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ABSTRACT 
This paper considers the problem of an attacker disrupting an en-
crypted victim wireless ad hoc network through jamming. Jamming 
is broken down into layers and this paper focuses on jamming at the 
Transport/Network layer. Jamming at this layer exploits AODV and 
TCP protocols and is shown to be very effective in simulated and 
real networks when it can sense victim packet types, but the encryp-
tion is assumed to mask the entire header and contents of the packet 
so that only packet size, timing, and sequence is available to the 
attacker for sensing. A sensor is developed and tested on live data. 
The classification is found to be highly reliable for many packet 
types. The relative roles of size, timing, and sequence are discussed 
along with the implications for making networks more secure.  

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design – Network communications, wireless communica-
tion.  

General Terms: Algorithms, Design, Experimentation, Secu-
rity 

Keywords 
Ad hoc networks, encryption, jamming, sensing, traffic analysis. 

1. INTRODUCTION 
Ad hoc networks are envisioned as playing a significant role in 
mission critical communication for the military, utilities, and indus-
try. An adversary may attempt to attack a victim ad hoc network to 
prevent some or all victim communication.  Such denial-of-service 
(DoS) attacks have been considered in ad hoc wireless networks at 
several levels. A number of researchers have considered DoS where 
the attackers are internal participants in the victim ad hoc network 
(see e.g. [9]). Ad hoc networks require the cooperation of peer 
nodes for their operation and are especially susceptible to such peer-

based attacks. In this paper we consider encrypted victim networks 
in which the entire packet including headers and payload are en-
crypted and thus the attacker can not directly manipulate any of the 
victim communication. In this case, the attacker must resort to ex-
ternal physical-layer-based DoS, also known as jamming.  
Jamming can be as simple as sending out a strong noise signal in 
order to prevent packets in the victim network from being received. 
This method of jamming is not the subject of this paper. This paper 
attempts to exploit the protocols at various layers to get three advan-
tages: jamming gain; targeted jamming; and reduced probability of 
detection. Jamming gain is the increase in efficiency from exploiting 
features of the victim network relative to continuous jamming. More 
precisely, it is the amount of energy (or power as appropriate) used 
to achieve a desired effect relative to the amount of energy used to 
achieve the same effect with continuous jamming. This gain trans-
lates directly into reduced energy requirements for the attacker. At 
the link level, corrupting a single bit in a packet will cause the 
packet to fail its checksum and be discarded.  For a 10,000 bit 
packet (1250 bytes) it implies that jamming gains as high as 40dB 
are possible. Further, typical wireless packet networks are lightly 
loaded so that jamming only when packets are present has further 
jamming gains. These examples make clear that there are significant 
jamming gains possible. This concept is more fully explored later in 
the paper.  
Targeted jamming refers to jamming only specific victim nodes, 
links, or flows. The attacker may be interested in only certain parts 
of the victim network, and attacking only these parts can lead to 
further jamming gains.  
With reduced probability of detection, the victim network may not 
realize that jamming countermeasures are necessary. Targeting 
some TCP-DATA packets will cause the TCP window to collapse and 
poor connection performance that a user might attribute to network 
congestion or a low quality wireless connection. Further, if ICMP 
packets are not blocked the victim users will have contradictory 
views of the network state. If jamming is discovered, lower prob-
ability of detection jamming will be harder to detect, localize, and 
suppress.  
Jamming is not a transmit-only activity. It requires an ability to 
detect and identify victim network activity, which we denote as 
sensing. At the physical layer a sensor needs to identify the presence 
of packets. Since the network is encrypted, only the start time and 
size of the packet can be measured. At higher layers a sensor needs 
to classify packets using protocol information. In 802.11 for in-
stance, whether a packet is successfully jammed or not can be seen 
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by whether or not a node sends a short packet (i.e. the ACK) within 
10μsec.   

The key insight in this paper is that encryption only provides bit 
level protection of the data. This protection is in the form of bit level 
operations to remove any exploitable data structure. A packet net-
work running protocols at multiple layers reimposes structure on the 
data. Any transmission follows specific patterns of DNS lookup, 
TCP connection set up, IP ARP, AODV route requests, and 802.11 
atomic data exchanges. While these do not necessarily expose the 
bit-level data, they provide multiple avenues for DoS attack. 

1.1 A Layered Model for Jamming 
Together jamming and sensing can be broken down into a layered 
model similar to the OSI stack. We break it down into three levels 
for convenience as shown in Figure 1. The Link/Physical layer di-
rectly interacts with the media. If a higher layer requests a packet to 
be jammed, then this lower layer generates the physical signal and 
ensures that a packet and each of its link layer retries are jammed. 
This layer also provides the basic sensing capability of packet dura-
tion and timing. If sophisticated enough it could shield the upper 
layer from Link, MAC, and Physical layer control packets such as 
RTS/CTS and only report the higher OSI layer packets to the higher 
layer sensing and jamming. 
The Transport/Network Layer interacts with the corresponding Ad 
Hoc, IP, TCP, and UDP protocols. This layer senses packet types 
and traffic flows which can then be targeted by jamming.  
The Application layer senses HTTP sessions, VoIP set up and the 
like and targets specific user activities for jamming. It also sets 
higher level policies that define when jamming should take place 
and what targets in the victim network should be jammed. Example 
polices might be purely to sense the kind of network activity, to jam 
as surreptitiously as possible, or to prevent communications at any 
costs. 
Each of these layers contributes to the overall performance of the 
system so that each layer can provide its own contribution to jam-
ming gain, targeted jamming, and low probability of detection.  
This paper discusses exclusively the role of jamming at the Trans-
port/Network layer. The Link/Physical layer provides a sensing and 
jamming service. The jamming service is defined as jamming for a 

specified period, jamming a specified number of packets, or to start 
jamming continuously until a stop jamming request is made. This 
protocol is described in more detail in Section 3. The sensing pro-
vides a report on each packet observed at the link layer. This report 
could conceivably include the following information: 
Size: The physical layer could measure the transmission start and 
stop times or use other signal processing techniques to estimate the 
packet size in bytes.   
Timing: Similarly the packet start time can be estimated. 
Source Token: While the actual address of the transmitter source 
may not be known. Analysis of the transmitter signal (signal 
strength, angle of arrival, etc.) could distinguish different transmit-
ters so that each transmitter could be assigned a unique token. 
Destination Token: As noted before, receiver ACKs can be identi-
fied in many protocols by the unique timing. Similarly by analysis 
of which node ACKs a transmission, the destination might also be 
identified. 
Unicast vs. Broadcast: In many MAC and Link protocols, broadcast 
packets are not acknowledged while unicast packets are acknowl-
edged. This could be used to identify whether a packet is unicast or 
broadcast.   
While all of these are possible, only the first two Size and Timing 
are assumed available in this paper since these make the fewest 
assumptions about the underlying network.  
The Transport/Network in turn provides jamming and sensing ser-
vices to the higher layers. The jamming service can be as simple as 
to attack a target node at the greatest jamming gain possible while 
avoiding detection. The sensing service is to report on each packet 
seen adding to the Link/Physical layer attributes a broad packet 
classification into Data or Control and a narrow classification into 
specific Data (TCP or UDP) and Control (TCP-ACK, TCP-SYN, etc.) 
types. 
It should be emphasized that this layered model applies to the par-
ticular type of external DoS attack that is the subject of this paper. 
As in the OSI model, the choice of layers is not absolute and differ-
ent architectures might have greater or fewer layers.  This layering 
provides the usual benefits of decomposing the problem into man-
ageable modules that define layers in terms of services between 
layers and also by allowing a layer to be combined interchangeably 
with different layers. The modularity is in the sense that a single 
Transport/Network layer might be reused with many different 
Link/Physical layers to attack networks build on protocols such as 
802.11a or 802.16. 

1.2 Sensing & Jamming in Ad Hoc Networks 
In network protocols, certain critical packets are necessary for op-
eration. Jamming TCP-SYN, or TCP-SYN-ACK packets will prevent a 
TCP connection from being established. Jamming ARP-REQUEST or 
ARP-RESPONSE packets will prevent IP from associating IP and MAC 
addresses. Jamming a few protocol control packets can prevent or 
delay connections; preventing the connection when the goal is to 
shut the connection down and delaying the connection when the 
goal is to inhibit communication without being detected.  
As suggested from the above, knowing which packet to jam is the 
key to getting significant jamming gains. A sensor needs to identify 
the key control packets from different protocols. Sensing can be 
online or offline. In online sensing packets are identified as they are 
received. This can be difficult since in some cases a packet is identi-
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Figure 1: The sensing and jamming layered model 



fied within a protocol sequence that has not yet completed. Offline 
sensing is allowed to classify packets received in the past based on 
packets received both before and after the packet in question. Off-
line sensing is not directly useful for jamming. However, it can 
provide data that allows the attacker to better characterize the victim 
network and improve its online sensing. These jamming and sensing 
ideas are explored more in a later section.  
Ad hoc networks add another protocol that can be attacked. Jam-
ming AODV-RREQ or AODV-RREP packets will prevent ad hoc routes 
from ever being established. Ad hoc network protocols add addi-
tional packet types that can be detected. They also invoke mecha-
nisms such as route request floods which can be exploited to glean 
network topology information. Jamming AODV-RREP packets can 
trigger additional packet floods that can cause network congestion.  
By the time a sensor classifies a packet it is too late to be jammed. 
Any jamming signal in response to online sensor classification 
would arrive after the packet is received by its intended receiver. 
This leads to the more significant role played by ad hoc networks. In 
a multi-hop path, a packet is transmitted and retransmitted several 
times. This provides an opportunity for a packet to be identified on 
one hop and jammed on the second hop. The attacker can either wait 
for the relayed packet or jam a sufficiently long time to account for 
variations in the forwarding times. This idea is shown in Figure 2. 
Ad hoc networking could also support a network of attackers shar-
ing sensing information and jamming attacks. In this paper only a 
single attacker is considered. 

1.3 The Role of Encryption 
MAC protocols can have various levels of encryption. HTTPS, 
SSH, or IPSec can encrypt packet payloads at layer 3 or higher but 
do not encrypt MAC and Ad Hoc network information. 802.11 
Wired Equivalent Privacy (WEP) and WiFi Protected Access 
(WPA) both are designed to protect the contents of the packet but 
not the control information in the MAC header [18]. Some imple-
mentations go further and also encrypt the entire MAC header [11]. 
In this paper, we assume that the entire packet is encrypted and only 
size and packet timing information can be measured. The main dif-
ference then is that encryption may change the packet size by an 
unknown amount. Some encryption schemes add a fixed offset in 
the packet size that, as we will see, does not impose serious difficul-
ties on the sensing. Another type of encryption is exemplified by the 
802.11i WPA2 protocol. This protocol uses a block encryption so 
that all packet sizes are rounded up to the nearest multiple of 
128bits. This tends to reduce the fidelity of the sensing since similar 

size packets get clumped to the same size. It is assumed that none of 
these schemes has any significant effect on the timing of packets.  
In the simulated and emulated experiments in this paper, no actual 
encryption takes place. The encryption is modeled as an offset to the 
size according to one of the above models and the packet size and 
timing information are passed to the Transport/Network layer sen-
sor. The sensor is assumed not to know the encryption scheme and 
must adaptively estimate its effect. 

1.4 The Role of Spread Spectrum 
Most wireless data protocols today use a form of spread spectrum to 
provide immunity from noise and interference. When signals are 
widely spread, detecting the start and end of packets is difficult and 
the signals have significant jamming immunity. Protocols such as 
802.11b use relatively narrow spreading. The spreading factor for 
1Mbps 802.11 is only a factor of 11 (about 10dB). Other versions 
and rates in 802.11 spread signals by equal or smaller factors. The 
start and stop of an 802.11 packet is easily discernable using a spec-
trum analyzer (which detects only the signal power). Further, exist-
ing and proposed encryption schemes for 802.11 and other commer-
cial technologies encrypt the message and possibly the header bits 
but do not extend to encryption of the spreading process. Thus, the 
physical layer of the attacker can still despread the signal for the 
purposes of sensing the start and end of the packet. Many encryp-
tion protocols specifically leave PHY headers unencrypted to help 
stations manage media contention. These can explicitly declare the 
packet sizes and other useful information. In this context it is rea-
sonable to assume that there exist some physical layer mechanism 
for determining the size and timing of packets.  
Spread spectrum provides a jamming immunity that is proportional 
to the spreading factor.  This factor indicates how much more en-
ergy is needed to disrupt a message compared to a message that is 
not spread. A spreading factor of 10dB is small relative to the poten-
tial jamming gains of 40dB or more. Regardless of the spreading 
factor a jamming gain provided by intelligent jamming can only 
help the attacker. These kinds of issues are the subject of the tradi-
tional jamming literature. We focus here on how we can maximize 
jamming gains through a multilayer approach.  

1.5 Prior Work 
Some attention has been given to attacks on the physical layer [17] 
of wireless networks. While much more consideration has been 
placed on attacks against the protocols that control these networks 
[3][8][9][10]. In [17], Stahlberg describes techniques to jam 802.11 
networks by attacking the physical layer characteristics. Stahlberg 
describes jamming efficiency that can be attained by focusing jam 
efforts at specific transmission timeframes. He does not describe 
any intelligent methods of jamming a specific protocol nor does he 
mention any method of determining how jam periods are specified.  
Negi and Perrig propose that an intelligent jammer could exploit 
MAC layer semantics to carry out jamming of specific MAC packet 
types [14] which they argue would cause a cascading effect due to 
the use of random back-off algorithms. Other papers propose attacks 
against the MAC and transport layers from the perspective of either 
a network participant [3][9][10] or as a node that creates pockets of 
congestion [8].   
It should be noted that besides aiding jamming, sensing has other 
uses. Cryptanalysis attacks on encrypted data benefit from knowing 
the plaintext bits [4]. For known protocols, if packets can be identi-
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Figure 2: Exploiting multi-hop ad hoc routing. Ad hoc 
node A is communicating with C through B. The Sen-
sor/Jammer identifies the target packet on the first hop 
and jams it on the second hop.  



fied then this allows bits such as the protocol value, version number, 
and length fields to be inferred. In some attack applications, the goal 
is to identify user activity. For instance, websites can be identified 
by the pattern of packets exchanged [5][19]. Traffic analysis can be 
used to attack user privacy [7][16]. Application protocols can be 
identified [22][23]. The sensing described in this paper can provide 
more detailed pattern information that can refine such pattern and 
traffic analysis. 

1.6 Paper Overview 
Within the framework defined so far this paper provides seven con-
tributions. First it demonstrates the potential Transport/Network 
layer jamming gains within a simulated environment. Second a 
simulated jamming protocol is developed that allows testing on an 
ad hoc network of lap top computers. Third the potential jamming 
gains are demonstrated on a live network using the simulated jam-
ming protocol. Fourth a sensor is developed that uses packet size, 
timing, and sequence. It uses off-line sensing to adapt an online 
sensor to the current network conditions and a probabilistic model 
of the sizes and inter-packet timing of different packet types. A 
historical method for detecting known protocol sequences is used to 
develop the probabilistic models. The fifth is an active jamming 
mechanism to force the victim network to produce known sequences 
for the historical analyzer. The sixth is the online classifier that 
makes packet type classification decisions. The method is tested on 

live data and found that for many packet types the classification is 
highly reliable. Finally the relative roles of size, timing, and se-
quence are discussed along with the implications for making net-
works more secure. 

2. POTENTIAL JAMMING GAINS 
To see the potential for jamming we designed a simple modification 
to the network simulator, ns2, that enabled us to run jamming “reci-
pes” that would jam specific packets. A typical recipe is shown in 
Figure 3. The goal is to slow the connection without causing the 
connection to fail. The TCP sender (left) has an established connec-
tion with the receiver (right). At time 305 sec, a 10 sec Jam signal 
causes the TCP window size to shrink to 1. Due to the TCP expo-
nential back-off, the first TCP packet is seen 10 seconds after the 
noise signal. TCP forces an AODV route lookup. The attacker then 
jams 6 of the 7 RREP retries to obtain a 4 sec timing delay. Jam-
ming the seventh would cause AODV to give up and alert the user, 
so the seventh is let through. The following TCP Ack is jammed to 
force the RTO to back-off further. This eventually triggers another 
AODV route lookup, and so on.   

To put a number to the jamming gain, we use the following model. 
We assume that the cost of jamming a single packet is equivalent to 
10msec of jamming. At the MAC layer a packet and any retries may 
need jammed and the 10msec represents the total of this effort. In 
reality the Link/Physical layer attacker may be more or less efficient 
than this, but this is a function of the Link/Physical layer jamming 
gain and outside the scope of this paper.  
Applying this to simulated jamming attack, one cycle of AODV and 
TCP jamming consists of 7 jammed packets over 20 seconds. Each 
cycle admits one TCP-DATA packet, but, since it is never acknowl-
edged the transfer never progresses. At 10msec per packet jammed, 
this implies that 70msec of jamming is equivalent to 20 seconds of 
continuous jamming. The net result is a sustainable jamming gain of 
20sec/70msec = 286. This jamming gain is produced by a combina-
tion of jamming between multiple protocols. The simulator is just 
one implementation of these protocols and so we developed a test 
bed for simulating jamming recipes against protocols implemented 
in real networks.  

3. TEST BED 
A test bed was constructed for testing the sensing and jamming. It 
consisted of Linux laptops [12] running the AODV-UU [15][20] 
protocol. The APE Mackill [2][21] allowed specific topologies to be 
set up on the desktop. The sensing and jamming was focused  on the 
Transport/Network layer of this paper. For sensing the 802.11b the 
attacker used an Atheros 802.11 card in monitor mode. This passed 
all packets to the sensor with only the 14 byte Ethernet header. The 
Jamming used the so-called Simulated Jamming Protocol (SJP). 
Every victim node in the SJP filters all packets according to a signal 
sent by the attacker. The filter was written using the Click Modular 
Router [6]. When running at the kernel level, the Click software 
assumes the operating system’s role of packet receiver. When a 
packet enters through the wireless interface, it is given exclusively 
to the router software. The software then decides to either give it to 
the OS or to perform some act upon it. The architecture is shown in 
Figure 4. The Attacker sends jamming signal packets to a Jam Re-
ceiver module in the victim node. The packets are one of the follow-
ing four instructions: Jam for a specified period of time; jam a speci-
fied number of packets; jam all packets indefinitely; or stop jam-
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Figure 3: Simulated jamming attack on AODV/TCP 



ming. These instructions define jam periods. When a packet arrives 
over the wireless interface, the jam receiver either discards the 
packet or forwards it to the kernel depending on whether it is in a 
jam period or not. The attacker sends its instructions over a separate 
wired interface to avoid any contention on the wireless interface.  
The attacker can address the jamming to individual nodes or broad-
cast to all nodes. 
We note that the emulation is not completely realistic. It does not 
model the interaction between jamming and the wireless transmit-
ter’s carrier sensing and MAC layer RTS/CTS/ACK packets. The 
SJP is designed to work above any MAC protocol and could be 
customized to interact with a specific MAC protocol to be more 
realistic.   
The test bed used three configurations:  
C1: One Hop – Local Server: A client node runs a web browser 
application. A server node runs the Apache server [1]. The 802.11 
interfaces are in ad hoc mode A third node running Ethereal cap-
tures the packets received/sent by the target nodes.  
C2: One Hop – External Server: The second is identical to the first, 
except that the server node is connected to the Internet. 
C3: Multihop – Local Server: The third is identical to the first ex-
cept an intermediate relay node is introduced between the client and 
server with APE used to force the two hop path.  
In each case, a filter is placed in the client node to discard packets 

under specific conditions. The SJP allows external jamming to be 
simulated. Alternatively, the filter may implement a jamming “rec-
ipe” that filters out specific packets in the client-server exchange. 
This emulates an ideal attacker that can sense packets and jam them 
immediately and is used to demonstrate the potential of jamming.  

4. TEST BED JAMMING GAINS 
This section provides some insights into the potential jamming gains 
that are possible. We look at two broad goals. The first is to prevent 
communication. The second is to hinder communication as much as 
possible without triggering an actual connection failure that would 
alert the user.  
The first experiment shows what is possible when a TCP startup 
sequence is attacked. Configuration C1 was used. An HTTP con-
nection was established between them to create a valid ARP table 
entry. The connection was terminated and then the client was 
jammed. Normally a series of UDP packets (DNS Lookup) followed 
by TCP-SYN, TCP-SYN-ACK, TCP-ACK are exchanged in the initial 3-
way handshake. In this first experiment jamming prevents the client 
from receiving the TCP-SYN. It retries three times with the result that 
it aborts the connection setup. Further the victim assumes something 
is wrong with the ARP table and it starts broadcasting ARP re-
quests. The resulting times are shown in Table 1. The timing in this 
sequence is remarkably precise and was similarly precise across 
multiple runs which suggest that packet transmissions are predict-
able. As verification, the same experiment was replicated in Win-
dows XP [13] with similar results except the time period between 
the 3rd and 4th TCP-SYN was 24 seconds. The predictable sequence 
timing suggests that precision jamming is possible. Using the model 
of 10msec of jamming per packet jammed, jamming the first TCP-
SYN yields a 3 sec delay. The jamming gain is 3sec/10msecs = 300. 
Similarly jamming the first and second yields a 9 sec delay and the 
jamming gain is 9sec/20msec = 450. Eventually TCP gives up and 
the jamming would need to jam one ARP-REQ per second (jamming 
gain is 100) to continue blocking the connection. Though not shown 
here, the timers on the TCP-SYN-ACK have similar backoff steps and 
yield similar delays. So, a more aggressive attack would jam the 
TCP-SYNs followed by the TCP-SYN-ACKs to yield a connection setup 
delay approaching one minute. This scenario shows that large jam-
ming gains over 100 are easily obtained with Transport/Network 
layer jamming. 
The next experiment examines a similar scenario using AODV-UU 
for the routing in configuration C3. The attacker first jams five route 
request packets and then lets the sixth through to establish the route. 
Jamming the sixth would cause the connection to fail and notify the 
user. Next the TCP-SYN packets are jammed. The results are shown 
in Table 2. As can be seen, AODV-UU aggressively sends route 
request packets over the first 0.8 second. This time does not add to 
the delay to the subsequent TCP-SYNs which appear 3, 9, and 21 
seconds after the start the same as in Table 1. Thus, the additional 
effort to jam the AODV-RREQ does not provide additional jamming 
gain.  

To see the effect of this type of jamming on a typical transfer Figure 
5 shows the time to download a 145kB image via HTTP as a func-
tion of the number of packets jammed. With no jamming, the trans-
fer completes in 0.6 sec. Jamming 6 TCP-SYN-ACK  packets extends 
this to 22.8 sec. Jamming a seventh packet causes the transfer to fail. 
More TCP-SYN-ACK packets must be jammed compared to TCP-SYN 
packets since each TCP-SYN triggers multiple TCP-SYN-ACK packet 
responses. If instead we target AODV-RREP packets, jamming 11 
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Table 1: Test bed TCP-SYN jamming gain 

Packet 
Jammed 

Total time 
(μsec) 

Δt  
(μsec) 

Cumulative 
Jam Gain 

TCP-SYN 0 0 300 

TCP-SYN 2991910 2991910 450 

TCP-SYN 8991910 6000000 700 

TCP-SYN 20991910 12000000 650 

ARP-REQ 25991900 4999990 540 

ARP-REQ 26991900 1000000 467 

ARP-REQ 27991900 1000000 414 

ARP-REQ 28991900 1000000 375 

ARP-REQ 29991900 1000000 - 



packets leads to a 7.2 sec transfer time and a 12th  causes the transfer 
to fail. More AODV-RREP packets than AODV-RREQ packets are re-
quired to be jammed to cause the connection to fail because the 
AODV-UU hello packets appear as AODV-RREP packets and are in 
addition to the ordinary AODV-RREP packets. 

Jamming during an ongoing connection can be effective also. If 
only TCP-ACKS are targeted, it was found that jamming all ACKs 
during a 20msec period in each second is sufficient to cause a large 
file transfer to slow by a factor of 5. This type of jamming is suffi-
cient to keep the TCP congestion window small and transfers ineffi-
cient. Further, it can be extended to arbitrarily long transfers and is 
able to hinder communication without ever causing a connection 
failure. Deliberately causing a connection failure is more difficult in 
an ongoing connection. As described in Section 6, persistent jam-
ming of all packets may or may not be able to cause a connection to 
fail depending on the end application and its implementation.  

These results and the simulation in Section 2 show that if the goal is 
to hinder communication, the attacker should directly jam TCP 
startups when possible or use a combination of AODV and TCP for 

an ongoing connection.  If instead, the goal is to prevent a commu-
nication, jamming AODV-RREQ or AODV-RREP is sufficient for the 
connection to fail.   

5.  SENSING 
The simulation and experimental results show that jamming has the 
potential for large gains, if the packet types are identified. This sec-
tion describes the approach to sensing packet types. There are two 
approaches to classifying packets into types. The first classifies 
packets as they arrive (so-called online classification). The second is 
allowed to collect more observations before making the decision on 
packet type (so-called offline classification). Online classification is 
the preferred approach, but as will be shown in the following sub-
sections, both online and offline classification have a role.  

5.1 The Role of Size, Timing, and Sequence 
The Link/Physical Layer reports on the timing and size of packets. 
These measurements do not necessarily need to be accurate, and the 
approach in this paper can deal with measurement variations, but for 
simplicity we will assume that they are reported without errors. We 
also assume that the lower layer reports all packets in the correct 
sequence. Though measured accurately, packet sizes vary across 
encryption as described in Section 1.3 and also because of protocol 
implementation variations, and variations in how the size might be 
reported at lower layers. Packet timing, and in particular, inter-
packet spacing varies for the above reasons plus variations caused 
by network congestion. Protocol sequence does not vary (an ACK 
can only occur after a DATA packet) but multiple overlapping data 
streams require deconfliction. Therefore, the identification of packet 
types is statistical.  

The sensor observes over time a sequence of packet sizes with 
known packet spacing. From this observation, O, it chooses the 
packet type T with the maximum a posteriori probability (MAP): 

{ })|'(maxarg
'

OTPT
T
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where P(T|O) is the probability of packet type T given observation 

Figure 5: Time to download 145kB figure vs. packets jammed.
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Table 2: Test bed AODV/TCP-SYN jamming gain 

Packet Jammed 
Total time 

(μsec) 
Δt  

(μsec) 
Cumulative 
Jam Gain 

AODV-RREQ 0 0 1

AODV-RREQ 1350 1350 16

AODV-RREQ 323240 321890 11

AODV-RREQ 324440 1200 20

AODV-RREQ 813240 488800 16

TCP-SYN 819140 5900 50

TCP-SYN 2993010 2173870 129

TCP-SYN 9000120 6007110 262

TCP-SYN 21002540 12002420 -

Table 3: Distribution of packet sizes (bytes) in an ad hoc 
network.  

Packet Type # of Packets Sizes utilized P(T) 

ARP-REQ 2 42 0.002 

ARP-RESP 2 42 0.002 

TCP-ACK 342 66 0.362 

TCP-DATA 529  (all >74) 0.560 

TCP-FIN 5 66 0.005 

TCP-SYN 3 74 0.003 

TCP-SYN-ACK 3 74 0.003 

TCP-KEEP-ALIVE 12 60 0.013 

AODV-RREQ 6 66 0.006 

AODV-RREP(unicst) 6 62 0.006 

AODV-RREP(brdcst) 35 62 0.037 

 



O.  Using Bayes rule:  

)(
)()|()|(

OP
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We note that P(O) is independent of T, so that the MAP decision 
simplifies to 

       { })'()'|(maxarg
'

TPTOPT
T

= . (1)

So, classification requires an a priori estimate of the probability of 
each packet type and an estimate of the probability of an observa-
tion given each packet type. These are described in the next section. 

5.2 Probabilistic Model of Size 
What if our only observation is the size, S, of the current packet? 
How useful is size to determining packet type? Table 3 categorizes 
945 packets captured between two laptops in configuration C1.  It 
consisted of downloading a simple website with pictures and scp 
transfers.   
Some sizes correspond to a unique type. Any packet over 74 bytes 
corresponds to TCP-DATA and 60 bytes corresponds to TCP-KEEP-
ALIVE. For sizes, S, which are used by only one packet type T, 
P(T|S) = 1. The exceptions are 42 bytes (ARP-REQ and ARP-RESP), 66 
bytes (TCP-ACK, TCP-FIN, and AODV-RREQ), 74 bytes (TCP-SYN-ACK 
and TCP-SYN), and 62 bytes (AODV-RREP(unicast), and AODV-
RREP(broadcast))1. In these cases P(T|S) < 1 and the most likely 
packet given S is chosen (e.g. TCP-ACK). Using MAP classification 
on this data would yield 98% accuracy. Of course 92% of the pack-
ets are the easy to identify TCP-DATA and TCP-ACK. Results in Sec-
tion 7 provide more detailed analysis. Table 4 lists aggregate packet 
size statistics from four packet captures of a WLAN network, a total 
of 1984 packets sent between a client and server over a wireless link 
in configuration C2. An ordinary WLAN was used because it al-
lowed different combinations of operating systems and servers. The 
size variations in the third column for TCP-ACK and of TCP-SYN-ACK 
are from different packet captures on different networks. Within a 
capture they were a consistent size. Further we expect the encryp-
tion algorithms to add a consistent modification to each of these 
packet sizes. With the incorrect packet size model, the MAP classi-
fier will not achieve high classification accuracy. The problem, then, 
is to develop a model for size that captures these variations initially 
and can adapt to the specific sizes present in the victim network. 
This model can be used in the MAP classifier. For this we use the 
Bayes equivalent MAP classifier in (1). The key to this approach is 
that P(S|T) is independent of the other packet types and so it allows 
independent estimation of the size distribution for each type. The 
coupling between types is given by the a priori type probability P(T) 
given in the last column of Table 4. The data in the third column can 
be the basis of the initial P(S|T). In order to capture the uncertainty 
the distribution is initially set to a broad distribution. Figure 6 shows 
an example for TCP-ACK.  
The next section describes a method for getting samples of packet 
sizes for different traffic types. These samples are used to modify 
the distribution as follows. For each sample (S,T), we set P(S|T) = 
P(S|T) + εT and then renormalize the distribution to have total prob-
                                                                 
1 In AODV-UU, broadcast AODV-RREP are used as HELLO packets. 

The careful observation of network activity in this research has 
revealed anomalous non-standard network behavior across 
many protocols. 

ability 1. The constant εT sets the rate that the distribution adapts 
with new samples. The subscript indicates it can be different for 
different packet types. Generally, εT is larger for packet types that 
are more rare to speed their adaptation. It should be noted that when 
most sizes correspond to a unique packet type as is the case in Table 
3 and would be true for any size transformation that is a simple 
additive offset, the distribution only needs to start to converge on 
the correct distribution for the MAP classifier to be correct. Thus, 
any reasonably accurate (S,T) samples will yield a high accuracy 
MAP classification. Some packet types, like TCP-DATA can be clas-
sified accurately with no training at all. Large packets are simply 
data. This long packet is data, short packet is control is the basis for 
bootstrapping identification of samples (S,T) as described in the next 
section. 

5.3 Historical Analyzer 
In order to derive samples of (S,T), we use the full size, timing, and 
sequence information over a historical packet window of W packets. 
Protocols introduce distinctive sequences, Q, such as data exchange 
(TCP-DATA, TCP-ACK) and TCP startup (TCP-SYN, TCP-SYN-ACK, TCP-
ACK). A large packet followed shortly by small packet is likely a 
characteristic TCP DATA and ACK exchange.2 An L packet sequence 
                                                                 
2 Recall that in our sensing model we can not distinguish different 

senders, so the sequence is large packet, small packet. If the 
senders can be distinguished then the sequence would be large 
packet from one device, small packet from a different device. 
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Figure 6: Initial size distribution of TCP-ACK packet. 

Table 4: Distribution of Packet Sizes (bytes) across four 
different WLAN networks.  

Packet Type # of Packets Sizes utilized P(T) 

ARP REQ 6 42(6) 0.003

ARP RESP 10 42(10) 0.005

TCP-ACK 714 54(113), 66(601) 0.360

TCP-DATA 1120 Various (95%>100) 0.565

TCP-FIN 39 66(39) 0.020

TCP-SYN 30 74(30) 0.015

TCP-SYN-ACK 31 58(4), 74(21), 78(6) 0.016

UDP-DATA 34 Various 0.017

 



is defined by a structure Q = (T1, τ2, T2,…, τL, TL) where Ti is the ith 
packet in the sequence and τi is the distribution of time between 
packet Ti-1 and Ti in the sequence. What is actually observed is O = 
(S1, t2, S2, …, tL, SL) where Si is the size of the ith packet and ti is the 
time gap between adjacent packets.  
The timing distributions are defined by a mean and standard devia-
tion, (μ, σ). Given τ, the probability of inter-packet interval t is 
defined by a Gaussian distribution: 

       
2

2
1

2
1)|( zetP −=
π

τ , 

where z = (t – τ)/σ is the normalized Gaussian variable. Thus we 
compute the probability of a sequence Q given observation O as3  

       ∏
=

=
L

i
iiiii KTPTSPtPOQP

1

)()|()|()|( τ  

where we define P(t1|τ1) = 1 and K = P(τi)/P(ti)P(Si). The value of K 
requires distributions across all target sequences, inter-packet times 
and packet sizes. For simplicity at this stage, we use K = 10. Longer 
sequences multiply more probabilities together and thus tend to be 
smaller. This choice compensates for this effect with minimal as-
sumptions about the network.  
Each packet Si, i = 1,…, W in the history window is a potential se-
quence starting point. The sequence Q that maximizes P(Q|O) is 
computed and Si is assigned type T1 from the sequence Q. The goal 
of the historical analyzer is to provide accurate samples (S,T) for 
adapting the packet size distributions. In many cases even the 
maximum probability sequence Q is still unlikely. Thus, a minimum 
threshold θ is defined and the classified packet is not used unless 
P(Q|O) > θ. 
The history analyzer focuses on the sequences in Table 5. These 
sequences we refer to as lower protocol sequences since they de-
pend on the communication transport and network layers. These can 
be composed into upper protocol sequences derived from applica-
tion activity.  For instance, an FTP session, consists of an AODV, 
ARP, DNS-lookup, and TCP-Startup sequence followed by multiple 
Data-Ack sequences. Recognizing these upper protocol sequences 
while potentially important would be in the attacker’s Application 
layer and so outside the scope of this paper.  

5.4 Online Classifier 
The online classifier differs from the history analyzer in that it must 
make a packet classification on each packet as it arrives in order to 
feed information to the jamming module in a timely manner. In this 
scenario, a sequence may or may not be helpful depending on where 
a packet type appears in a sequence. The TCP-Startup sequence is 
not useful for online classification of TCP-SYN packets. L = 1 is a 
valid sequence and equates to classifying a single packet by size. 
Each sequence with L > 1 implicitly defines initial subsequences by 
using less than L packets. Thus the online classifier uses whatever 
sequence or sequence fragments it can in order to classify the cur-
rent packet.  

                                                                                                           
For the purposes of this paper, we assume this extra fidelity is 
unavailable.  

3 This makes the independence assumption between the different 
sequence components.  

In this paper, we simplify the use of sequence by limiting the activ-
ity to one connection at a time. A large number of co-mingled con-
nections would produce sequences with other packets in between. In 
principle the search for sequence matches can be extended to skip 
over intermediate packets. Future work will investigate this more 
fully. Another alternative that was explored was to use jamming to 
“reset” the network and simplify the traffic seen by the attacker. 
This is one of several potential uses of jamming in sensing discussed 
in the next section.  

6. JAMMING FOR ACTIVE SENSING  
Jamming has been discussed solely as a mechanism for disrupting 
the victim network. Sensing has been discussed as a passive obser-
vation activity. But, jamming can play a role in sensing. We de-
scribe three roles: discerning different traffic types, resetting the 
network, forcing the victim to produce certain packet types.  
Different protocols react differently to lost packets. In this way, 
jamming provides one method for distinguishing protocols. TCP 
will back off if packets are lost, while UDP will continue to push 
out packets. Experiments were carried out that demonstrated this 
phenomenon. The protocols do react as expected to a burst of jam-
ming, TCP throughput temporarily dips when jammed while UDP 
does not react. This response was found to be more difficult to clas-
sify than passively sensing the Data-Ack sequence of TCP. This 
approach would be worth pursuing in special cases such as distin-
guishing UDP and TCP streams that consist of small data packets 
similar in size to the TCP-ACK.  
When an attacker turns on, the victim network may have many con-
nections in progress that impedes sensing. Further, the vulnerable 
connection setup phase has passed.  A second concept that was 
tested was to jam until connections fail so that the sensor has more 
distinct flows to work with and jamming could be targeted. To test 
this, we used configuration C1 and started a large HTTP download. 
The client was then jammed for increasing periods of time and then 
observed to see if the TCP connection continued or TCP had capitu-
lated. Through this testing it was determined that the Apache Web 
server would hang its connection after about 18 seconds of jam-
ming. After this failure, the user would likely retry the link starting a 
new connection setup that could be delayed arbitrarily through 
jamming.4 An 18 second burst of jamming in order to take control 
of the victim network may be a reasonable tradeoff.  
To confirm whether this was a general result or unique to Apache, 
we attempted the same experiment with configuration C2 accessing 
large data files from common public sites. In some cases the behav-
ior was similar to Apache, in others such as www.google.com, the 
TCP session persisted after more than 10 minutes of jamming. This 
is detrimental to getting good jamming gains, but useful for low 
probability of detection since it shows that long jamming periods 
may never result in a user notification.  

                                                                 
4 If this is performed only once at attacker power up it may not 

alert the victim to the attacker’s presence.  



Sensing requires examples of each packet type in order to adapt. 
Certain packet types such as ARP packets are rare. A third use of 
jamming in sensing is to force the victim network to produce rare 
packet types. A naïve approach would be to jam a network for the 5-
20minutes it takes for the ARP cache to timeout. A more practical 
approach is required that does not entail extensive jamming periods. 
As noted in Section 4 a failure to establish a TCP connection results 
in a series of ARP requests. This requires far less jamming to pro-
duce.  
The results in this session suggest that jamming may have a role in 
sensing. Further work is required to formalize what is possible.  

7. TEST BED SENSING 
To test the sensing we use configuration C2. The experiment is to 
show how the sensing performs classifying ARP, TCP, and UDP 
packets in three scenarios since these packets are part of the attack 
with the highest jamming gain. In each scenario, a monitor records 
each packet as it is received and reports the timing and a size that 
depends on the encryption model. The scenarios differ in the en-
cryption model: 
Scenario S1: the encryption model reports the actual packet size. 
Scenario S2: the encryption model reports the packet size with an 
offset of 10 bytes. 
Scenario S3: the encryption model reports the packet size padded to 
the next nearest multiple of 16 bytes.  
In each scenario two sensors are applied. The first sensor only uses 
size in estimating the packet and does not use timing or sequence 
nor does it use the historical analyzer to adapt the size distribution. 
The other sensor is the adaptive sensor defined in this paper. The 
adaptive sensor first observes 2000 packets to adapt the size distri-
butions using the historical analyzer and then proceeds to the online 
classification based on sequence and size. The results are shown in 
Figure 7 tabulated in a so called confusion matrix {c(T,T’)} that 
counts for each packet type, T, how often it was classified into 
packet type T’. An ideal classifier would have c(T,T’) = 0 except on 
the diagonal when T = T’. Packets on the highlighted diagonal are 
correctly classified. Since these were based on actual traffic cap-
tures, the number of packets in each confusion matrix is not the 
same. But, the performance is still comparable. In (a), using only 
size the classifier correctly classifies ARP-REQ, but the ARP-RESP are 
incorrectly classified also as ARP-REQ. Both of these packets are the 
same size and so there is no way to distinguish the two packet types 
based on size. A similar phenomenon occurs between TCP-FIN and 
TCP-ACK and between TCP-SYN and TCP-SYN-ACK. When an offset is 
introduced, as in (c), the size-only classifier makes many more mis-

takes. When the padding is introduced, as in (e), the classifier is 
unusable for jamming.  
The performance when the adaptive algorithm is applied is shown in 
Figrure 7b. Compared to (a), the classifier can distinguish correctly 
between ARP-REQ and ARP-RESP, and between TCP-SYN and TCP-SYN-
ACK. TCP-FIN is incorrectly classified, but, this is expected because 
no sequence for TCP-FIN was defined that can be used to adapt its 
distribution. In (d) the results are equally good. A simple offset does 
not change the ability to distinguish between different packet types. 
In (f) the padding clumps all the TCP control packets to the same 
size. The TCP-ACK packet has a much higher prior distribution com-
pared to other control packet so that sequence can not separate out 
the other control packets as it has been implemented here. Further 
work is investigating this issue.  

8. MAKING NETWORKS MORE SECURE 
The attacks in this paper are based on carefully exploiting protocol 
patterns and consistencies across size, timing and sequence. This 
suggests that to make networks more secure these consistencies 
should be removed wherever possible. For size, padding control 
packets so that they are all the same size will make it difficult to 
discern different packet types. Padding all packets including control 
so that they have the same minimum size (say 100 bytes) will fur-
ther remove size as useful metric. For wireless MAC protocols such 
as 802.11, every packet has substantial overhead so that small pack-
ets already consist mostly of this overhead. Additional padding will 
have minimum effect on throughputs.  
Timing in these protocols is overly precise. In TCP, the receiver 
does not use the three second back off time between the first and 
second TCP-SYN. Indeed, if the first one has been jammed it is not 
even expecting the second. Similarly, the precise timing between 
many packets in the sequence can be varied by significant factors so 
that it is difficult to precisely jam the packets. The timing of some 
packets such as TCP-ACKs is used by protocols for estimating aspects 
of the network.  But, it is conceivable that these protocols could be 
modified to allow for added delays. For instance, the header could 
indicate any additional delay that was added for security reasons so 
that this could be factored into RTT calculations. 
Sequence for the protocols is immutable. But, it also can be foiled. 
One approach is to aggregate multiple packets. This will affect both 
timing and size of packets as well as potentially hiding the precise 
number of packets that are exchanged. Another attack is what we 
refer to as the zebra defense in which a single connection is striped 
across multiple TCP connections so that the attacker has difficulty 
separating and attacking individual victim connections.  
Collectively, these approaches will make these networks more se-
cure against the types of jamming attacks described in this paper. It 
will be more difficult to discern and jam specific packet types. How-
ever, the protocol information is not fully removed and other work 
has shown that longer sequence patterns can be classified with only 
coarse estimates of size and timing [22][23]. Further work is neces-
sary to explore this exchange of measures and countermeasures.  

9. CONCLUSIONS 
Jamming and sensing are two related functions in physical-layer-
based denial of service attacks against an encrypted wireless ad hoc 
networks. These functions are complex and the layered approach 
developed in this paper showed how they could be broken down 
into a manageable design problem. This paper presented initial re-

Table 5: Types of sequence 

Sequence Name Packets in Sequence 

Data-Ack TCP-DATA, TCP-ACK 

ARP ARP-REQ, ARP-RESP 

TCP-Startup TCP-SYN, TCP-SYN-ACK, TCP-ACK 

AODV AODV-RREQ, AODV-RREP(unicast) 

DNS-Lookup UDP-DATA, UDP-DATA 



sults in designing such a layered attacker for the Transport/Network 
layer. Jamming can get significant jamming gains, well over 100, 
when it knows the packet type and timing. Interestingly most of 
these gains were produced by attacking packets above the ad hoc 
network layer. Protocols introduce highly predictable timing that 
can be exploited. The limited information of packet size, timing, and 
sequence is enough to accurately predict packet types. Using a com-
bination of offline historical analysis of sequence to provide training 
data for the online models, a packet classifier was developed that 
adapts to variations across networks and across different encryption 
models. The development in this paper suggests simple methods for 
making victim networks less vulnerable to these kinds of attacks. 
That said, wireless TCP/IP based networks are ubiquitous and a 
complete legacy backhaul is unlikely leaving a significant number 
of vulnerable networks.  
The research presented here is ongoing. Future work will fully con-
nect and test the jamming and sensing which were treated sepa-
rately. An initial software framework has been implemented and 
suggests that the attacker can sense and jam the same packet as in 
Figure 2. The statistical sensing tools continue to be refined. The 
roles of multiple attackers are also being explored. Scaling to large 
ad hoc networks and networked attackers is the long term goal. 
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Figure 7: Test bed results for sensing packets with a size only sensor or the adaptive sensor. The results on the shaded diagonal 
are the number of packets of the associated type classified correctly. The off-diagonal counts incorrectly classified packets with 
the column indicating the true packet type and the row the incorrect classification. 
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(c) 10 byte size offset, size-only sensor (d) 10 byte size offset, adaptive sensor 

(b) Actual packet size, adaptive sensor (a) Actual packet size, size-only sensor 


