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Abstract 

This paper describes JAMES, a modern object-oriented Java framework for discrete optimization using local search 
algorithms that exploits the generality of such metaheuristics by clearly separating search implementation and application 
from problem specification. A wide range of generic local searches are provided, including (stochastic) hill climbing, tabu 
search, variable neighbourhood search and parallel tempering. These can be applied easily to any user-defined problem 
by plugging in a custom neighbourhood for the corresponding solution type. The performance of several different search 
algorithms can be assessed and compared in order to select an appropriate optimization strategy. Also, the influence of 
parameter values can be studied. Implementations of specific components are included for subset selection, such as a 
predefined solution type, a generic problem definition and several subset neighbourhoods used to modify the set of 
selected items. Additional components for other types of problems (e.g. permutation problems) are provided through an 
extensions module. Releases of JAMES are deployed to the Maven Central Repository so that the framework can easily be 
included as a dependency in other Java applications. The project is fully open source and hosted on GitHub. More 
information can be found at http://www.jamesframework.org. 
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1. INTRODUCTION 

Many optimization problems are difficult to solve, e.g. due to NP-completeness, in which case exact techniques 
are often not applicable. A common practical approach to deal with this issue is to use inexact algorithms that 
find valuable approximations of the best solution within reasonable time. For this purpose, metaheuristics are 
frequently applied, with the major advantage that they can be adjusted easily to solve various optimization 
problems arising from different fields, i.e. with the addition of only the necessary problem specific components 
such as neighbourhood functions in case of a local search or crossover, mutation and selection operators in 
case of a genetic algorithm. In this context, software frameworks are valuable tools to reduce the effort needed 
to apply well-established metaheuristics to newly defined problems. Such frameworks are also helpful for the 
implementation of new ideas and comparison with existing algorithms, and to create hybrid combinations of 
different search techniques. 

Several metaheuristic optimization frameworks have been developed over the last few decades [1], each 
targeting a certain class of algorithms and/or specific type of applications, implemented in a variety of object-
oriented programming languages such as C++, C# and Java. For example, ParadisEO [2] is an extensive C++ 
framework that supports both single- and multiobjective optimization using local search and population-
based metaheuristics, with extensions for parallel and distributed computation. Other options for C++ users 
include EasyLocal [3] and MALLBA [4]. The widely used Java framework jMetal [5] mainly targets multiobjective 
optimization using population-based algorithms. Similarly, other proposed Java frameworks are also focused 
on population-based methods and especially evolutionary algorithms (e.g. ECJ [6], EvA2 [7], JCLEC [8], Opt4j 
[9]). However, these are computationally expensive techniques that might not be needed when dealing with 
problems of moderate complexity for which simpler, local search based techniques may perform well enough. 
To our knowledge, the only available Java framework that includes a variety of local search metaheuristics is 
FOM [10] which unfortunately suffers from issues such as a lack of sufficient documentation and limited code 
transparency, and has not recently been updated. 

The above considerations led to the development of JAMES, a modern Java 8 framework for discrete 
optimization using local search metaheuristics. As Java is one of the most used programming languages, this 
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framework is a valuable addition to the currently available tools. It is desirable that such framework is 
transparent, flexible, well-documented, easy to use, and preferably open-source (distributed under a 
permissive license) and hosted on a generally accessible code sharing platform such as GitHub1. Java has the 
additional advantage of being highly portable across different systems (Windows, Unix). JAMES includes a 
wide range of basic and advanced local searches, including simple (stochastic) hill climbing as well as tabu 
search, variable neighbourhood search and parallel tempering (also called Replica Exchange Monte Carlo 
search, REMC). Releases are deployed to the Maven Central Repository2 so that JAMES can easily be included 
as a dependency in other Java applications. The project is licensed under the Apache License v2.03. More 
information and extensive documentation can be found at http://www.jamesframework.org. 

The remainder of this paper is organized as follows. In the next section, the high-level architecture of JAMES 
v0.2 is described. Sections 3 and 4 demonstrate how to define a problem and how to obtain good solutions 
using one of the available optimization algorithms, respectively. Finally, section 5 presents conclusions and 
future work. 

2. ARCHITECTURE OF JAMES 

The JAMES framework strongly separates problem specification from search application so that existing 
algorithms can easily be applied to obtain solutions for newly implemented problems (Figure 1). Each problem 
has a specific solution type and a search creates solutions of this type to solve the problem. The search talks to 
the problem to obtain random solutions (e.g. used as the default initial solution of a local search) and to 
evaluate and validate constructed solutions. Some utilities are provided to split the problem specification into 
an objective, data and possibly a number of constraints. The objective and constraints are then responsible for 
evaluating and validating solutions, respectively, using the data. 

Figure 1 High-level architecture of the JAMES framework 

 
 
The optimization algorithms are organized hierarchically. The top-level search definition handles general 
behaviour such as tracking the best solution found so far and termination (stop criteria). It also informs any 
listeners when certain events have occurred, e.g. when a new best solution has been found. A local search adds 
the concept of a current (and initial) solution which is modified in an attempt to improve it, i.e. which moves 
towards an optimum along a certain trajectory. The latter is usually performed by repeatedly sampling moves 
from one or more neighbourhoods that slightly change, and hopefully improve, the current solution. Such 

                                                             
1 GitHub: https://github.com. 
2 Maven Central Repository: http://search.maven.org. 
3 Apache License v2.0: http://www.apache.org/licenses/LICENSE-2.0. 
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algorithms belong to the class of neighbourhood searches. The applied neighbourhoods should be 
compatible with the solution type of the problem being solved and are used to adjust the search strategy to a 
specific application. 

The core module of JAMES contains all high-level components shown in Figure 1, as well as algorithm 
implementations, general stop criteria, etc. It also includes implementations of specific components for subset 
selection, such as a predefined solution type, a generic problem definition and several subset neighbourhoods. 
Similar components can easily be added for other types of problems, and distributed through an extensions 
module when desired (currently, the extensions include additional components for permutation problems). 
The next two sections demonstrate how to implement and solve a basic subset selection problem. More 
examples are available at the website, which also address other types of problems (e.g. the well-known 
travelling salesman problem, TSP). 

3. PROBLEM SPECIFICATION 

This section describes the implementation of the following example problem: given a set of items and a 
complete distance matrix, select a fixed size subset with maximum average distance between all pairs of 
selected items. This problem is referred to as the core selection problem and originates from the field of plant 
genomics and crop science, where diverse subsets of large collections of crop varieties often need to be 
selected [11]. This is a selection problem for which the predefined components in JAMES can be used. 

A generic SubsetProblem implementation is provided which extends AbstractProblem and thus separates the 
data from the objective and constraints (see Figure 1). The high-level SubsetProblem definition requires that 
each item from the data set is identified with a unique integer ID so that the problem can be generically solved 
by selecting a subset of these IDs. This translates to the requirement that the data class needs to implement 
the IntegerIdentifiedData interface, which defines a single method getIDs() that returns the set of all item IDs. 
Figure 2 shows the implementation of a custom CoreSubsetData class that wraps a distance matrix, where the 
IDs correspond to the indices in this matrix. 

Figure 2 Providing data for the core selection problem 

 1: public class CoreSubsetData implements IntegerIdentifiedData { 
 2: 
 3:    private double[][] dist; 
 4:    private Set<Integer> ids; 
 5: 
 6:    public CoreSubsetData(double[][] dist){ 
 7:        this.dist = dist; 
 8:        // infer IDs (indices in distance matrix) 
 9:        ids = new HashSet<>(); 
10:        for(int id=0; id<dist.length; id++){ 
11:            ids.add(id); 
12:        } 
13:    } 
14:     
15:    public double getDistance(int id1, int id2){ 
16:        return dist[id1][id2]; 
17:    } 
18:     
19:    public Set<Integer> getIDs() { 
20:        return ids; 
21:    } 
22:     
23: } 
 
The objective is defined by implementing the Objective interface and specifying the solution and data types. 
For any selection problem, the predefined solution type SubsetSolution can be used, which models the set of 
selected items. For this specific example, the data type is set to CoreSubsetData. The objective is responsible 
for evaluating a given solution, using the data, and informs the search whether these evaluations are to be 
maximized or minimized. Figure 3 shows an implementation of the core selection objective that evaluates a 
subset by computing the average distance between all pairs of selected items, which is to be maximized. The 
result of evaluate(solution, data) is a SimpleEvaluation that simply wraps a double value (line 14). More 
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complicated evaluation types can be used as well, e.g. when providing an efficient delta evaluation; for 
examples, the reader is directed to the website. 

Figure 3 Defining the objective of the core selection problem 

 1: public class CoreSubsetObjective implements Objective<SubsetSolution, CoreSubsetData>{ 
 2:     
 3:    public Evaluation evaluate(SubsetSolution solution, CoreSubsetData data) { 
 4:        int numDist = 0; 
 5:        double sumDist = 0.0; 
 6:        Integer[] selected = new Integer[solution.getNumSelectedIDs()]; 
 7:        solution.getSelectedIDs().toArray(selected); 
 8:        for(int i=0; i<selected.length; i++){ 
 9:            for(int j=i+1; j<selected.length; j++){ 
10:                sumDist += data.getDistance(selected[i], selected[j]); 
11:                numDist++; 
12:            } 
13:        } 
14:        return new SimpleEvaluation(sumDist/numDist); 
15:    } 
16: 
17:    public boolean isMinimizing() { 
18:        return false; 
19:    } 
20: 
21: } 
 
Now that the data and objective have been defined, they can be combined in a SubsetProblem (Figure 4). The 
desired subset size is specified as well (line 4). There are no constraints for the core selection problem, i.e. all 
subsets are valid solutions. Also, the high-level SubsetProblem definition is already capable of generating 
random subsets, so this does not need to be addressed here. 

Figure 4 Finalizing the core selection problem specification 

 1: double[][] dist = ... // set distance matrix (e.g. read from a file) 
 2: CoreSubsetData data = new CoreSubsetData(dist); // initialize data 
 3: CoreSubsetObjective obj = new CoreSubsetObjective(); // create objective 
 4: int subsetSize = ... // specify desired subset size 
 5: SubsetProblem<CoreSubsetData> problem = new SubsetProblem<>(obj, data, subsetSize); 
 
There are two options when specifying other types of problems besides subset selection. One can directly 
implement the Problem interface to create a single self-contained problem definition that includes all 
necessary data and performs both evaluation and validation of constructed solutions. Alternatively, the data, 
objective and constraints can be separated by extending AbstractProblem, similarly to what has been 
demonstrated above for selection problems. Examples of both approaches are provided at the website. 

4. SEARCH APPLICATION 

The core selection problem, as defined in the previous section, can now easily be solved using any of the 
available metaheuristics. This section demonstrates how to apply a basic stochastic hill climber (random 
descent) which starts from a random solution and iteratively applies randomly chosen moves, from a given 
neighbourhood, to the current solution. A move is only accepted if it improves the current solution, else a 
different move is tried. Several predefined subset neighbourhoods are available that can be used for any 
selection problem. Here, a SingleSwapNeighbourhood is applied, which randomly removes one item from the 
selection and replaces it with a randomly chosen, currently unselected item. Figure 5 shows how to create and 
run a random descent algorithm to optimize the selected core subset. 

A variety of stop criteria can be used to decide when the search should terminate, such as a runtime or step 
count limit, or a maximum amount of time or number of steps without finding any improvements. In this 
example, a runtime limit of 30 seconds is set. Calling search.start() (line 5) executes the optimization algorithm 
and blocks until it has terminated, after which the best found solution and corresponding score are printed. 
Finally, the search is disposed so that all resources are properly released (line 8). 
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Figure 5 Selecting a good core subset using a stochastic hill climber (random descent) 

 1: Neighbourhood<SubsetSolution> neigh = new SingleSwapNeighbourhood(); 
 2: RandomDescent<SubsetSolution> search = new RandomDescent<>(problem, neigh); 
 3: search.addStopCriterion(new MaxRuntime(30, TimeUnit.SECONDS)); 
 4: 
 5: search.start(); 
 6: System.out.println("Best solution: " + search.getBestSolution().getSelectedIDs()); 
 7: System.out.println("Best score: " + search.getBestSolutionEvaluation()); 
 8: search.dispose(); 
 
For many problems, a simple hill climber is not powerful enough to find good, stable solutions because it can 
not escape from local optima. However, for the considered core selection problem it performs very well and 
there is no need to turn to more advanced methods. Examples of more difficult problems which are solved 
using other techniques such as parallel tempering or variable neighbourhood search, with both predefined or 
custom neighbourhoods, are provided at the website. 

5. CONCLUSIONS 

This paper proposed the JAMES framework (v0.2) for discrete optimization using local searches in Java. It is a 
valuable addition to the currently available Java metaheuristic optimization tools which mainly focus on 
evolutionary algorithms. By clearly separating problem specification from search application, the provided 
algorithms can easily be used to solve newly defined problems, as was demonstrated for a simple fixed size 
subset selection problem. Future work includes the addition of analysis tools that can be used to compare the 
performance of different algorithms and to assess the influence of parameter values. Also, new search methods 
will be added when needed. 

ACKNOWLEDGEMENT 

Herman De Beukelaer is supported by a Ph.D. grant from the Research Foundation of Flanders (FWO). 

REFERENCES 

[1] Parejo J.A., Ruiz-Cortés A., Lozano S. and Fernandez P., 2012. Metaheuristic optimization frameworks: a survey and 
benchmarking. Soft Computing, 16(3), 527-561. 
[2] Cahon S., Melab N. and Talbi E.G., 2004. ParadisEO: A framework for the reusable design of parallel and distributed 
metaheuristics. Journal of Heuristics, 10(3), 357-380. 
[3] Di Gaspero L. and Schaerf A., 2003. EASYLOCAL++: an object-oriented framework for the flexible design of local-search 
algorithms. Software: Practice and Experience, 33(8), 733-765. 
[4] Alba E., Luque G., Garcia-Nieto J. and Ordonez G., 2007. MALLBA: a software library to design efficient optimisation 
algorithms. International Journal of Innovative Computing and Applications, 1(1), 74-85. 
[5] Durillo J.J. and Nebro A.J., 2011. jMetal: A Java framework for multi-objective optimization. Advances in Engineering 
Software, 42(10), 760-771. 
[6] White D.R., 2012. Software review: the ECJ toolkit. Genetic Programming and Evolvable Machines, 13(1), 65-67. 
[7] Kronfeld M., Planatscher H. and Zell A., 2010, The EvA2 optimization framework. Learning and Intelligent Optimization. 
Venice, Italy, 247-250. 
[8] Ventura S., Romero C., Zafra A., Delgado J.A. and Hervás C., 2008. JCLEC: a Java framework for evolutionary computation. 
Soft Computing, 12(4), 381-392. 
[9] Lukasiewycz M., Glaß M., Reimann F. and Teich J., 2011, Opt4J: a modular framework for meta-heuristic optimization. 
Proceedings of the 13th annual conference on Genetic and evolutionary computation. Dublin, Ireland, 1723-1730. 
[10] Parejo J.A., Racero J., Guerrero F., Kwok T. and Smith K.A., 2003, Fom: A framework for metaheuristic optimization. 
Computational Science—ICCS 2003. Melbourne, Australia, 886-895. 
[11] Brown A.H.D., 1989. Core collections: a practical approach to genetic resources management. Genome, 31(2), 818-824. 


