James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

> Lee Feinberg, GSFC Ritva Keski Kuha, GSFC Scott Texter, NGAS Charlie Atkinson, NGAS Mark Bergeland, Ball Aerospace Ben Gallagher, Ball Aerospace

Outline

- Introduction
- As-executed roadmap
- Technology development
- Mirror Selection
- Mirror Process Flow
- As –run schedule
- Risk Management History
- Results

Mirror History

Mirror System Design Parameters Studied

Wide Variety of Mirror System Design Parameters Studied									
Item	SBMD (Ball)NMSDAMSD								
Substrate Material	Be	Glass/Composite Hybrid	Be (Ball)						
			ULE (Kodak)						
		Glass (UA)	SiO2 (Goodrich)						
Reaction Structure	Be	Composite (both)	Composite (all)						
Control Authority	Low (Focus Only)	Low (COI)	Low (Ball)						
		High (UA)	Medium (Kodak)						
			High (Goodrich)						
Mounting	Linear Flexure	Bipods (COI)	9 Bi-Flex (Ball)						
		166 Hard (UA)	16 Force (Kodak)						
			67 Bi/Ax-Flex						
			(Goodrich)						
Diameter	0.53 m	2 m (COI)	1.38 m (Ball)						
		1.6 m (UA)	1.4 m (Kodak)						
			1.3 m (Goodrich)						
Areal Density	9.8 kg/m2 (mirror only)	13 kg/m2	15 kg/m2						

Technology Development Specs

Mirror Technology Development Specifications										
Item	SBMD	NMSD	AMSD	Units						
Form	Circle with Flat	Hex	Hex							
Prescription	Sphere	Sphere	Off-Axis Parabola							
Diameter	> 0.5	1.5 to 2.0	1.2 to 1.5	meter						
Areal Density	<12	< 15	< 15	kg/m ²						
Radius	20	15	10	meter						
PV Figure	160	160	250	nm						
RMS Figure			50	nm						
PV Mid (1-10 cm ⁻¹)	63	63		nm						
RMS Finish	3	2	4	nm						
Stiffness (1 st Mode)			150	HZ						

Incremental TRL-6

Demonstrator	Technology	Validity to JWST
SBMD	Cryogenic Coating Cryo-Null Figuring	SBMD developed a low stress gold coating application that can be applied to any beryllium mirror. Coating of large mirrors (like JWST) is not material specific and has been developed on other flight programs.
AMSD Mirror	Figuring Cryogenic performance Actuation capability	All differences between the JWST PMSA and the AMSD mirror improves manufacturability, cryogenic performance, and provides more actuation degrees of freedom
AMSD Stress Coupons	Long term material stability	JWST PMSA's are manufactured using the exact processing developed on AMSD III to assure low residual surface stresses and low material creep.
JWST EDU & Flight Segment	Launch distortion Actuation Capability	JWST flight segment used to show technology readiness

Advanced Mirror System Demonstrator (AMSD)

- NASA, DOD, NRO \$50M partnership funded 3 lightweight mirror technologies shown on the right
- Ball beryllium mirror technology completed and baselined for JWST in 2003
 - Ball beryllium mirror demonstrated all key aspects of JWST technology except for demonstration of vibroacoustics survival which will be demonstrated this June on the Engineering Design Unit mirror
- Mirror manufacturing of flight mirrors started in September 2003

Mirror Technology Choices

~30 K minus Ambient

Beryllium Mirror Had Superior Cryogenic Properties

Mirror Selection Process and Results

Beryllium was rated as the highest performing, lowest technical risk solution

- Material has superior cryo CTE and conductivity, only technical issue was managing surface stresses to achieve final convergences
- Provided best potential science performance, had significant margins on thermal performance and stiffness/mass
- Key concerns were schedule and staffing at Tinsley
- Material and manufacturing cost deltas between ULE and Beryllium were small when compared to the potential schedule deltas

Mir	ror Recommendatio	n Board (MRB)
≻	Lee Feinberg	GSFC, OTE Manager, MRB Co-Chair
>	Ritva Keski-Kuha	GSFC, OTE Deputy Manager
>	Mark Clampin	GSFC, JWST Observatory Scientist
>	Phil Stahl	MSFC, JWST Mirror Technology Lead
>	Kevin Russell	MSFC, AMSD Program Manager
>	Scott Texter	NGST, OTE Manager, MRB Co-Chair
>	Charlie Atkinson	NGST, OTE Deputy Manager
>	Gary Rosiak	NGST, Former NGST Phase 1 Program Manager
>	Beth Barinek	NGST, Ball Subcontract Technical Manager
>	Doug Neam	BATC, Vice President of Operations
>	Mark Bergeland	BATC, JWST Program Manager
۶	Gary Matthews	EKC, Manager of Image Collection Systems
MR	B Technical Consult	ants
>	Lester Cohen	SAO, Chief Engineer
>	Matt Mountain	Gemini Director and JWST SWG Representative
>	John Hraba	MSFC
>	Gary Golnik	Schafer Corporation
>	Paul Lightsey	BATC, OTE Systems Engineer
>	James Hadawav	University of Alabama, Huntsville

All JWST mirrors utilize similar support and actuation subsystems (PMSA, SMA, TM, FSM)

Mirror production and testing involves a series of handoffs between several suppliers

Mando Space John Marcho John M

Mirror Fabrication and Test Now Complete (As Run Schedule)

Sample of Mirror Risk Management History

RISK Title	Likelihood	Impact	Exposure	Asignee	Dates	RISK	MITIGATION
Beryllium Mirror Optical Spec	Moderate	High	Moderate	Feinberg, Lee	Open 3/17/03 Closed 10/19/05	IF Lightweight mirrors do not meet optical spec at the segment level; THEN OTE will not meet level 2 image requirement at 2 microns	Completed fabrication of AMSD-2 mirrors 20 nm convergence task performed by Ball/Tinsley Additional AMSD-3 tasks and EDU
Beryllium mirror grinding/polishing stress characterization	Very Low	Low	Low	Feinberg, Lee	Open 4/4/03 Closed-Mitigated 3/1/11	IF the parameters that affect the residual stress created during grinding and polishing are not well understood; THEN the schedule for manufacturing the beryllium optics can easily exceed program requirements	Demonstrate Stress Controls on EDU and A1. Closed after second cryo test confirmed that cryo polishing successful.
Beryllium Mirror Performance	Low	Moderate	Low	Feinberg, Lee	Open-9/8/03 Closed-Mitigated 3/1/11	IF "Be" mirror do not converge to 20nm; THEN OTE will not meet final level 2 spec	Mitigated through additional AMSD-3 tasks and EDU, including 20nm demonstration (completing AMSD to 20nm's ambient)
PMSA Edges	Moderate	Very Low	Low	Feinberg, Lee	Open-1/23/04 Closed-Mitigated 3/1/11	IF the straylight effects of PMSA edges are not quantified and the edges processed to insure the straylight is within the acceptable limits ; THEN the level 2 encircled energy requirement may not be met and/or significant schedule slippages and cost overruns may occur.	Reviewed EDU, A1 edges, modelling of results. Metrology equipment added: Scanning Shack Hartman A1 edges met spec. EDU completed.

Environmental Testing

Vibe

Cryo

Mirror Results

Secondary

Tertiary

Fine Steering

JWST Mirrors Completed in 2011

Mirror	Measured (nm rms SFE)	Uncertainty (nm rms SFE)	Total (nm rms SFE)	Req (nm rms SFE)	Margin (nm rms SFE)
Primary Mirror (18 mirror composite)	23.6	8.1	25.0	25.8	6.4
Secondary Mirror	14.7	13.2	19.8	23.5	12.7
Tertiary Mirror	18.1	9.5	20.5	23.2	10.9
Fine Steering Mirror	13.9	4.9	14.7	18.7	11.6

Tertiary Mirror

Fine Steering Mirror

Mirror Results

	SFE total measured	hi freq measured	XRCF tot measured	XRCF hi measured	Tinsley sub aperture very hi measured	SFE metrology uncertainty tot	SFE metrology uncertainty hi								
	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)						Tinsley		
allocation	23.6	12.2	14.0	44.7						ĺ			sub		SFE
max i	44.2	12.5	44.0		5.8	8.2	2.3		SEE total	hi frog			aperiure	SFE	
rme	10.0	10.0	23.1	80	2.9	8.0	2.3		measure	measure	measure	measure	measure	uncertaint	y uncertain
mean	20.0	a a	23.1	0.3	4.5	8.1	2.3		d	d	d	d	d	v tot	ty hi
std	75	14	76	1 4	0.9	0.1	0.0		-			-	-	,	
cum	1.0		1.0	1.7	0.0	0.1			(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)	(nm rms)
A1	17.9	9.5	17.7	9.0	2.9	8.0	2.3	B5	18.4	9	18.0	8.1	3.9	8.2	2.3
A2	22.2	11.2	21.9	10.7	3.4	8.0	2.3	B6	17.5	10.2	17.0	9.4	4.0	8.2	2.3
[_]	t'	<u> </u> '	<u> </u> '	<u> </u> '		<u> </u>	ļ/	B7	22.6	8.9	22.2	7.8	4.3	8.2	2.3
A3	21.8	12.3	21.0	10.8	5.8	8.0	2.3	B8	23.7	9.6	23.3	8.4	4.6	8.2	2.3
Δ1	17.1	82	16.8	7.5	3.2	80	23	I		<u> </u>		ļ!	ļ!	↓]	
	17.1	0.2	10.0	1.5	0.2	0.0	2.0	C1	22.1	9	21.5	7.4	5.1	8.2	2.3
A5	16.5	10.1	15.7	8.8	5.0	8.0	2.3	C2	20.1	8.7	19.5	7.1	5.0	8.2	2.3
A6	44.2	12.5	44.0	11.7	4.5	8.0	2.3	C3	18.1	8.1	17.8	7.4	3.2	8.2	2.3
	<u> </u> '	'	<u> </u> '	<u> </u> '		<u> </u>	ļļ	C4	39.5	12.3	39.2	11.2	5.0	8.2	2.3
B2	18.7	9.2	17.8	7.2	5.7	8.2	2.3	C5	20.5	10.2	20.1	9.3	4.2	8.2	2.3
В3	18.7	9.1	18.2	8.1	4.2	8.2	2.3	C6	23.9	10	23.3	8.4	5.4	8.2	2.3

Surface Area Requirement: >1.4746 m2 per segment

Surface Area: 1.47533 m2 mean Total PM Surface Area =26.55m2

See paper by Paul Lightsey for More details

The Team

NORTHROP GRUMMAN

Bal

Summary

- In 8.5 years, 21 flight lightweighted, cryogenic beryllium mirrors were developed
- The original technology effort benefitted from a collaboration between NASA and other government agencies
- The development effort was led by Ball Aerospace with collaboration and input by NGAS, NASA and Academia
- The mirrors meet their top level specifications
- We overcame many technical challenges through aggressive risk management
- Our focus now is on finishing the rest of the telescope and performing system level testing