu-
lar algorithm, and thus distributed meta-learning may
accommodate new systems and algorithms relatively
easily. Our meta-learning approach is intended to be
scalable as well as portable and extensible.

In prior publications we introduced a number of
meta-learning techniques including arbitration, com-
bining (Chan & Stolfo 1993) and hierarchical tree-
structured meta-learning systems. Other publications
have reported performance results on standard test
problems and data sets with discussions of related tech-
niques, Wolpert’s stacking (Wolpert 1992), Breiman’s
bagging (Breiman et al. 1984) and Zhang’s combin-
ing (Zhang et al. 1989) to name a few. Here we de-
scribe the JAM system architecture designed to sup-
port these and perhaps other approaches to distributed
data mining.

The JAM architecture

JAM is architected as an agent based system, a dis-
tributed computing construct that is designed as an
extension of OS environments. It is a distributed meta-
learning system that supports the launching of learn-
ing and meta-learning agents to distributed database
sites. JAM is implemented as a collection of dis-
tributed learning and classification programs linked to-
gether through a network of Datasites. Each JAM Dat-
asite consists of:

¯ A local database,

¯ One or more learning agents, or in other words ma-
chine learning programs that may migrate to other
sites as JAVA applets, or be locally stored as native
applications callable by JAVA applets,

¯ One or more meta-learning agents,

¯ A local user configuration file,

¯ Graphical User Interface and Animation facilities.

The JAM Datasites have been designed to
collaborate 1 with each other to exchange classifier
agents that are computed by the learning agents.

First, local learning agents operate on the local
database and compute the Datasite’s local classifiers.
Each Datasite may then import (remote) classifiers
from its peer Datasites and combine these with its own
local classifier using the local recta-learning agent. Fi-
nally, once the base and meta-classifiers are computed,
the JAM system manages the execution of these mod-
ules to classify and label datasets of interest. These
actions may take place at all Datasites simultaneously
and independently.

The owner of a Datasite administers the local ac-
tivities via the local user configuration file. Through
this file, he/she can specify the required and optional
local parameters to perform the learning and meta-
learning tasks. Such parameters include the names
of the databases to be used, the policy to partition
these databases into training and testing subsets, the
local learning agents to be dispatched, etc. Besides
the static 2 specification of the local parameters, the
owner of the Datasite can also employ JAM’s graphi-
cal user interface and animation facilities to supervise
agent exchanges and administer dynamically the meta-
learning process. With this graphical interface, the
owner may access more information such as accuracy,
trends, statistics and logs and compare and analyze
results in order to improve performance.

The configuration of the distributed system is main-
tained by the Configuration File Manager (CFM),
central and independent module responsible for keep-
ing the state of the system up-to-date. The CFM is a
server that provides information about the participat-
ing Datasites and logs events for future reference and
evaluation.

The logical architecture of the JAM meta-learning
system is presented in Figure 1. In this example, three
JAM Datasites Marmalade, Mango and Strawberry ex-
change their base classifiers to share their local view of
the learning task. The owner of the Datasite controls
the learning task by setting the parameters of the user
configuration file, i.e. the algorithms to be used, the
images to be used by the animation facility, the fold-
ing parameters, etc. In this example, the CFM runs

aA Datasite may also operate independently without
any changes.

2Before the beginning of the learning and meta-learning
tasks.

92

Figure 1: The architecture of the meta-learning system.

on Cherry and each Datasite ends up with three base
classifiers (one local plus the two imported classifiers).

We have used JAVA technology to build the infras-
tructure of the system, to develop the specific agent
operators that compose and spawn new agents from
existing classifier agents, to implement the GUI, the
animation facilities and most of the machine learning
algorithms. The platform-independence of JAVA tech-
nology makes it easy to port JAM and delegate its
agents to any participating site. The only parts that
were imported in their native (C++) form and are not
yet platform independent were some of the machine
learning programs; and this was done for faster proto-
type development and proof of concept.

Configuration File Manager

The CFM assumes a role equivalent to that of a name
server of a network system. The CFM provides reg-
istration services to all Datasites that wish to be-
come members and participate in the distributed meta-
learning activity. When the CFM receives a JOIN re-
quest from a new Datasite, it verifies both the validity
of the request and the identity of the Datasite. Upon
success, it acknowledges the request and registers the
Datasite as active. Similarly, the CFM can receive and
verify the DEPARTURE request; it notes the requestor
Datasite as inactive and removes it from its list of mem-
bers. The CFM, maintains the list of active member
Datasites to establish contact and cooperation between
peer Datasites. Apart from that, the CFM keeps in-
formation regarding the groups that are formed (which
Datasites collaborate with which Datasites), logs the
events and displays the status of the system. Through
the CFM, the JAM system administrator may screen
the Datasites that participate.

Datasites

Unlike CFM which provides a passive configuration
maintenance function, the Datasites are the active
components of the meta-learning system. They man-
age the local databases, obtain remote classifiers, build
the local base and meta classifiers and interact with
the JAM user. Datasites are implemented as multi-
threaded Java programs with a special GUI.

Upon initialization, a Datasite starts up the GUI,
through which it can accept input and display status
and results, registers with the CFM, instantiates the
local learning engine/agent3 and creates a server socket
for listening for connections4 from the peer Datasites.
Then, it waits for the next event to occur, either a com-
mand issued by the owner via the GUI, or a message
from a peer Datasite via the open socket.

In both cases, the Datasite verifies that the input is
valid and can be serviced. Once this is established, the
Datasite allocates a separate thread and performs the
required task. This task can be any of JAM’s func-
tions: computing a local classifier, starting the meta-
learning process, sending local classifiers to peer Data-
sites or requesting remote classifiers from them, report-
ing the current status, or presenting computed results.

Figure 2 presents a snapshot of the JAM system dur-
ing the meta-learning phase. In this example three
Datasites, Marmalade, Strawberry and Mango (see the
group panel of the figure) collaborate in order to share
and improve their knowledge in diagnosing hypothy-
roidism. The snapshot taken is from "Marmalade’s
point of view". Initially, Marmalade consults the Dat-

3The Datasite consults the local Datasite configuration
file (maintained by the owner of the Datasite) to obtain
information regarding the central CFM and the types of
the available machine learning agents.

4For each connection, the Datasite spawns a separate
thread.

93

asite configuration file where the owner of the Dat-
a.site sets the parameters. In this case, the dataset
is a medical database with records (Merz & Murphy
1996), noted by thyroid in the Data Set panel. Other
parameters include the host of the CFM, the Cross-
Validation Fold, the Meta-Learning Fold, the Meta-
Learning Level, the names of the local learning agent
and the local meta-learning agent, etc. (Refer to (Chan
1996) for more information on the meaning and use of
these parameters.) Notice that Marmalade has estab-
lished that Strawberry and Mango are its peer Data-
sites, having acquired this information from the CFM.

Then, Marmalade partitions the thyroid database
(noted as thyroid.l.bld and thyroid.2.bld in the Data
Set panel) for the 2-Cross-Validation Fold and com-
putes the local classifier, noted by Marmalade.1 (here
by calling the ID3 (Quinlan 1986) learning agent).
Next, Marmalade imports the remote classifiers, noted
by Strawberry.1 and Mango.1 and begins the meta-
learning process. Marmalade employs this meta-
classifier to predict the classes of input data items (in
this case unlabelled medical records). Figure 2 dis-
plays a snapshot of the system during the animated
meta-learning process where JAM’s GUI moves icons
within the panel displaying the construction of a new
meta-classifier.

Classifier Visualization
JAM provides graph drawing tools to help users un-
derstand the learned knowledge (Fayyad, Piatetsky-
Shapiro, & Smyth 1996). There are many kinds of
classifiers, e.g., a decision tree by ID3, that can be rep-
resented as graphs. In JAM we have employed major
components of JavaDot (Lee & Barghouti 1997), an ex-
tensible visualization system, to display the classifier
and allows the user to analyze the graph. Since each
machine learning algorithm has its own format to rep-
resent the learned classifier, JAM uses an algorithm-
specific translator to read the classifier and generate a
JavaDot graph representation.

Figure 2 shows the JAM classifier visualization panel
with a decision tree, where the leaf nodes represent
classes (decisions), the non-leaf nodes represent the
attributes under test, and the edges represent the at-
tribute values. The user can select the Attributes
command from the Object pull-down menu to see any
additional information about a node or an edge. In
the figure, the Attributes window shows the classi-
fying information of the highlighted leaf node5. It is
difficult to view clearly a very large graph (that has
large number of nodes and edges) due to the limited
window size. The classifier visualization panel provides
commands for the user to traverse and analyze parts
of the graph: the user can select a node and use the
Top command from the Graph menu to make the

5Thus visually, we see that for a test data item, if its
"p-2" value is 3 and its "p-14" value is 2, then it belongs
to class "0" with .889 probability.

subgraph starting from the selected node be the entire
graph in display; use the Parent command to view
the enclosing graph; and use the Root command to
see the entire original graph.

Some machine learning algorithms generate concise
and very readable textual outputs, e.g., the rule sets
from Ripper (Cohen 1995). It is thus counter-intuitive
to translate the text to graph form for display pur-
poses. In such cases, JAM simply pretty formats the
text output and displays it in the classifier visualiza-
tion panel.

Animation
For demonstration and didactic purposes, the meta-
learning component of the JAM graphical user inter-
face contains a collection of animation panels which
visually illustrate the stages of meta-learning in par-
allel with execution. When animation is enabled, a
transition into a new stage of computation or analy-
sis triggers the start of the animation sequence corre-
sponding to the underlying activity. The animation
loops continuously until the given activity ceases.

The JAM program gives the user the option of man-
ually initiating each distinct meta-learning stage (by
clicking a Next button), or sending the process into
automatic execution (by clicking a Continue button).
The manual run option provides a temporary program
halt. For "hands free" operation of JAM, the user can
start the program with animation disabled and execu-
tion set to automatic transition to the next stage in
the process.

Agents
JAM’s extensible plug-and-play architecture allows
snap-in learning agents. The learning and meta-
learning agents are designed as objects. JAM pro-
vides the definition of the parent agent class and ev-
ery instance agent (i.e. a program that implements
any of your favorite learning algorithms ID3, Ripper,
Cart (Breiman et al. 1984), Bayes (Duda ~: Hart
1973), Wpebls (Cost & Salzberg 1993), CN2 (Clark
& Niblett 1989), etc.) are then defined as a subclass
this parent class. Among other definitions which are
inherited by all agent subclasses, the parent agent class
provides a very simple and minimal interface that all
subclasses have to comply to. As long as a learning
or meta-learning agent conforms to this interface, it
can be introduced and used immediately in the JAM
system even during execution. To be more specific, a
JAM agent needs to have the following methods im-
plemented:

1. A constructor method with no arguments. JAM can
then instantiate the agent, provided it knows its
name (which can be supplied by the owner of the
Datasite through either the local user configuration
file or the GUI).

2. An initialize() method. In most of the cases, if not
all, the agent subclasses inherit this method from

94

Figure 2: Two different snapshots of the JAM system in action. Left: Marmalade is building the meta classifier
(meta learning stage). Right: An ID3 tree-structured classifier is being displayed in the Classifier Visualization
Panel.

the parent agent class. Through this method, JAM
can supply the necessary arguments to the agent.
Arguments include the names of the training and
test datasets, the name of the dictionary file, and
the filename of the output classifier.

3. A buildClassifier 0 method. JAM calls this method
to trigger the agent to learn (or meta-learn) from the
training dataset.

4. A getClassifier 0 and getCopyOfClassifier 0 meth-
ods. These methods are used by JAM to obtain
the newly built classifiers which are then encapsu-
lated and can be "snapped-in" at any participating
Datasite! Hence, remote agent dispatch is easily ac-
complished.

The class hierarchy (only methods are shown) for
five different learning agents is presented in Figure 3.
ID3, Bayes, Wpebls, CART and Ripper inherit the
methods initialize() and getClassifier0 from their par-
ent learning agent class. The Meta-Learning, Classifier
and Meta-Classifier classes are defined in similar hier-
archies.

JAM is designed and implemented independently of
the machine learning programs of interest. As long
as a machine learning program is defined and encap-
sulated as an object conforming to the minimal inter-
face requirements (most existing algorithms have sim-
ilar interfaces already) it can be imported and used
directly. In the latest version of JAM for example,
ID3 and CART are full JAVA agents, whereas Bayes,
Wpebls and Ripper are stored locally as native appli-
cations. This plug-and-play characteristic makes JAM
truly powerful and extensible data mining facility.

Fraud and Intrusion Detection
A secured and trusted interbanking network for elec-
tronic commerce requires high speed verification and
authentication mechanisms that allow legitimate users
easy access to conduct their business, while thwarting
fraudulent transaction attempts by others. Fraudu-
lent electronic transactions are a significant problem,
one that will grow in importance as the number of ac-
cess points in the nation’s financial information system
grows.

Financial institutions today typically develop cus-
tom fraud detection systems targeted to their own as-
set bases. Recently though, banks have come to real-
ize that a unified, global approach is required, involv-
ing the periodic sharing with each other of information
about attacks.

We have proposed another wall to protect the na-
tion’s financial systems from threats. This new wall of
protection consists of pattern-directed inference sys-
tems using models of anomalous or errant transaction
behaviors to forewarn of impending threats. This ap-
proach requires analysis of large and inherently dis-
tributed databases of information about transaction
behaviors to produce models of "probably fraudulent"
transactions. We use JAM to compute these models.

The key difficulties in this approach are: financial
companies don’t share their data for a number of (com-
petitive and legal) reasons; the databases that compa-
nies maintain on transaction behavior are huge and
growing rapidly; real-time analysis is highly desirable
to update models when new events are detected and
easy distribution of models in a networked environment
is essential to maintain up to date detection capability.

JAM is used to compute local fraud detection agents

95

I
ID3Learner

|D3Leamer0
boolean BulldClamsl fierO

ClaHI fief 8etCopyOfCImul fierO

Decision Tree

t
Learner

fl:0
~eturn ¢’asslfle~

l i

BayesLearner
BaymaLla~ar0

boolean BuildClassi fllrO
Classifier 8eiCopyOfClammlflerO

Probabilistic

WpeblsLearner
WpeblaLeamer0

boolean BuiidClass[flerO
Claniflar gitCopyOfC,aHiflerO

Nearest Neighbor

I
CartLearner

CartLeamerO
boolean BulldClasslflerO

Classifier getCopyOfClassl fierO

Decision Tree

¯

RipperLearner
RipperLearnerO

boolean BuildClaasiflerO
Classifier 8etCopyOfClassl fierO

Rule-Based

Figure 3: The class hierarchy of learning agents.

that learn how to detect fraud and provide intrusion
detection services within a single corporate information
system, and an integrated meta-learning system that
combines the collective knowledge acquired by individ-
ual local agents. Once derived local classifier agents
or models are produced at some Datasite(s), two
more such agents may be composed into a new classi-
fier agent by JAM’s meta-learning agents.

JAM allows financial institutions to share their mod-
els of fraudulent transactions by exchanging classifier
agents in a secured agent infrastructure. But they will
not need to disclose their proprietary data. In this way
their competitive and legal restrictions can be met, but
they can still share information. The meta-learned sys-
tem can be constructed both globally and locally. In
the latter guise, each corporate entity benefits from
the collective knowledge by using its privately avail-
able data to locally learn a meta-classifier agent from
the shared models. The meta-classifiers then act as
sentries forewarning of possibly fraudulent transactions
and threats by inspecting, classifying and labeling each
incoming transaction.

How Local Detection Components Work

Consider the generic problem of detecting fraudulent
transactions, in which we are not concerned with global
coordinated attacks. We posit there are two good can-
didate approaches.

Approach 1:
i) Each bank i, 1 < i <= N, uses some learning

algorithm or other on one or more of their databases,
DB~, to produce a classifier fl. In the simplest version,
all the fi have the same input feature space. Note that
each fi is just a mapping from the features space of
transaction, x, to a bimodal fraud label.

ii) All the f~ are sent to a central repository, where
there is a new "global" training database, call it DB*.

iii) DB* is used in conjunction with some learn-
ing algorithm in order to learn the mapping from
< f](x),f2(x), ...fy(x), x > to a fraud label (or prob-
ability of fraud). That mapping, or meta-classifier, is

f*.

iv) f* is sent to all the individual banks to use as
a data filter to mark and label incoming transactions
with a fraud label.

Approach 2:
i) Same as approach i.
ii) Every bank i sends to every other bank its fi. So

at the end of this stage, each bank has a copy of all N
classifiers, fl, ...fN.

iii) Each bank i had held separate some data, call
it ~, from the DBi used to create fi. Each bank then
uses Ti and the set of all the f’s to learn the mapping
from < fl(x),f2(x), ...fg(x),x to a f raud label (or
probability of fraud, as the case may be). (This
exactly as in step (iii) of approach 1, except the data
set used for combining is ~ (a different one for each
bank) rather than DB*.) Each such mapping is Fi.

iv) Each bank uses its Fi as in approach 1.

Credit Card Fraud Transaction Data

Here we provide a general view of the data schema for
the labelled transaction data sets compiled by a bank
and used by our system. For purposes of our research
and development activity, several data sets are being
acquired from several banks, each providing .5 million
records spanning one year, sampling on average 42,000
per month, from Nov. 1995 to Oct. 1996.

The schema of the database was developed over years
of experience and continuous analysis by bank person-
nel to capture important information for fraud detec-
tion. The general schema of this data is provided in
such a way that important confidential and proprietary
information is not disclosed here. (After all we seek not
to teach "wanabe thieves" important lessons on how to
hone their skills.) The records have a fixed length of
137 bytes each and about 30 numeric attributes includ-
ing the binary classification (fraud/legitimate transac-
tion). Some of the fields are arithmetic and the rest
categorical, i.e. numbers were used to represent a few
discrete categories.

96

In this section, we describe the setting of our exper-
iments. In particular, we split the original data set
provided by one bank into random partitions and we
distributed them across the different sites of the JAM
network. Then we computed the accuracy from each
model obtained at each such partition.

To be more specific, we sampled 84,000 records from
the total of 500,000 records of the data set we used
in our experiments, and kept them for the Validation
and Test sets to evaluate the accuracy of the resultant
distributed models. The learning task is to identify
patterns in the 30 attribute fields that can characterize
the fraudulent class label.

Let’s assume, without loss of generality, that we ap-
ply the ID3 learning process to two sites of data (say
sites 1 and 2), while two instances of Ripper are ap-
plied elsewhere (say at sites 3 and 4), all being initiated
as Java agents. The result of these four local compu-
tations are four separate classifiers, CID3-10, i ---- 1, 2,
and CRipper-jO,j = 3,4 that are each invocable as
agents at arbitrary sites of credit card transaction data.

A sample (and sanitized) Ripper rule-based classi-
fier learned from the credit card data set is depicted
in Figure 4, a relatively small set of rules that is eas-
ily communicated among distributed sites as needed?
To extract fraud data from a distinct fifth site of data,
or any other site, using say, Cn@p~r-30 the code im-
plementing this classifier would be transmitted to the
fifth site and invoked remotely to extract data. This
can be accomplished for example using a query of the
form:

Select X.* From Credit-card-data
Where CR@per_3(X.fraud- label) =

Naturally, the select expression rendered here in
SQL in this example can instead be implemented di-
rectly as a data filter applied against incoming trans-
actions at a server site in a fraud detection system.

The end result of this query is a stream of data ac-
cessed from some remote source based entirely upon
the classifications learned at site 3. Notice that re-
questing transactions classified as "not fraud" would
result in no information being returned at all (rather
than streaming all data back to the end-user for their
own sifting or filtering operation). Likewise, in a fraud
detection system, alarms would be initiated only for
those incoming transactions that have been selectively
labelled as potentially fraudulent.

Next, a new classifier, say M can be computed by
combining the collective knowledge of the 4 classifiers
using for example the ID3 meta-learning algorithm. M
is trained over meta-level training data, i.e. the class
predictions from four base classifiers, as well as the
raw training data that generated those predictions7.

6The specific confidential attribute names are not re-
veaJed here.

rThis meta-learning strategy is denoted class-combiner
as defined in (Chan & Stolfo 1995~; 1995b).

The meta-training data is a small fraction of the to-
tal amount of distributed training datas. In order for
M to generate its final class predictions, it requires
the classifications generated by CXD3-1(), CID3-20,
CRipper-30 and CRipper-40. The result is a tree struc-
tured meta-classifier depicted in Figure 4.

In this figure, the descendant nodes of the decision
tree are indented while the leaves specify the final clas-
sifications (fraud label 0 or 1). A (logic-based)
equivalent of the first branch at the top of the ID3
Decision tree is:

"If (X.Prediction{site- 1} -- 1) and
(X.Prediction{site - 2} = 1)

then the transaction is fraudulent i.e.
X.Fraud-label = 1."
Similarly, with M, we may access credit card fraud

data at any site in the same fashion as CRipp~r-3 used
over site 5.

Our experiments for fraud and intrusion detection
are ongoing. In one series of measurements, we trained
the base classifiers and meta-classifiers over a sample
data set with 50% fraudulent and 50% non-fraudulent
transactions. Then we tested their accuracy against a
different and unseen sample set of data with 20%/80%
distribution. In summary, Ripper and Cart were the
best base classifiers, and Bayes, the best and most sta-
ble meta-classifier. Ripper and Cart were each able to
catch 80% of the fraudulent transactions (True Posi-
tive or TP) but also misclassify 16% of the legitimate
transactions (False Positive or FP) while Bayes exhib-
ited 80% TP and 13% FP in one setting and 80% TP
and 19% FP in another. In the first setting, Bayes com-
bined the three base classifiers with the least correlated
error and in the second it combined the four most accu-
rate base classifiers. The experiments, settings, ratio-
nale and results have been reported in detail in a com-
panion paper (Stolfo et al. 1997) also available from
http://www.cs.columbia.edu/~sal/JAM/PROJ ECT.

Conclusions

We believe the concepts embodied by the term meta-
learning provide an important step in developing sys-
tems that learn from massive databases and that scale.
A deployed and secured meta-learning system will pro-
vide the means of using large numbers of low-cost net-
worked computers who collectively learn from massive
databases useful and new knowledge, that would other-
wise be prohibitively expensive to achieve. We believe
meta-learning systems deployed as intelligent agents
will be an important contributing technology to deploy
intrusion detection facilities in global-scale, integrated
information systems.

8The section detailing the meta-learning strategies in
(Chan & Stolfo 1995b) describes the various empirically
determined bounds placed on the meta-training data sets
while still producing accurate meta-classifiers.

97

Fraud :- Fraud :-
a >= 148, a >= 774.
b >= 695.

Fraud :- Fraud :-
c <= 12, e = "8",
d <= 4814. f = "3".

c <= 200,
a>=4.

NonFraud :- true

Figure 4: Left: This sample rule-based model, covers 1365 non-fraudulent and 290 fraudulent credit card trans-
actions. Right: A portion of the ID3 decision tree meta-classifier, learned from the predictions of the four base
classifiers. In this portion, only the classifiers from site-1 and site-2 are displayed

In this paper we described the JAM architecture,
a distributed, scalable, extensible and portable agent-
based system that supports the launching of learning
and meta-learning agents to distributed database sites
and build upon existing agent infrastructure available
over the internet today. JAM can integrate distributed
knowledge and boost overall predictive accuracy of a
number of independently learned classifiers through
meta-learning agents. We have engaged JAM in a
real, practical and important problem. In collabora-
tion with the FSTC we have populated these database
sites with records of credit card transactions, provided
by different banks, in an attempt to detect and pre-
vent fraud by combining learned patterns and behav-
iors from independent sources.

Acknowledgements
We wish to thank David Wolpert, formerly of TXN
and presently at IBM Almaden, Hank Vacarro of TXN,
Shaula Yemini of Smarts, Inc. and Yechiam Yemini for
many useful and insightful discussions. We also wish
to thank Dan Schutzer of Citicorp, Adam Banckenroth
of Chase Bank, Tom French of First Union Bank and
John Doggett of Bank of Boston, all executive mem-
bers of the FSTC, for their support of this work.

References
Breiman, L.; Friedman, J. H.; Olshen, R. A.; and
Stone, C. J. 1984. Classification and Regression Trees.
Belmont, CA: Wadsworth.

Chan, P., and Stolfo, S. 1993. Toward paral-
lel and distributed learning by meta-learning. In
Working Notes AAAI Work. Knowledge Discovery in
Databases, 227-240.

Chan, P., and Stolfo, S. 1995a. A comparative evalua-
tion of voting and meta-learning on partitioned data.
In Proc. Twelfth Intl. Conf. Machine Learning, 90-98.

Chan, P., and Stolfo, S. 1995b. Learning arbiter and
combiner trees from partitioned data for scaling ma-
chine learning. In Proc. Intl. Conf. Knowledge Dis-
covery and Data Mining, 39-44.

Chan, P. 1996. An Extensible Meta-Learning Ap-
proach for Scalable and Accurate Inductive Learn-
ing. Ph.D. Dissertation, Department of Computer
Science, Columbia University, New York, NY.

Clark, P., and Niblett, T. 1989. The CN2 induction
algorithm. Machine Learning 3:261-285.

Cohen, W. W. 1995. Fast effective rule induction.
In Proc. Twelfth International Conference. Morgan
Kaufmann.
Cost, S., and Salzberg, S. 1993. A weighted near-
est neighbor algorithm for learning with symbolic fea-
tures. Machine Learning 10:57-78.

Duda, R., and Hart, P. 1973. Pattern classification
and scene analysis. New York, NY: Wiley.

Fayyad, U.; Piatetsky-Shapiro, G.; and Smyth, P.
1996. The kdd process for extracting useful knowledge
from data. Communications of the ACM 39(11):27-
34.
Lee, W., and Barghouti, N. S. 1997. Javadot: An
extensible visualization environment. Technical Re-
port CUCS-02-97, Department of Computer Science,
Columbia University, New York, NY.

Merz, C., and Murphy, P.
1996. UCI repository of machine learning databases
[http://www.ics.uci.edu/-~mlearn/mlrepository.html].
Dept. of Info. and Computer Sci., Univ. of California,
Irvine, CA.
Quinlan, J. 1~. 1986. Induction of decision trees. Ma-
chine Learning 1:81-106.

Stolfo, S.; Fan, W.; Lee, W.; Prodromidis, A.; and
Chan, P. 1997. Credit card fraud detection using
meta-learning: Issues and initial results. AAAI Work-
shop on AI Approaches to Fraud Detection and Risk
Management.
Wolpert, D. 1992. Stacked generalization. Neural
Networks 5:241-259.
Zhang, X.; Mckenna, M.; Mesirov, J.; and Waltz, D.
1989. An efficient implementation of the backprop-
agation algorithm on the connection machine CM-2.
Technical Report RL89-1, Thinking Machines Corp.

98

