
Jamming and Sensing of
Encrypted Wireless Ad Hoc Networks

Timothy X Brown Jesse E. James Amita Sethi
Interdisciplinary Telecommunication Program
Dept. of Electrical and Computer Engineering

University of Colorado, Boulder, CO 80309-0530

{timxb,jesse.james,amita.sethi}@colorado.edu

ABSTRACT
This paper considers the problem of an attacker disrupting an en-
crypted victim wireless ad hoc network through jamming. Jamming
is broken down into layers and this paper focuses on jamming at the
Transport/Network layer. Jamming at this layer exploits AODV and
TCP protocols and is shown to be very effective in simulated and
real networks when it can sense victim packet types, but the encryp-
tion is assumed to mask the entire header and contents of the packet
so that only packet size, timing, and sequence is available to the
attacker for sensing. A sensor is developed and tested on live data.
The classification is found to be highly reliable for many packet
types. The relative roles of size, timing, and sequence are discussed
along with the implications for making networks more secure.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design – Network communications, wireless communica-
tion.

General Terms: Algorithms, Design, Experimentation, Secu-
rity

Keywords
Ad hoc networks, encryption, jamming, sensing, traffic analysis.

1. INTRODUCTION
Ad hoc networks are envisioned as playing a significant role in
mission critical communication for the military, utilities, and indus-
try. An adversary may attempt to attack a victim ad hoc network to
prevent some or all victim communication. Such denial-of-service
(DoS) attacks have been considered in ad hoc wireless networks at
several levels. A number of researchers have considered DoS where
the attackers are internal participants in the victim ad hoc network
(see e.g. [9]). Ad hoc networks require the cooperation of peer
nodes for their operation and are especially susceptible to such peer-

based attacks. In this paper we consider encrypted victim networks
in which the entire packet including headers and payload are en-
crypted and thus the attacker can not directly manipulate any of the
victim communication. In this case, the attacker must resort to ex-
ternal physical-layer-based DoS, also known as jamming.
Jamming can be as simple as sending out a strong noise signal in
order to prevent packets in the victim network from being received.
This method of jamming is not the subject of this paper. This paper
attempts to exploit the protocols at various layers to get three advan-
tages: jamming gain; targeted jamming; and reduced probability of
detection. Jamming gain is the increase in efficiency from exploiting
features of the victim network relative to continuous jamming. More
precisely, it is the amount of energy (or power as appropriate) used
to achieve a desired effect relative to the amount of energy used to
achieve the same effect with continuous jamming. This gain trans-
lates directly into reduced energy requirements for the attacker. At
the link level, corrupting a single bit in a packet will cause the
packet to fail its checksum and be discarded. For a 10,000 bit
packet (1250 bytes) it implies that jamming gains as high as 40dB
are possible. Further, typical wireless packet networks are lightly
loaded so that jamming only when packets are present has further
jamming gains. These examples make clear that there are significant
jamming gains possible. This concept is more fully explored later in
the paper.
Targeted jamming refers to jamming only specific victim nodes,
links, or flows. The attacker may be interested in only certain parts
of the victim network, and attacking only these parts can lead to
further jamming gains.
With reduced probability of detection, the victim network may not
realize that jamming countermeasures are necessary. Targeting
some TCP-DATA packets will cause the TCP window to collapse and
poor connection performance that a user might attribute to network
congestion or a low quality wireless connection. Further, if ICMP
packets are not blocked the victim users will have contradictory
views of the network state. If jamming is discovered, lower prob-
ability of detection jamming will be harder to detect, localize, and
suppress.
Jamming is not a transmit-only activity. It requires an ability to
detect and identify victim network activity, which we denote as
sensing. At the physical layer a sensor needs to identify the presence
of packets. Since the network is encrypted, only the start time and
size of the packet can be measured. At higher layers a sensor needs
to classify packets using protocol information. In 802.11 for in-
stance, whether a packet is successfully jammed or not can be seen

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
MobiHoc'06, May 22–25, 2006, Florence, Italy.
Copyright 2006 ACM 1-59593-368-9/06/0005...$5.00.

by whether or not a node sends a short packet (i.e. the ACK) within
10μsec.

The key insight in this paper is that encryption only provides bit
level protection of the data. This protection is in the form of bit level
operations to remove any exploitable data structure. A packet net-
work running protocols at multiple layers reimposes structure on the
data. Any transmission follows specific patterns of DNS lookup,
TCP connection set up, IP ARP, AODV route requests, and 802.11
atomic data exchanges. While these do not necessarily expose the
bit-level data, they provide multiple avenues for DoS attack.

1.1 A Layered Model for Jamming
Together jamming and sensing can be broken down into a layered
model similar to the OSI stack. We break it down into three levels
for convenience as shown in Figure 1. The Link/Physical layer di-
rectly interacts with the media. If a higher layer requests a packet to
be jammed, then this lower layer generates the physical signal and
ensures that a packet and each of its link layer retries are jammed.
This layer also provides the basic sensing capability of packet dura-
tion and timing. If sophisticated enough it could shield the upper
layer from Link, MAC, and Physical layer control packets such as
RTS/CTS and only report the higher OSI layer packets to the higher
layer sensing and jamming.
The Transport/Network Layer interacts with the corresponding Ad
Hoc, IP, TCP, and UDP protocols. This layer senses packet types
and traffic flows which can then be targeted by jamming.
The Application layer senses HTTP sessions, VoIP set up and the
like and targets specific user activities for jamming. It also sets
higher level policies that define when jamming should take place
and what targets in the victim network should be jammed. Example
polices might be purely to sense the kind of network activity, to jam
as surreptitiously as possible, or to prevent communications at any
costs.
Each of these layers contributes to the overall performance of the
system so that each layer can provide its own contribution to jam-
ming gain, targeted jamming, and low probability of detection.
This paper discusses exclusively the role of jamming at the Trans-
port/Network layer. The Link/Physical layer provides a sensing and
jamming service. The jamming service is defined as jamming for a

specified period, jamming a specified number of packets, or to start
jamming continuously until a stop jamming request is made. This
protocol is described in more detail in Section 3. The sensing pro-
vides a report on each packet observed at the link layer. This report
could conceivably include the following information:
Size: The physical layer could measure the transmission start and
stop times or use other signal processing techniques to estimate the
packet size in bytes.
Timing: Similarly the packet start time can be estimated.
Source Token: While the actual address of the transmitter source
may not be known. Analysis of the transmitter signal (signal
strength, angle of arrival, etc.) could distinguish different transmit-
ters so that each transmitter could be assigned a unique token.
Destination Token: As noted before, receiver ACKs can be identi-
fied in many protocols by the unique timing. Similarly by analysis
of which node ACKs a transmission, the destination might also be
identified.
Unicast vs. Broadcast: In many MAC and Link protocols, broadcast
packets are not acknowledged while unicast packets are acknowl-
edged. This could be used to identify whether a packet is unicast or
broadcast.
While all of these are possible, only the first two Size and Timing
are assumed available in this paper since these make the fewest
assumptions about the underlying network.
The Transport/Network in turn provides jamming and sensing ser-
vices to the higher layers. The jamming service can be as simple as
to attack a target node at the greatest jamming gain possible while
avoiding detection. The sensing service is to report on each packet
seen adding to the Link/Physical layer attributes a broad packet
classification into Data or Control and a narrow classification into
specific Data (TCP or UDP) and Control (TCP-ACK, TCP-SYN, etc.)
types.
It should be emphasized that this layered model applies to the par-
ticular type of external DoS attack that is the subject of this paper.
As in the OSI model, the choice of layers is not absolute and differ-
ent architectures might have greater or fewer layers. This layering
provides the usual benefits of decomposing the problem into man-
ageable modules that define layers in terms of services between
layers and also by allowing a layer to be combined interchangeably
with different layers. The modularity is in the sense that a single
Transport/Network layer might be reused with many different
Link/Physical layers to attack networks build on protocols such as
802.11a or 802.16.

1.2 Sensing & Jamming in Ad Hoc Networks
In network protocols, certain critical packets are necessary for op-
eration. Jamming TCP-SYN, or TCP-SYN-ACK packets will prevent a
TCP connection from being established. Jamming ARP-REQUEST or
ARP-RESPONSE packets will prevent IP from associating IP and MAC
addresses. Jamming a few protocol control packets can prevent or
delay connections; preventing the connection when the goal is to
shut the connection down and delaying the connection when the
goal is to inhibit communication without being detected.
As suggested from the above, knowing which packet to jam is the
key to getting significant jamming gains. A sensor needs to identify
the key control packets from different protocols. Sensing can be
online or offline. In online sensing packets are identified as they are
received. This can be difficult since in some cases a packet is identi-

Application Sense Jam

Transport
Network Sense Jam

Link
Physical Sense Jam

Wireless Media

Figure 1: The sensing and jamming layered model

fied within a protocol sequence that has not yet completed. Offline
sensing is allowed to classify packets received in the past based on
packets received both before and after the packet in question. Off-
line sensing is not directly useful for jamming. However, it can
provide data that allows the attacker to better characterize the victim
network and improve its online sensing. These jamming and sensing
ideas are explored more in a later section.
Ad hoc networks add another protocol that can be attacked. Jam-
ming AODV-RREQ or AODV-RREP packets will prevent ad hoc routes
from ever being established. Ad hoc network protocols add addi-
tional packet types that can be detected. They also invoke mecha-
nisms such as route request floods which can be exploited to glean
network topology information. Jamming AODV-RREP packets can
trigger additional packet floods that can cause network congestion.
By the time a sensor classifies a packet it is too late to be jammed.
Any jamming signal in response to online sensor classification
would arrive after the packet is received by its intended receiver.
This leads to the more significant role played by ad hoc networks. In
a multi-hop path, a packet is transmitted and retransmitted several
times. This provides an opportunity for a packet to be identified on
one hop and jammed on the second hop. The attacker can either wait
for the relayed packet or jam a sufficiently long time to account for
variations in the forwarding times. This idea is shown in Figure 2.
Ad hoc networking could also support a network of attackers shar-
ing sensing information and jamming attacks. In this paper only a
single attacker is considered.

1.3 The Role of Encryption
MAC protocols can have various levels of encryption. HTTPS,
SSH, or IPSec can encrypt packet payloads at layer 3 or higher but
do not encrypt MAC and Ad Hoc network information. 802.11
Wired Equivalent Privacy (WEP) and WiFi Protected Access
(WPA) both are designed to protect the contents of the packet but
not the control information in the MAC header [18]. Some imple-
mentations go further and also encrypt the entire MAC header [11].
In this paper, we assume that the entire packet is encrypted and only
size and packet timing information can be measured. The main dif-
ference then is that encryption may change the packet size by an
unknown amount. Some encryption schemes add a fixed offset in
the packet size that, as we will see, does not impose serious difficul-
ties on the sensing. Another type of encryption is exemplified by the
802.11i WPA2 protocol. This protocol uses a block encryption so
that all packet sizes are rounded up to the nearest multiple of
128bits. This tends to reduce the fidelity of the sensing since similar

size packets get clumped to the same size. It is assumed that none of
these schemes has any significant effect on the timing of packets.
In the simulated and emulated experiments in this paper, no actual
encryption takes place. The encryption is modeled as an offset to the
size according to one of the above models and the packet size and
timing information are passed to the Transport/Network layer sen-
sor. The sensor is assumed not to know the encryption scheme and
must adaptively estimate its effect.

1.4 The Role of Spread Spectrum
Most wireless data protocols today use a form of spread spectrum to
provide immunity from noise and interference. When signals are
widely spread, detecting the start and end of packets is difficult and
the signals have significant jamming immunity. Protocols such as
802.11b use relatively narrow spreading. The spreading factor for
1Mbps 802.11 is only a factor of 11 (about 10dB). Other versions
and rates in 802.11 spread signals by equal or smaller factors. The
start and stop of an 802.11 packet is easily discernable using a spec-
trum analyzer (which detects only the signal power). Further, exist-
ing and proposed encryption schemes for 802.11 and other commer-
cial technologies encrypt the message and possibly the header bits
but do not extend to encryption of the spreading process. Thus, the
physical layer of the attacker can still despread the signal for the
purposes of sensing the start and end of the packet. Many encryp-
tion protocols specifically leave PHY headers unencrypted to help
stations manage media contention. These can explicitly declare the
packet sizes and other useful information. In this context it is rea-
sonable to assume that there exist some physical layer mechanism
for determining the size and timing of packets.
Spread spectrum provides a jamming immunity that is proportional
to the spreading factor. This factor indicates how much more en-
ergy is needed to disrupt a message compared to a message that is
not spread. A spreading factor of 10dB is small relative to the poten-
tial jamming gains of 40dB or more. Regardless of the spreading
factor a jamming gain provided by intelligent jamming can only
help the attacker. These kinds of issues are the subject of the tradi-
tional jamming literature. We focus here on how we can maximize
jamming gains through a multilayer approach.

1.5 Prior Work
Some attention has been given to attacks on the physical layer [17]
of wireless networks. While much more consideration has been
placed on attacks against the protocols that control these networks
[3][8][9][10]. In [17], Stahlberg describes techniques to jam 802.11
networks by attacking the physical layer characteristics. Stahlberg
describes jamming efficiency that can be attained by focusing jam
efforts at specific transmission timeframes. He does not describe
any intelligent methods of jamming a specific protocol nor does he
mention any method of determining how jam periods are specified.
Negi and Perrig propose that an intelligent jammer could exploit
MAC layer semantics to carry out jamming of specific MAC packet
types [14] which they argue would cause a cascading effect due to
the use of random back-off algorithms. Other papers propose attacks
against the MAC and transport layers from the perspective of either
a network participant [3][9][10] or as a node that creates pockets of
congestion [8].
It should be noted that besides aiding jamming, sensing has other
uses. Cryptanalysis attacks on encrypted data benefit from knowing
the plaintext bits [4]. For known protocols, if packets can be identi-

A B

C S/J

Figure 2: Exploiting multi-hop ad hoc routing. Ad hoc
node A is communicating with C through B. The Sen-
sor/Jammer identifies the target packet on the first hop
and jams it on the second hop.

fied then this allows bits such as the protocol value, version number,
and length fields to be inferred. In some attack applications, the goal
is to identify user activity. For instance, websites can be identified
by the pattern of packets exchanged [5][19]. Traffic analysis can be
used to attack user privacy [7][16]. Application protocols can be
identified [22][23]. The sensing described in this paper can provide
more detailed pattern information that can refine such pattern and
traffic analysis.

1.6 Paper Overview
Within the framework defined so far this paper provides seven con-
tributions. First it demonstrates the potential Transport/Network
layer jamming gains within a simulated environment. Second a
simulated jamming protocol is developed that allows testing on an
ad hoc network of lap top computers. Third the potential jamming
gains are demonstrated on a live network using the simulated jam-
ming protocol. Fourth a sensor is developed that uses packet size,
timing, and sequence. It uses off-line sensing to adapt an online
sensor to the current network conditions and a probabilistic model
of the sizes and inter-packet timing of different packet types. A
historical method for detecting known protocol sequences is used to
develop the probabilistic models. The fifth is an active jamming
mechanism to force the victim network to produce known sequences
for the historical analyzer. The sixth is the online classifier that
makes packet type classification decisions. The method is tested on

live data and found that for many packet types the classification is
highly reliable. Finally the relative roles of size, timing, and se-
quence are discussed along with the implications for making net-
works more secure.

2. POTENTIAL JAMMING GAINS
To see the potential for jamming we designed a simple modification
to the network simulator, ns2, that enabled us to run jamming “reci-
pes” that would jam specific packets. A typical recipe is shown in
Figure 3. The goal is to slow the connection without causing the
connection to fail. The TCP sender (left) has an established connec-
tion with the receiver (right). At time 305 sec, a 10 sec Jam signal
causes the TCP window size to shrink to 1. Due to the TCP expo-
nential back-off, the first TCP packet is seen 10 seconds after the
noise signal. TCP forces an AODV route lookup. The attacker then
jams 6 of the 7 RREP retries to obtain a 4 sec timing delay. Jam-
ming the seventh would cause AODV to give up and alert the user,
so the seventh is let through. The following TCP Ack is jammed to
force the RTO to back-off further. This eventually triggers another
AODV route lookup, and so on.

To put a number to the jamming gain, we use the following model.
We assume that the cost of jamming a single packet is equivalent to
10msec of jamming. At the MAC layer a packet and any retries may
need jammed and the 10msec represents the total of this effort. In
reality the Link/Physical layer attacker may be more or less efficient
than this, but this is a function of the Link/Physical layer jamming
gain and outside the scope of this paper.
Applying this to simulated jamming attack, one cycle of AODV and
TCP jamming consists of 7 jammed packets over 20 seconds. Each
cycle admits one TCP-DATA packet, but, since it is never acknowl-
edged the transfer never progresses. At 10msec per packet jammed,
this implies that 70msec of jamming is equivalent to 20 seconds of
continuous jamming. The net result is a sustainable jamming gain of
20sec/70msec = 286. This jamming gain is produced by a combina-
tion of jamming between multiple protocols. The simulator is just
one implementation of these protocols and so we developed a test
bed for simulating jamming recipes against protocols implemented
in real networks.

3. TEST BED
A test bed was constructed for testing the sensing and jamming. It
consisted of Linux laptops [12] running the AODV-UU [15][20]
protocol. The APE Mackill [2][21] allowed specific topologies to be
set up on the desktop. The sensing and jamming was focused on the
Transport/Network layer of this paper. For sensing the 802.11b the
attacker used an Atheros 802.11 card in monitor mode. This passed
all packets to the sensor with only the 14 byte Ethernet header. The
Jamming used the so-called Simulated Jamming Protocol (SJP).
Every victim node in the SJP filters all packets according to a signal
sent by the attacker. The filter was written using the Click Modular
Router [6]. When running at the kernel level, the Click software
assumes the operating system’s role of packet receiver. When a
packet enters through the wireless interface, it is given exclusively
to the router software. The software then decides to either give it to
the OS or to perform some act upon it. The architecture is shown in
Figure 4. The Attacker sends jamming signal packets to a Jam Re-
ceiver module in the victim node. The packets are one of the follow-
ing four instructions: Jam for a specified period of time; jam a speci-
fied number of packets; jam all packets indefinitely; or stop jam-

TCP 5800
TCP 5801

Ack 5800

RREQ 1

RREQ 2

RREQ 7
RREP 7

TCP 5801

RREQ 1

RREQ 7
RREP 7

TCP 5801

305.0

314.99
325.159

325.501

329.001

329.002
329.010

345.637

349.001

349.003
349.010

Noise / Jam

time

Figure 3: Simulated jamming attack on AODV/TCP

ming. These instructions define jam periods. When a packet arrives
over the wireless interface, the jam receiver either discards the
packet or forwards it to the kernel depending on whether it is in a
jam period or not. The attacker sends its instructions over a separate
wired interface to avoid any contention on the wireless interface.
The attacker can address the jamming to individual nodes or broad-
cast to all nodes.
We note that the emulation is not completely realistic. It does not
model the interaction between jamming and the wireless transmit-
ter’s carrier sensing and MAC layer RTS/CTS/ACK packets. The
SJP is designed to work above any MAC protocol and could be
customized to interact with a specific MAC protocol to be more
realistic.
The test bed used three configurations:
C1: One Hop – Local Server: A client node runs a web browser
application. A server node runs the Apache server [1]. The 802.11
interfaces are in ad hoc mode A third node running Ethereal cap-
tures the packets received/sent by the target nodes.
C2: One Hop – External Server: The second is identical to the first,
except that the server node is connected to the Internet.
C3: Multihop – Local Server: The third is identical to the first ex-
cept an intermediate relay node is introduced between the client and
server with APE used to force the two hop path.
In each case, a filter is placed in the client node to discard packets

under specific conditions. The SJP allows external jamming to be
simulated. Alternatively, the filter may implement a jamming “rec-
ipe” that filters out specific packets in the client-server exchange.
This emulates an ideal attacker that can sense packets and jam them
immediately and is used to demonstrate the potential of jamming.

4. TEST BED JAMMING GAINS
This section provides some insights into the potential jamming gains
that are possible. We look at two broad goals. The first is to prevent
communication. The second is to hinder communication as much as
possible without triggering an actual connection failure that would
alert the user.
The first experiment shows what is possible when a TCP startup
sequence is attacked. Configuration C1 was used. An HTTP con-
nection was established between them to create a valid ARP table
entry. The connection was terminated and then the client was
jammed. Normally a series of UDP packets (DNS Lookup) followed
by TCP-SYN, TCP-SYN-ACK, TCP-ACK are exchanged in the initial 3-
way handshake. In this first experiment jamming prevents the client
from receiving the TCP-SYN. It retries three times with the result that
it aborts the connection setup. Further the victim assumes something
is wrong with the ARP table and it starts broadcasting ARP re-
quests. The resulting times are shown in Table 1. The timing in this
sequence is remarkably precise and was similarly precise across
multiple runs which suggest that packet transmissions are predict-
able. As verification, the same experiment was replicated in Win-
dows XP [13] with similar results except the time period between
the 3rd and 4th TCP-SYN was 24 seconds. The predictable sequence
timing suggests that precision jamming is possible. Using the model
of 10msec of jamming per packet jammed, jamming the first TCP-
SYN yields a 3 sec delay. The jamming gain is 3sec/10msecs = 300.
Similarly jamming the first and second yields a 9 sec delay and the
jamming gain is 9sec/20msec = 450. Eventually TCP gives up and
the jamming would need to jam one ARP-REQ per second (jamming
gain is 100) to continue blocking the connection. Though not shown
here, the timers on the TCP-SYN-ACK have similar backoff steps and
yield similar delays. So, a more aggressive attack would jam the
TCP-SYNs followed by the TCP-SYN-ACKs to yield a connection setup
delay approaching one minute. This scenario shows that large jam-
ming gains over 100 are easily obtained with Transport/Network
layer jamming.
The next experiment examines a similar scenario using AODV-UU
for the routing in configuration C3. The attacker first jams five route
request packets and then lets the sixth through to establish the route.
Jamming the sixth would cause the connection to fail and notify the
user. Next the TCP-SYN packets are jammed. The results are shown
in Table 2. As can be seen, AODV-UU aggressively sends route
request packets over the first 0.8 second. This time does not add to
the delay to the subsequent TCP-SYNs which appear 3, 9, and 21
seconds after the start the same as in Table 1. Thus, the additional
effort to jam the AODV-RREQ does not provide additional jamming
gain.

To see the effect of this type of jamming on a typical transfer Figure
5 shows the time to download a 145kB image via HTTP as a func-
tion of the number of packets jammed. With no jamming, the trans-
fer completes in 0.6 sec. Jamming 6 TCP-SYN-ACK packets extends
this to 22.8 sec. Jamming a seventh packet causes the transfer to fail.
More TCP-SYN-ACK packets must be jammed compared to TCP-SYN
packets since each TCP-SYN triggers multiple TCP-SYN-ACK packet
responses. If instead we target AODV-RREP packets, jamming 11

Kernel

eth1
(wireless)

eth0
(wired)

Click Router

Jam
Receiver Discard

LAN
Card

Out0

Out1

In0

In1

Figure 4: Simulated Jamming Protocol

Table 1: Test bed TCP-SYN jamming gain

Packet
Jammed

Total time
(μsec)

Δt
(μsec)

Cumulative
Jam Gain

TCP-SYN 0 0 300

TCP-SYN 2991910 2991910 450

TCP-SYN 8991910 6000000 700

TCP-SYN 20991910 12000000 650

ARP-REQ 25991900 4999990 540

ARP-REQ 26991900 1000000 467

ARP-REQ 27991900 1000000 414

ARP-REQ 28991900 1000000 375

ARP-REQ 29991900 1000000 -

packets leads to a 7.2 sec transfer time and a 12th causes the transfer
to fail. More AODV-RREP packets than AODV-RREQ packets are re-
quired to be jammed to cause the connection to fail because the
AODV-UU hello packets appear as AODV-RREP packets and are in
addition to the ordinary AODV-RREP packets.

Jamming during an ongoing connection can be effective also. If
only TCP-ACKS are targeted, it was found that jamming all ACKs
during a 20msec period in each second is sufficient to cause a large
file transfer to slow by a factor of 5. This type of jamming is suffi-
cient to keep the TCP congestion window small and transfers ineffi-
cient. Further, it can be extended to arbitrarily long transfers and is
able to hinder communication without ever causing a connection
failure. Deliberately causing a connection failure is more difficult in
an ongoing connection. As described in Section 6, persistent jam-
ming of all packets may or may not be able to cause a connection to
fail depending on the end application and its implementation.

These results and the simulation in Section 2 show that if the goal is
to hinder communication, the attacker should directly jam TCP
startups when possible or use a combination of AODV and TCP for

an ongoing connection. If instead, the goal is to prevent a commu-
nication, jamming AODV-RREQ or AODV-RREP is sufficient for the
connection to fail.

5. SENSING
The simulation and experimental results show that jamming has the
potential for large gains, if the packet types are identified. This sec-
tion describes the approach to sensing packet types. There are two
approaches to classifying packets into types. The first classifies
packets as they arrive (so-called online classification). The second is
allowed to collect more observations before making the decision on
packet type (so-called offline classification). Online classification is
the preferred approach, but as will be shown in the following sub-
sections, both online and offline classification have a role.

5.1 The Role of Size, Timing, and Sequence
The Link/Physical Layer reports on the timing and size of packets.
These measurements do not necessarily need to be accurate, and the
approach in this paper can deal with measurement variations, but for
simplicity we will assume that they are reported without errors. We
also assume that the lower layer reports all packets in the correct
sequence. Though measured accurately, packet sizes vary across
encryption as described in Section 1.3 and also because of protocol
implementation variations, and variations in how the size might be
reported at lower layers. Packet timing, and in particular, inter-
packet spacing varies for the above reasons plus variations caused
by network congestion. Protocol sequence does not vary (an ACK
can only occur after a DATA packet) but multiple overlapping data
streams require deconfliction. Therefore, the identification of packet
types is statistical.

The sensor observes over time a sequence of packet sizes with
known packet spacing. From this observation, O, it chooses the
packet type T with the maximum a posteriori probability (MAP):

{ })|'(maxarg
'

OTPT
T

= ,

where P(T|O) is the probability of packet type T given observation

Figure 5: Time to download 145kB figure vs. packets jammed.

0

5

10

15

20

25

0 2 4 6 8 10 12
Number Jammed

D
ow

nl
oa

d
Ti

m
e

(s
ec

)

TCP-SYN-ACK

AODV-RREP

Table 2: Test bed AODV/TCP-SYN jamming gain

Packet Jammed
Total time

(μsec)
Δt

(μsec)
Cumulative
Jam Gain

AODV-RREQ 0 0 1

AODV-RREQ 1350 1350 16

AODV-RREQ 323240 321890 11

AODV-RREQ 324440 1200 20

AODV-RREQ 813240 488800 16

TCP-SYN 819140 5900 50

TCP-SYN 2993010 2173870 129

TCP-SYN 9000120 6007110 262

TCP-SYN 21002540 12002420 -

Table 3: Distribution of packet sizes (bytes) in an ad hoc
network.

Packet Type # of Packets Sizes utilized P(T)

ARP-REQ 2 42 0.002

ARP-RESP 2 42 0.002

TCP-ACK 342 66 0.362

TCP-DATA 529 (all >74) 0.560

TCP-FIN 5 66 0.005

TCP-SYN 3 74 0.003

TCP-SYN-ACK 3 74 0.003

TCP-KEEP-ALIVE 12 60 0.013

AODV-RREQ 6 66 0.006

AODV-RREP(unicst) 6 62 0.006

AODV-RREP(brdcst) 35 62 0.037

O. Using Bayes rule:

)(
)()|()|(

OP
TPTOPOTP = .

We note that P(O) is independent of T, so that the MAP decision
simplifies to

 { })'()'|(maxarg
'

TPTOPT
T

= . (1)

So, classification requires an a priori estimate of the probability of
each packet type and an estimate of the probability of an observa-
tion given each packet type. These are described in the next section.

5.2 Probabilistic Model of Size
What if our only observation is the size, S, of the current packet?
How useful is size to determining packet type? Table 3 categorizes
945 packets captured between two laptops in configuration C1. It
consisted of downloading a simple website with pictures and scp
transfers.
Some sizes correspond to a unique type. Any packet over 74 bytes
corresponds to TCP-DATA and 60 bytes corresponds to TCP-KEEP-
ALIVE. For sizes, S, which are used by only one packet type T,
P(T|S) = 1. The exceptions are 42 bytes (ARP-REQ and ARP-RESP), 66
bytes (TCP-ACK, TCP-FIN, and AODV-RREQ), 74 bytes (TCP-SYN-ACK
and TCP-SYN), and 62 bytes (AODV-RREP(unicast), and AODV-
RREP(broadcast))1. In these cases P(T|S) < 1 and the most likely
packet given S is chosen (e.g. TCP-ACK). Using MAP classification
on this data would yield 98% accuracy. Of course 92% of the pack-
ets are the easy to identify TCP-DATA and TCP-ACK. Results in Sec-
tion 7 provide more detailed analysis. Table 4 lists aggregate packet
size statistics from four packet captures of a WLAN network, a total
of 1984 packets sent between a client and server over a wireless link
in configuration C2. An ordinary WLAN was used because it al-
lowed different combinations of operating systems and servers. The
size variations in the third column for TCP-ACK and of TCP-SYN-ACK
are from different packet captures on different networks. Within a
capture they were a consistent size. Further we expect the encryp-
tion algorithms to add a consistent modification to each of these
packet sizes. With the incorrect packet size model, the MAP classi-
fier will not achieve high classification accuracy. The problem, then,
is to develop a model for size that captures these variations initially
and can adapt to the specific sizes present in the victim network.
This model can be used in the MAP classifier. For this we use the
Bayes equivalent MAP classifier in (1). The key to this approach is
that P(S|T) is independent of the other packet types and so it allows
independent estimation of the size distribution for each type. The
coupling between types is given by the a priori type probability P(T)
given in the last column of Table 4. The data in the third column can
be the basis of the initial P(S|T). In order to capture the uncertainty
the distribution is initially set to a broad distribution. Figure 6 shows
an example for TCP-ACK.
The next section describes a method for getting samples of packet
sizes for different traffic types. These samples are used to modify
the distribution as follows. For each sample (S,T), we set P(S|T) =
P(S|T) + εT and then renormalize the distribution to have total prob-

1 In AODV-UU, broadcast AODV-RREP are used as HELLO packets.

The careful observation of network activity in this research has
revealed anomalous non-standard network behavior across
many protocols.

ability 1. The constant εT sets the rate that the distribution adapts
with new samples. The subscript indicates it can be different for
different packet types. Generally, εT is larger for packet types that
are more rare to speed their adaptation. It should be noted that when
most sizes correspond to a unique packet type as is the case in Table
3 and would be true for any size transformation that is a simple
additive offset, the distribution only needs to start to converge on
the correct distribution for the MAP classifier to be correct. Thus,
any reasonably accurate (S,T) samples will yield a high accuracy
MAP classification. Some packet types, like TCP-DATA can be clas-
sified accurately with no training at all. Large packets are simply
data. This long packet is data, short packet is control is the basis for
bootstrapping identification of samples (S,T) as described in the next
section.

5.3 Historical Analyzer
In order to derive samples of (S,T), we use the full size, timing, and
sequence information over a historical packet window of W packets.
Protocols introduce distinctive sequences, Q, such as data exchange
(TCP-DATA, TCP-ACK) and TCP startup (TCP-SYN, TCP-SYN-ACK, TCP-
ACK). A large packet followed shortly by small packet is likely a
characteristic TCP DATA and ACK exchange.2 An L packet sequence

2 Recall that in our sensing model we can not distinguish different

senders, so the sequence is large packet, small packet. If the
senders can be distinguished then the sequence would be large
packet from one device, small packet from a different device.

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

Size Distribution

P
er

ce
nt

 t

Figure 6: Initial size distribution of TCP-ACK packet.

Table 4: Distribution of Packet Sizes (bytes) across four
different WLAN networks.

Packet Type # of Packets Sizes utilized P(T)

ARP REQ 6 42(6) 0.003

ARP RESP 10 42(10) 0.005

TCP-ACK 714 54(113), 66(601) 0.360

TCP-DATA 1120 Various (95%>100) 0.565

TCP-FIN 39 66(39) 0.020

TCP-SYN 30 74(30) 0.015

TCP-SYN-ACK 31 58(4), 74(21), 78(6) 0.016

UDP-DATA 34 Various 0.017

is defined by a structure Q = (T1, τ2, T2,…, τL, TL) where Ti is the ith
packet in the sequence and τi is the distribution of time between
packet Ti-1 and Ti in the sequence. What is actually observed is O =
(S1, t2, S2, …, tL, SL) where Si is the size of the ith packet and ti is the
time gap between adjacent packets.
The timing distributions are defined by a mean and standard devia-
tion, (μ, σ). Given τ, the probability of inter-packet interval t is
defined by a Gaussian distribution:

2

2
1

2
1)|(zetP −=
π

τ ,

where z = (t – τ)/σ is the normalized Gaussian variable. Thus we
compute the probability of a sequence Q given observation O as3

 ∏
=

=
L

i
iiiii KTPTSPtPOQP

1

)()|()|()|(τ

where we define P(t1|τ1) = 1 and K = P(τi)/P(ti)P(Si). The value of K
requires distributions across all target sequences, inter-packet times
and packet sizes. For simplicity at this stage, we use K = 10. Longer
sequences multiply more probabilities together and thus tend to be
smaller. This choice compensates for this effect with minimal as-
sumptions about the network.
Each packet Si, i = 1,…, W in the history window is a potential se-
quence starting point. The sequence Q that maximizes P(Q|O) is
computed and Si is assigned type T1 from the sequence Q. The goal
of the historical analyzer is to provide accurate samples (S,T) for
adapting the packet size distributions. In many cases even the
maximum probability sequence Q is still unlikely. Thus, a minimum
threshold θ is defined and the classified packet is not used unless
P(Q|O) > θ.
The history analyzer focuses on the sequences in Table 5. These
sequences we refer to as lower protocol sequences since they de-
pend on the communication transport and network layers. These can
be composed into upper protocol sequences derived from applica-
tion activity. For instance, an FTP session, consists of an AODV,
ARP, DNS-lookup, and TCP-Startup sequence followed by multiple
Data-Ack sequences. Recognizing these upper protocol sequences
while potentially important would be in the attacker’s Application
layer and so outside the scope of this paper.

5.4 Online Classifier
The online classifier differs from the history analyzer in that it must
make a packet classification on each packet as it arrives in order to
feed information to the jamming module in a timely manner. In this
scenario, a sequence may or may not be helpful depending on where
a packet type appears in a sequence. The TCP-Startup sequence is
not useful for online classification of TCP-SYN packets. L = 1 is a
valid sequence and equates to classifying a single packet by size.
Each sequence with L > 1 implicitly defines initial subsequences by
using less than L packets. Thus the online classifier uses whatever
sequence or sequence fragments it can in order to classify the cur-
rent packet.

For the purposes of this paper, we assume this extra fidelity is
unavailable.

3 This makes the independence assumption between the different
sequence components.

In this paper, we simplify the use of sequence by limiting the activ-
ity to one connection at a time. A large number of co-mingled con-
nections would produce sequences with other packets in between. In
principle the search for sequence matches can be extended to skip
over intermediate packets. Future work will investigate this more
fully. Another alternative that was explored was to use jamming to
“reset” the network and simplify the traffic seen by the attacker.
This is one of several potential uses of jamming in sensing discussed
in the next section.

6. JAMMING FOR ACTIVE SENSING
Jamming has been discussed solely as a mechanism for disrupting
the victim network. Sensing has been discussed as a passive obser-
vation activity. But, jamming can play a role in sensing. We de-
scribe three roles: discerning different traffic types, resetting the
network, forcing the victim to produce certain packet types.
Different protocols react differently to lost packets. In this way,
jamming provides one method for distinguishing protocols. TCP
will back off if packets are lost, while UDP will continue to push
out packets. Experiments were carried out that demonstrated this
phenomenon. The protocols do react as expected to a burst of jam-
ming, TCP throughput temporarily dips when jammed while UDP
does not react. This response was found to be more difficult to clas-
sify than passively sensing the Data-Ack sequence of TCP. This
approach would be worth pursuing in special cases such as distin-
guishing UDP and TCP streams that consist of small data packets
similar in size to the TCP-ACK.
When an attacker turns on, the victim network may have many con-
nections in progress that impedes sensing. Further, the vulnerable
connection setup phase has passed. A second concept that was
tested was to jam until connections fail so that the sensor has more
distinct flows to work with and jamming could be targeted. To test
this, we used configuration C1 and started a large HTTP download.
The client was then jammed for increasing periods of time and then
observed to see if the TCP connection continued or TCP had capitu-
lated. Through this testing it was determined that the Apache Web
server would hang its connection after about 18 seconds of jam-
ming. After this failure, the user would likely retry the link starting a
new connection setup that could be delayed arbitrarily through
jamming.4 An 18 second burst of jamming in order to take control
of the victim network may be a reasonable tradeoff.
To confirm whether this was a general result or unique to Apache,
we attempted the same experiment with configuration C2 accessing
large data files from common public sites. In some cases the behav-
ior was similar to Apache, in others such as www.google.com, the
TCP session persisted after more than 10 minutes of jamming. This
is detrimental to getting good jamming gains, but useful for low
probability of detection since it shows that long jamming periods
may never result in a user notification.

4 If this is performed only once at attacker power up it may not

alert the victim to the attacker’s presence.

Sensing requires examples of each packet type in order to adapt.
Certain packet types such as ARP packets are rare. A third use of
jamming in sensing is to force the victim network to produce rare
packet types. A naïve approach would be to jam a network for the 5-
20minutes it takes for the ARP cache to timeout. A more practical
approach is required that does not entail extensive jamming periods.
As noted in Section 4 a failure to establish a TCP connection results
in a series of ARP requests. This requires far less jamming to pro-
duce.
The results in this session suggest that jamming may have a role in
sensing. Further work is required to formalize what is possible.

7. TEST BED SENSING
To test the sensing we use configuration C2. The experiment is to
show how the sensing performs classifying ARP, TCP, and UDP
packets in three scenarios since these packets are part of the attack
with the highest jamming gain. In each scenario, a monitor records
each packet as it is received and reports the timing and a size that
depends on the encryption model. The scenarios differ in the en-
cryption model:
Scenario S1: the encryption model reports the actual packet size.
Scenario S2: the encryption model reports the packet size with an
offset of 10 bytes.
Scenario S3: the encryption model reports the packet size padded to
the next nearest multiple of 16 bytes.
In each scenario two sensors are applied. The first sensor only uses
size in estimating the packet and does not use timing or sequence
nor does it use the historical analyzer to adapt the size distribution.
The other sensor is the adaptive sensor defined in this paper. The
adaptive sensor first observes 2000 packets to adapt the size distri-
butions using the historical analyzer and then proceeds to the online
classification based on sequence and size. The results are shown in
Figure 7 tabulated in a so called confusion matrix {c(T,T’)} that
counts for each packet type, T, how often it was classified into
packet type T’. An ideal classifier would have c(T,T’) = 0 except on
the diagonal when T = T’. Packets on the highlighted diagonal are
correctly classified. Since these were based on actual traffic cap-
tures, the number of packets in each confusion matrix is not the
same. But, the performance is still comparable. In (a), using only
size the classifier correctly classifies ARP-REQ, but the ARP-RESP are
incorrectly classified also as ARP-REQ. Both of these packets are the
same size and so there is no way to distinguish the two packet types
based on size. A similar phenomenon occurs between TCP-FIN and
TCP-ACK and between TCP-SYN and TCP-SYN-ACK. When an offset is
introduced, as in (c), the size-only classifier makes many more mis-

takes. When the padding is introduced, as in (e), the classifier is
unusable for jamming.
The performance when the adaptive algorithm is applied is shown in
Figrure 7b. Compared to (a), the classifier can distinguish correctly
between ARP-REQ and ARP-RESP, and between TCP-SYN and TCP-SYN-
ACK. TCP-FIN is incorrectly classified, but, this is expected because
no sequence for TCP-FIN was defined that can be used to adapt its
distribution. In (d) the results are equally good. A simple offset does
not change the ability to distinguish between different packet types.
In (f) the padding clumps all the TCP control packets to the same
size. The TCP-ACK packet has a much higher prior distribution com-
pared to other control packet so that sequence can not separate out
the other control packets as it has been implemented here. Further
work is investigating this issue.

8. MAKING NETWORKS MORE SECURE
The attacks in this paper are based on carefully exploiting protocol
patterns and consistencies across size, timing and sequence. This
suggests that to make networks more secure these consistencies
should be removed wherever possible. For size, padding control
packets so that they are all the same size will make it difficult to
discern different packet types. Padding all packets including control
so that they have the same minimum size (say 100 bytes) will fur-
ther remove size as useful metric. For wireless MAC protocols such
as 802.11, every packet has substantial overhead so that small pack-
ets already consist mostly of this overhead. Additional padding will
have minimum effect on throughputs.
Timing in these protocols is overly precise. In TCP, the receiver
does not use the three second back off time between the first and
second TCP-SYN. Indeed, if the first one has been jammed it is not
even expecting the second. Similarly, the precise timing between
many packets in the sequence can be varied by significant factors so
that it is difficult to precisely jam the packets. The timing of some
packets such as TCP-ACKs is used by protocols for estimating aspects
of the network. But, it is conceivable that these protocols could be
modified to allow for added delays. For instance, the header could
indicate any additional delay that was added for security reasons so
that this could be factored into RTT calculations.
Sequence for the protocols is immutable. But, it also can be foiled.
One approach is to aggregate multiple packets. This will affect both
timing and size of packets as well as potentially hiding the precise
number of packets that are exchanged. Another attack is what we
refer to as the zebra defense in which a single connection is striped
across multiple TCP connections so that the attacker has difficulty
separating and attacking individual victim connections.
Collectively, these approaches will make these networks more se-
cure against the types of jamming attacks described in this paper. It
will be more difficult to discern and jam specific packet types. How-
ever, the protocol information is not fully removed and other work
has shown that longer sequence patterns can be classified with only
coarse estimates of size and timing [22][23]. Further work is neces-
sary to explore this exchange of measures and countermeasures.

9. CONCLUSIONS
Jamming and sensing are two related functions in physical-layer-
based denial of service attacks against an encrypted wireless ad hoc
networks. These functions are complex and the layered approach
developed in this paper showed how they could be broken down
into a manageable design problem. This paper presented initial re-

Table 5: Types of sequence

Sequence Name Packets in Sequence

Data-Ack TCP-DATA, TCP-ACK

ARP ARP-REQ, ARP-RESP

TCP-Startup TCP-SYN, TCP-SYN-ACK, TCP-ACK

AODV AODV-RREQ, AODV-RREP(unicast)

DNS-Lookup UDP-DATA, UDP-DATA

sults in designing such a layered attacker for the Transport/Network
layer. Jamming can get significant jamming gains, well over 100,
when it knows the packet type and timing. Interestingly most of
these gains were produced by attacking packets above the ad hoc
network layer. Protocols introduce highly predictable timing that
can be exploited. The limited information of packet size, timing, and
sequence is enough to accurately predict packet types. Using a com-
bination of offline historical analysis of sequence to provide training
data for the online models, a packet classifier was developed that
adapts to variations across networks and across different encryption
models. The development in this paper suggests simple methods for
making victim networks less vulnerable to these kinds of attacks.
That said, wireless TCP/IP based networks are ubiquitous and a
complete legacy backhaul is unlikely leaving a significant number
of vulnerable networks.
The research presented here is ongoing. Future work will fully con-
nect and test the jamming and sensing which were treated sepa-
rately. An initial software framework has been implemented and
suggests that the attacker can sense and jam the same packet as in
Figure 2. The statistical sensing tools continue to be refined. The
roles of multiple attackers are also being explored. Scaling to large
ad hoc networks and networked attackers is the long term goal.

10. ACKNOWLEDGEMENTS
This work is supported by BBN Technologies and the Air Force.
The authors thank Dan Coffin and Jeff Ward for the many conversa-
tions in developing this paper and the helpful comments of the
anonymous reviewers. Jesse James is currently with the Air Force.

11. REFERENCES
[1] The Apache HTTP Server Project, release 2.0, downloaded

Sep. 2004. http://httpd.apache.org/
[2] APE Project, How to build, install and run the APE testbed,

Uppsala University, Nov. 8, 2002
http://apetestbed.sourceforge.net/ape-testbed.pdf

[3] Bellardo, J., Savage, S., 802.11 denial-of-service attacks: real
vulenerabilities and practical solutions, USENIX Security Sym-
posium, 2003.

[4] Bellovin, S.M., Probable plaintext cryptanalysis of the IP secu-
rity protocols, In Proc. 1997 Symposium on Network and Dis-
tributed System Security. Feb. 1997 pp. 52–59

[5] Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N., Pri-
vacy vulnerabilities in encrypted HTTP streams, In Proc. Pri-
vacy Enhancing Technologies Workshop (PET 2005).

[6] Click Modular Router Project, MIT, release 1.4.3, downloaded
Dec. 2004 http://pdos.csail.mit.edu/click/

[7] Fu, X., Graham, B., Bettati, R., Zhao, W. Active traffic analy-
sis attacks and countermeasures. In Proc. of the 2003 Interna-
tional Conference on Computer Networks and Mobile Comput-
ing, 2003.

[8] Gupta, V., Krishnamurthy, S., Faloutsos, M. Denial of service
attacks at the MAC layer in wireless ad hoc networks. In Proc.
of Milcom, 2002.

[9] Hu, Y.-C., Perrig, A. A survey of secure wireless ad hoc rout-
ing. IEEE Security & Privacy Magazine. v. 02, n. 3, (May–Jun.
2004), pp. 28–39.

[10] Joncheray, L. A simple active attack against TCP. In Proc.
Fifth Usenix UNIX Security Symposium, 1995

[11] Landeta, D., Secure Wireless LAN SecNet 11 & SecNet 54, in
Information Assurance Solutions Working Symposium, Aug.
2005. See also,
http://www.govcomm.harris.com/secure-comm/

[12] Linux, The linux homepage, the 2.4.27 kernel, downloaded
Nov. 2005, http://www.linux.org

[13] Microsoft Corporation, Microsoft Windows XP Home Edition
Version 2002 Service Pack 2.

[14] Negi, R., Perrig, A. Jamming analysis of MAC protocols. Car-
negie Mellon Technical Memo, 2003.

[15] Perkins, C., Royer, E., Das, S., Ad hoc on-demand distance
vector (AODV) routing, Internet Draft, draft-ietf-manet-aodv-
11.txt, work in progress, Aug 2002.

[16] Raymond, J. Traffic analysis: protocols, attacks, design issues
and open problems. In H. Federrath, ed., Designing Privacy
Enhancing Technologies, v. 2009 of LNCS, pp. 10–29.
Springer-Verlag, 2001

[17] Stahlberg, M.. Radio jamming attacks against two popular
mobile networks. In H. Lipmaa and H. Pehu-Lehtonen, ed.,
Proc. of the Helsinki University of Technology Seminar on
Network Security. Fall 2000.

[18] Stallings, W., Wireless Communications and Networks, 2nd
Ed., Prentice Hall, 2005.

[19] Sun, Q., Simon, D.R., Wang, Y., Russell, W., Padmanabhan,
V.N., Qiu, L., Statistical identification of encrypted web
browsing traffic. IEEE Symposium on Security and Privacy,
2002.

[20] Uppsala University, The AODV-UU implementation , version
0.8.1, downloaded Nov. 2005
http://core.it.uu.se/AdHoc/AodvUUImpl

[21] Uppsala University, The Ad hoc Protocol Evaluation (APE)
testbed, release 0.3, downloaded Nov. 2005
http://apetestbed.sourceforge.net

[22] Wright, C.V., Monrose, F., Masson, G.M., HMM profiles for
network traffic classification (extended abstract), in Proc.
ACM Workshop on Visualization and Data Mining for Com-
puter Security, pp. 9–15, Oct. 2004.

[23] Wright, C.V., Monrose, F., Masson, G.M., Towards better
protocol identification using profile HMMs, JHU Technical
Report JHU-SPAR051201, 14p., June, 2005.

DATA 28 212

SYNACK

SYN 1 1

ACK 17 150 15 15 3

TC
P

FIN

REQ

C
la

ss
ifi

ed
 P

ac
ke

ts

A
R

P

RESP

 RESP REQ FIN ACK SYN SYN
ACK DATA

 ARP TCP

 Actual Packets

 (e) Padding to nearest 16 bytes, size-only sensor

DATA 9 274

SYNACK

SYN 2

ACK 25 283 23 23

TC
P

FIN

REQ 4

C
la

ss
ifi

ed
 P

ac
ke

ts

A
R

P

RESP 4

 RESP REQ FIN ACK SYN SYN
ACK DATA

 ARP TCP

 Actual Packets

 (f) Padding to nearest 16 bytes, adaptive sensor

Figure 7: Test bed results for sensing packets with a size only sensor or the adaptive sensor. The results on the shaded diagonal
are the number of packets of the associated type classified correctly. The off-diagonal counts incorrectly classified packets with
the column indicating the true packet type and the row the incorrect classification.

DATA 4 251

SYNACK 6

SYN 28 138 23 20 4

ACK 2 2 8 118 3 2

TC
P

FIN

REQ

C
la

ss
ifi

ed
 P

ac
ke

ts

A
R

P

RESP

 RESP REQ FIN ACK SYN SYN
ACK DATA

 ARP TCP

 Actual Packets

DATA 5 158

SYNACK 1 5

SYN 20 14 4

ACK 26 161 1

TC
P

FIN

REQ 2 2

C
la

ss
ifi

ed
 P

ac
ke

ts

A
R

P

RESP

 RESP REQ FIN ACK SYN SYN
ACK DATA

 ARP TCP

 Actual Packets

DATA 28 963

SYNACK 64

SYN 60

ACK 66 876 2

TC
P

FIN

REQ 2

C
la

ss
ifi

ed
 P

ac
ke

ts

A
R

P

RESP 2

 RESP REQ FIN ACK SYN SYN
ACK DATA

 ARP TCP

 Actual Packets

DATA 10 422

SYNACK 34

SYN 30

ACK 35 436

TC
P

FIN

REQ 6
C

la
ss

ifi
ed

 P
ac

ke
ts

A

R
P

RESP 6

 RESP REQ FIN ACK SYN SYN
ACK DATA

 ARP TCP

 Actual Packets

(c) 10 byte size offset, size-only sensor (d) 10 byte size offset, adaptive sensor

(b) Actual packet size, adaptive sensor (a) Actual packet size, size-only sensor

