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Abstract—This paper investigates reliable and covert trans-

mission strategies in a multiple-input multiple-output (MIMO)

wiretap channel with a transmitter, receiver and an adversarial

wiretapper, each equipped with multiple antennas. In a departure

from existing work, the wiretapper possesses a novel capability

to act either as a passive eavesdropper or as an active jammer,

under a half-duplex constraint. The transmitter therefore faces a

choice between allocating all of its power for data, or broadcasting

artificial interference along with the information signal in an

attempt to jam the eavesdropper (assuming its instantaneous

channel state is unknown). To examine the resulting trade-offs for

the legitimate transmitter and the adversary, we model their in-

teractions as a two-person zero-sum game with the ergodic MIMO

secrecy rate as the payoff function. We first examine conditions

for the existence of pure-strategy Nash equilibria (NE) and the

structure of mixed-strategy NE for the strategic form of the game.

We then derive equilibrium strategies for the extensive form of

the game where players move sequentially under scenarios of

perfect and imperfect information. Finally, numerical simulations

are presented to examine the equilibrium outcomes of the various

scenarios considered.

Index Terms—Game theory, jamming, MIMO wiretap channel,
Nash equilibria, physical layer security, secrecy rate.

I. INTRODUCTION

T HE two fundamental characteristics of the wireless

medium, namely broadcast and superposition, present

different challenges in ensuring secure and reliable communi-

cations in the presence of adversaries. The broadcast nature of

wireless communications makes it difficult to shield transmitted

signals from unintended recipients, while superposition can

lead to the overlapping of multiple signals at the receiver. As a

result, adversarial users are commonly modeled either as (1) a

passive eavesdropper that tries to listen in on an ongoing trans-

mission without being detected, or (2) a malicious transmitter

(jammer) that tries to degrade the signal quality at the intended

receiver. Two distinct lines of research have developed to

analyze networks compromised by either type of adversary, as

summarized below.
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A network consisting of a transmitter-receiver pair and a

passive eavesdropper is commonly referred to as the wiretap

channel. The information-theoretic aspects of this scenario

have been explored in some detail [1]–[3]. In particular, this

work led to the development of the notion of secrecy capacity,

which quantifies the maximal rate at which a transmitter can

reliably send a secret message to the receiver, without the eaves-

dropper being able to decode it. Ultimately, it was shown that

a non-zero secrecy capacity can only be obtained if the eaves-

dropper’s channel is of lower quality than that of the intended

recipient. The secrecy capacity metric for the multiple-input

multiple-output (MIMO) wiretap channel, where all nodes may

possess multiple antennas, has been studied in [4]–[9], for ex-

ample. There are two primary categories of secure transmission

strategies for theMIMOwiretap channel, depending on whether

the instantaneous channel realization of the eavesdropper is

known or unknown at the transmitter. In this work we assume

that this information is not available, and thus the transmitter in-

corporates an “artificial interference” signal [7]–[10] along with

the secret message in an attempt to degrade the eavesdropper’s

channel, as elaborated on in Section II.

The impact of malicious jammers on the quality of a commu-

nication link is another problem of long-standing interest, es-

pecially in mission-critical and military networks. A common

approach is to model the transmitter and the jammer as players

in a game-theoretic formulation with the mutual information as

the payoff function, and to identify the optimal transmit strate-

gies for both parties [11]–[13]. Recent work has extended this

technique to compute the optimal spatial power allocation for

MIMO and relay channels with various levels of channel state

information (CSI) available to the transmitters [14]–[17].

In this paper, we consider a MIMO communication link in

the presence of a more sophisticated and novel adversary, one

with the dual capability of either passively eavesdropping or

actively jamming any ongoing transmission, with the objective

of causing maximum disruption to the ability of the legitimate

transmitter to share a secret message with its receiver. The le-

gitimate transmitter now faces the dilemma of establishing a re-

liable communication link to the receiver that is robust to po-

tential jamming, while also ensuring confidentiality from in-

terception. Since it is not clear a priori what strategies should

be adopted by the transmitter or adversary per channel use, a

game-theoretic formulation of the problem is a natural solution

due to the mutually opposite interests of the agents. Unlike the

jamming scenarios mentioned above that do not consider link

security, the game payoff function in our application is chosen

to be the ergodic MIMO secrecy rate between the legitimate

transmitter-receiver pair. Related concurrent work on the active
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Fig. 1. MIMO wiretap channel with dual-mode active eavesdropper.

eavesdropper scenario [18], [19] has focused on single-antenna

nodes without the use of artificial interference, possibly oper-

ating together with additional ’helping’ relays. The single-an-

tenna assumption leads to a much more restrictive set of user

strategies than the MIMO scenario we consider.

The contributions of the paper are as follows: (1) we show

how to formulate the MIMO wiretap channel with a jamming-

capable eavesdropper as a two-player zero-sum game, (2) we

characterize the conditions under which the strategic version

of the game has a pure-strategy Nash equilibrium, (3) we de-

rive the optimal mixed strategy profile for the players when the

pure-strategy Nash equilibrium does not exist, and (4) we study

the extensive or Stackelberg version of the game where one of

the players moves first and the other responds, and we also char-

acterize the various equilibrium outcomes for this case under

perfect and imperfect information. These contributions appear

in the paper as follows. The assumed system model and CSI

assumptions are presented in the next section. The strategic for-

mulation of the wiretap game is described in Section III, where

the two-player zero-sum payoff table is developed, the condi-

tions for existence of pure-strategy Nash equilibria are derived,

and the optimal mixed strategy formulation is discussed. The

extensive version of the wiretap game with perfect and imper-

fect information where the players move sequentially is detailed

in Section IV. Outcomes for the various game formulations are

studied via simulation in Section V, and conclusions are pre-

sented in Section VI.

Notation: We will use to denote a circular complex

Gaussian distribution with zero-mean and unit variance.We also

use to denote expectation, for mutual information,

for the transpose, for the Hermitian transpose,

for the matrix inverse, for the trace operator, to denote

the matrix determinant, is the ordered eigenvalue of

, and represents an identity matrix of appropriate dimension.

II. SYSTEM MODEL

We study the MIMO wiretap problem in which three mul-

tiple-antenna nodes are present: an -antenna transmitter

(Alice), an -antenna receiver (Bob), and a malicious user

(Eve) with antennas, as shown in Fig. 1. We assume that

Alice does not have knowledge of the instantaneous CSI of the

eavesdropper, only the statistical distribution of its channel,

which is assumed to be zero-mean with a scaled-identity co-

variance. The lack of instantaneous eavesdropper CSI at Alice

precludes the joint diagonalization of the main and eaves-

dropper channels [9]. Instead, as we will show, Alice has the

option of utilizing all her power for transmitting data to Bob,

regardless of channel conditions or potential eavesdroppers, or

optimally splitting her power and simultaneously transmitting

the information vector and an “artificial interference” signal

that jams any unintended receivers other than Bob. The artifi-

cial interference scheme does not require knowledge of Eve’s

instantaneous CSI, which makes it suitable for deployment

against passive eavesdroppers [7], [9], [20]–[22]. Eve also has

two options for disrupting the secret information rate between

Alice and Bob: she can either eavesdrop on Alice or jam Bob,

under a half-duplex constraint.

A. Signal Model

When Eve is in passive eavesdropping mode, the signal re-

ceived by Bob is

(1)

where is the signal vector transmitted by Alice, is the

channel matrix between Alice and Bob with i.i.d ele-

ments drawn from the complex Gaussian distribution ,

and is additive complex Gaussian noise. When Eve is not

jamming, she receives

(2)

where is the channel matrix between Alice and

Eve with i.i.d elements drawn from the complex Gaussian dis-

tribution , and is additive complex Gaussian noise.

The background noise at all receivers is assumed to be spatially

white and zero-mean complex Gaussian: ,

where indicates Bob or Eve, respectively. The receive

and transmit channels of the eavesdropper have gain factors

and respectively. These scale factors may be interpreted as

an indicator of the relative distances between Eve and the other

nodes.

On the other hand, when Eve decides to jam the legitimate

channel, Bob receives

(3)

where is the Gaussian jamming signal from Eve and is

the channel matrix between Eve and Bob with i.i.d

elements distributed as . Due to the half-duplex con-

straint, Eve receives no signal when she is jamming .

Alice’s transmit power is assumed to be bounded by :

and similarly Eve has a maximum power constraint of when

in jamming mode. To cause maximum disruption to Alice and

Bob’s link, it is clear that Eve will transmit with her full avail-

able power when jamming. In the most general scenario

where Alice jams Eve by transmitting artificial interference, we

have

(4)



84 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 1, JANUARY 1, 2013

where are the , precoding matrices

for the information vector and uncorrelated

jamming signal , respectively. To ensure that the artificial

interference does not interfere with the information signal, a

common approach taken in the literature [7], [9], [20]–[25] is to

make these signals orthogonal when received by Bob. If Alice

knows , this goal can be achieved by choosing and

as disjoint sets of the right singular vectors of . Note that if

the users have only a single antenna, the effect of the artificial

interference cannot be eliminated at Bob, and it will degrade

the SNR of both Bob and Eve. This makes it unlikely that Alice

will employ a non-zero artificial interference signal when she

has only a single transmit antenna, which significantly restricts

Alice’s transmission strategy. The matrix may be expressed

as

(5)

where are the covariance matrices associated with and

, respectively. If we let denote the fraction of the total power

available at Alice that is devoted to the information signal, then

and . Due to

the zero-forcing constraint, it is clear that any power available

to Alice that is not used for the desired signal will be used

for jamming, so between the signal and artificial interference,

Alice will transmit with full power . The covariance matrices

of the received interference-plus-noise at Bob and Eve are

(6)

(7)

where is the covariance of the jamming signal transmitted

by Eve, .

Note that we have assumed that Alice’s jamming signal (if

any) is orthogonal to the information signal received by Bob,

and hence, from the point of view of mutual information, can

be ignored in the expression for . For our purposes, we as-

sume that Alice splits her transmit power between a stochastic

encoding codebook and artificial interference for every channel

use in all scenarios, while Bob employs a deterministic de-

coding function [1], [3]. Firstly, this ensures that the general en-

coding and decoding architecture of the Alice-Bob link remains

fixed irrespective of Eve’s actions. Secondly, for a point-to-

point channel without an eavesdropper (i.e., when the eaves-

dropper is jamming and not listening), using a stochastic code-

book does not offer any advantage over a conventional code-

book, but it does not hurt either, i.e., the receiver still reliably

decodes the transmitted codeword [3].

B. CSI Model

Given the signal framework introduced above, we are ready

to discuss the important issue of CSI. We have already indicated

that Alice knows in order to appropriately precode the jam-

ming and information signals via and , conceivably ob-

tained by public feedback from Bob after a training phase. At

the receiver side, we will assume that Eve knows the channel

from Alice and the covariance of the interference and

noise, and similarly we will assume that Bob knows and

. All other CSI at the various nodes is assumed to be non-in-

formative; the only available information is that the channels

are composed of independent random variables. This

implies that when Eve jams Bob, her lack of information about

and the half-duplex constraint prevents her from detecting

the transmitted signal and applying correlated jamming [14].

Consequently, she will be led to uniformly distribute her avail-

able power over all transmit dimensions, so that .

Similarly, when Alice transmits a jamming signal, it will also

be uniformly distributed across the available dimen-

sions: . While in principle Alice could use her

knowledge of to perform power loading, for simplicity and

robustness we will assume that the power of the information

signal is also uniformly distributed, so that .

Given the above assumptions, (5)–(7) will simplify to

(8)

(9)

(10)

where we have defined .

C. Secrecy Rates and Transmit Strategies

The MIMO secrecy capacity between Alice and Bob is ob-

tained by solving [4], [6], [9]

(11)

where are the random variable counterparts of the

realizations . Given the CSI constraints discussed

above, such an optimization cannot be performed since Alice is

unaware of the instantaneous values of all channels and inter-

ference covariance matrices. Consequently, we choose to work

with the lower bound on the MIMO ergodic secrecy capacity

based on Gaussian inputs and uniform power allocation at all

transmitters [7]:

(12)

where we define . This serves as a rea-

sonable metric to assess the relative security of the link and to

explain the behavior of the players. Recall that we assume Alice

has instantaneous CSI for the link to Bob and only statistical

CSI for Eve, and the achievability of an ergodic secrecy rate for

such a scenario was shown in [26]. Using ergodic secrecy as the

utility function for the game between Alice and Eve implies that

a large number of channel realizations will occur intermediate

to any changes in their strategy. That is, the physical layer pa-

rameters are changing faster than higher (e.g., application) layer

functions that determine the user’s strategy. Thus, the expecta-

tion is taken over all channel matrices (including ), which

in turn provides Alice and Eve with a common objective func-

tion, since neither possesses the complete knowledge of that

is needed to compute the instantaneous MIMO secrecy rate.
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Eve must decide whether to eavesdrop or jam with an arbi-

trary fraction of her transmit power. Alice’s options include de-

termining how many spatial dimensions are to be used for data

and artificial interference (if any), and the appropriate fraction

that determines the transmit power allocated to them. As de-

scribed in [7], [21]–[23], [25], there are several options available

to Alice for choosing and depending upon the accuracy of

her CSI, ranging from an exhaustive search for optimal values to

lower-complexity approaches based on fixed-rate assumptions.

Numerical results from this previous work have indicated that

the achievable secrecy rate is not very sensitive to these param-

eters, and good performance can be obtained for a wide range of

reasonable values. The general approach of this paper is appli-

cable to essentially any value for and , although the specific

results we present in the simulation section use a fixed value

for and find the optimal value for based on under the as-

sumption that the eavesdropper is in fact eavesdropping, and not

jamming.

In Section III we show that it is sufficient to consider a set of

two strategies for both players without any loss in optimality.

In particular, we show that Alice need only consider the options

of either transmitting the information signal with full power, or

devoting an appropriate amount of power and signal dimensions

to a jamming signal. On the other hand, Eve’s only reasonable

strategies are to either eavesdrop passively or jam Bob with all

her available transmit power.

We will denote Eve’s set of possible actions as to in-

dicate either “Eavesdropping” or “Jamming,” while Alice’s will

be expressed as to indicate “Full-power” devoted to the

information signal, or a non-zero fraction of the power allocated

to “Artificial interference.” The secrecy rates that result from the

resulting four possible scenarios will be denoted by , where

and .

Assuming Gaussian inputs and , the MIMO secrecy rate

between Alice and Bob when Eve is in eavesdropping mode is

(13)

whereas the secrecy rate when Eve is jamming reduces to

(14)

where denotes the transmission strategies available

to Alice. We refer to (14) as a secrecy rate even though there

is technically no eavesdropper, since Eve’s mutual information

is identically zero and Alice still uses a stochastic encoder (cf.

Section II). Therefore, when evaluating the secrecy rate defini-

tion (11) for the case where Eve chooses to jam, the second term

is zero which yields and in (14) as the effective se-

crecy rate. Recall that the definition of the secrecy rate is the

maximum transmission rate which can be reliably decoded by

Bob while remaining perfectly secret from Eve, which is still

satisfied by the rates in (14). Note also that when Alice employs

artificial interference, a choice for and must be made that

holds regardless of Eve’s strategy. Therefore, the values of

and that are numerically computed to maximize in (13)

[7] remain unchanged for in (14). When Alice transmits

with full power, then , where , and the

precoder consists of the right singular vectors of corre-

sponding to the largest singular values.

While Alice uses the same type of encoder regardless of Eve’s

strategy, achieving the rates in (13)–(14) requires adjustments

to the code rate that will depend on Eve’s actions. For example,

if Alice is transmitting with full power (strategy ), the code

rate needed to achieve either or in (13) or (14) will

be different. Thus, we assume that Alice can be made aware of

Eve’s strategy choice, for example through feedback from Bob,

in order to make such adjustments1. Such behavior is not lim-

ited to just Alice and Bob; Eve also makes adjustments based

on Alice’s choice of strategy. In particular, when Eve is eaves-

dropping, her method of decoding Alice’s signal will depend on

whether or not Alice is transmitting artificial interference. We

do not consider adjustments such as these as part of Alice or

Eve’s strategy per se, which in our game theory framework is

restricted to the decision of whether or not to use artificial in-

terference. We assume that minor adaptations to the coding or

decoding algorithm for Alice and Eve occur relatively quickly,

and that any resulting transients are negligible due to our use of

ergodic secrecy rate as the utility function. The more interesting

question is whether or not Alice and Eve decide to change strate-

gies based on the actions of the other is addressed in Section IV.

In the game-theoretic analysis of the next two sections,

we will utilize the following general properties of the MIMO

wiretap channel:

(P1)

(P2)

The validity of (P2) is obvious; if Alice employs artificial inter-

ference, it reduces the power allocated to the information signal,

which in turn can only decrease the mutual information at Bob.

Since Eve is jamming, her mutual information is zero regard-

less of Alice’s strategy, so can never be larger than .

The validity of (P1) can be established by recalling that Alice

chooses a value for that maximizes , assuming Eve is

eavesdropping. Since is an available option and corre-

sponds to , Alice can do no worse than in choosing

the optimal for strategy .

III. STRATEGIC WIRETAP GAME

In this section we construct the zero-sum model of the pro-

posed wiretap game.We define the payoff to Alice as the achiev-

able MIMO secrecy rate between her and Bob. Modeling the

strategic interactions between Alice and Eve as a strictly com-

petitive game leads to a zero-sum formulation, where Alice tries

to maximize her payoff and Eve attempts to minimize it.

Formally, we can define a compact strategy space

for both Alice and Eve: Alice has to optimize the pair

, where is chosen from the unit interval and

; and Eve can choose her jam-

ming power from the interval , where zero jam-

ming power corresponds to the special case of passive eaves-

dropping. In other words, each player theoretically has a con-

1Based on such feedback, Alice could also in principle switch from a sto-
chastic encoder to a more standard non-secure code if she discovers that Eve is
jamming and not eavesdropping. In either case, the rate expressions in (13)–(14)
will be valid.
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TABLE I
PAYOFFMATRIX OF THE STRATEGIC FORM OF THEMIMO WIRETAP GAME.

tinuum of (pure) strategies to choose from, where the payoff for

each combination of strategies is the corresponding MIMO se-

crecy rate. In the following discussion, let represent the

choice of Alice’s parameters that maximizes the ergodic secrecy

rate .

The complete set of mixed strategies for player is the set

of Borel probability measures on . Let be the set of all

probability measures that assign strictly positive mass to every

nonempty open subset of . The optimal mixed strategy for

player must belong to , since any pure strategies that are

assigned zero probability in equilibrium can be pruned without

changing the game outcome. Furthermore, as in the case of fi-

nite games, the subset of pure strategies included in the optimal

mixed strategy must be best responses to particular actions of

the opponent [27]. Consider Alice: when Eve chooses the ac-

tion of eavesdropping, is Alice’s corresponding best

response pure strategy since by definition it offers a payoff at

least as great as any other possible choice of [cf. (P1)].

Similarly, when Eve chooses to jam with any arbitrary power,

Alice’s best response pure strategy is [cf. (P2)].

Therefore, these two pure strategies are Alice’s best responses

for any possible action by Eve, and it is sufficient to consider

them alone in the computation of the optimal mixed strategy

since all other pure strategies are assigned zero probability. A

similar argument holds for Eve with her corresponding best re-

sponses of and .

Therefore, it is sufficient to consider the following strategy

sets for the players: Alice chooses between transmitting

with full power for data (F) or devoting an appropriate fraction

of power to jam Eve (A), described as . Eve must

decide between eavesdropping (E) or jamming Bob with full

power (J) at every channel use, represented by .

A. Pure-Strategy Equilibria

The strategic form of the game where Alice and Eve move

simultaneously without observing each other’s actions can be

represented by the 2 2 payoff matrix in Table I. Our first re-

sult establishes the existence of Nash equilibria for the strategic

game.

Proposition 1: For an arbitrary set of antenna array sizes,

transmit powers and channel gain parameters, the following

unique pure-strategy saddle-points or Nash Equilibria (NE)

exist in the proposed MIMO wiretap game:

(15a)

(15b)

Proof: Of the 24 possible orderings of the four rate out-

comes, only six satisfy both conditions (P1)–(P2) of the pre-

vious section. Furthermore, it is easy to check that only two of

these six mutually exclusive outcomes results in a pure NE. If

, then assumptions (P1) and (P2) imply the fol-

lowing rate ordering

(16)

In this case, represents an NE since neither Alice nor Eve

can improve their respective payoffs by switching strategies;

i.e., the secrecy rate will decrease if Alice chooses to transmit

the information signal with full power, and the secrecy rate will

increase if Eve decides to jam. Similarly, when ,

then (P1)–(P2) result in the rate ordering

(17)

and will be the mutual best response for both players. Ev-

idently only one such ordering can be true for a given wiretap

game scenario.

B. Mixed-Strategy Equilibria

Proposition 1 establishes that there is no single pure strategy

choice that is always optimal for either player if the inequal-

ities in (16)–(17) are not satisfied. This occurs in four of the

six valid rate orderings of the entries of that satisfy condi-

tions (P1)–(P2). Therefore, since the minimax theorem guaran-

tees that any finite zero-sum game has a saddle-point in random-

ized strategies [29], in such scenarios Alice and Eve should ran-

domize over ; that is, they should adopt mixed strategies.

Let and , repre-

sent the probabilities with which Alice and Eve randomize over

their strategy sets and , respectively.

In other words, Alice plays with probability , while

Eve plays with probability . Alice obtains her optimal

strategy by solving

(18)

while Eve optimizes the corresponding minimax problem. For

the payoff matrix in Table I, the optimal mixed strategies

and unique NE value of the game can be easily derived as

[28], [29]

(19a)

(19b)

(19c)

where . The mixed NE above is

unique according to the classic properties of finite matrix games

[28], since the optimization in (18) has a unique solution. A

graphical illustration of the saddle-point in mixed strategies as

and are varied for a specific wiretap channel is shown in Fig. 2.

For the specified parameters

, , the rate ordering

turns out to be

, which results in a mixed NE with optimal mixing

probabilities and value .

Alice’s bias towards playing more frequently is expected
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Fig. 2. Game value in mixed strategies as the mixing probabilities at Alice and
Eve are varied, , and

.

since that guarantees a secrecy rate of at least 2.85, whereas

playing risks a worst-case payoff of zero. Eve is privy to

Alice’s reasoning and is therefore biased towards playing

more frequently since she prefers a game value close to .

The repeated wiretap game is a more sophisticated strategic

game model in which Alice and Eve play against each other re-

peatedly over multiple stages in time. At each stage, the set of

player strategies and payoff function representation is identical

to the single-stage zero-sum game in Table I. In our con-

text, the single-stage game can be considered to represent the

transmission of a single codeword, with the repeated game span-

ning the successive transmission of multiple codewords. Let the

payoff to Alice at stage be denoted as . Under the stan-

dard repeated game model [29], the payoffs are accrued after

each stage, and both players have perfect information of the ad-

versary’s moves. If the game is repeated over an infinite time

horizon, the cumulative payoff (of Alice) over the duration of

the game is given by

(20)

where the discounting factor , , ensures that

is finite. Unlike general nonzero-sum repeated games where

players can improve payoffs via cooperation over time [30],

the strictly competitive nature of the zero-sum wiretap game

results in Alice and Eve repeatedly playing their single-stage

game NE strategies. For example, it is clear that Eve minimizes

by minimizing at each stage , which is achieved

by playing as dictated by Proposition 1 or (19) at each stage.

If the game is played over a finite number of stages instead,

the players will continue to play their single-stage game NE

strategies by the same argument. The concepts developed in

Section IV-B are applicable to the more involved repeated game

scenario where Alice and Eve have imperfect observations of

each other’s actions.

Fig. 3. Extensive form game tree with perfect information where Alice
moves first and Eve moves second.

IV. EXTENSIVE FORMWIRETAP GAME

Given the strategic game analysis of the previous section, we

can now proceed to analyze the actions of a given player in re-

sponse to the opponent’s strategy. Here, one player is assumed

to move first, followed by the opponent’s response, which can

then lead to a strategy (and code rate) change for the first player,

and so on. Accordingly, in this section we examine the sequen-

tial or extensive form of the MIMO wiretap game, which is also

known as a Stackelberg game. The standard analysis of a Stack-

elberg game is to cast it as a dynamic or extensive-form game

and elicit equilibria based on backward induction [28].We begin

with the worst-case scenario where Alice moves first by either

playing F or A, which is observed by Eve who responds ac-

cordingly. It is convenient to represent the sequential nature of

an extensive-form game with a rooted tree or directed graph,

as shown in Fig. 3. The payoffs for Alice are shown at each ter-

minal node, while the corresponding payoffs for Eve are omitted

for clarity due to the zero-sum assumption. In this section, we

explore extensive-form games with and without perfect infor-

mation, and the variety of equilibrium solution concepts avail-

able for them.

A. Perfect Information

Assuming that Eve can distinguish which move was adopted

by Alice, and furthermore determine the exact jamming power

if she is being jammed by Alice, then the extensive

game is classified as one of perfect information. In the sequel,

we will make use of the notions of an information state and a

subgame. A player’s information state represents the node(s) on

the decision tree at which she must make a move conditioned on

her knowledge of the previous move of the opponent. For the

case of perfect information in Fig. 3, Alice has a single infor-

mation state, while Eve has two information states (each with

a single node) based on Alice’s choice, since she has perfect

knowledge of Alice’s move. A subgame is a subset (subgraph)

of a game that starts from an information state with a single

node, contains all of that node’s successors in the tree, and con-

tains all or none of the nodes in each information state [29].

Next, we analyze subgame-perfect equilibria (SPE) of the ex-

tensive game, which are a more refined form of NE that elim-

inate irrational choices within subgames [28], [29]. It is well

known that in extensive games with perfect information, a se-

quential equilibrium in pure strategies is guaranteed to exist [29,

Theorem 4.7]. The equilibrium strategies can be obtained by a

process of backward induction on the extensive game tree, as

shown below.
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Fig. 4. Extensive form game tree with perfect information where Eve
moves first and Alice moves second.

Proposition 2: In the extensive form wiretap game with

perfect information where Alice moves first, the unique sub-

game-perfect equilibrium rate with pure strategies is determined

by the following:

if

if

,

Proof: The extensive game tree for this problem, de-

picted in Fig. 3, is comprised of three subgames: the two

subgames at Eve’s decision nodes, and the game itself with

Alice’s decision node as the root. Consider the scenario

. Under this assumption, Eve

always plays in the lower-left subgame of Fig. 3, whereas

Eve picks in the lower-right subgame. By backward in-

duction, Alice then chooses the larger of at her

decision node. The other two SPE outcomes can be established

in a similar manner.

Proposition 3: The extensive form game with perfect

information where Eve moves first and Alice moves second has

the following subgame-perfect equilibrium rate outcome and

corresponding strategies:

(21)

Proof: The extensive game tree for this scenario is depicted

in Fig. 4, and is comprised of three subgames: the two subgames

at Alice’s decision nodes, and the game itself with Eve’s deci-

sion node as the root. Based on properties (P1)–(P2), Alice al-

ways plays in the lower-left subgame and in the lower-right

subgame. By backward induction, Eve then chooses the action

corresponding to the smaller payoff between at her

decision node.

Note that in the scenario where Alice moves first, she chooses

her coding parameters based on the assumption that Eve acts

rationally and adopts the equilibrium strategy in Proposition 2.

We see from both propositions that, when conditions for one of

the pure-strategy NEs hold, the outcome of both and

will be the corresponding NE. This is also true of an extensive

game with more than 2 stages; if an NE exists, the overall SPE

outcome will be composed of repetitions of this constant result.

B. Imperfect Information

We now consider extensive wiretap games with imperfect in-

formation, where the player moving second has an imperfect

estimate of the prior move made by her opponent. Let and

denote the games where Alice and Eve move first, respec-

tively. The game tree representation of can be drawn by

connecting the decision nodes of Eve in Fig. 3 to indicate her

inability to correctly determine Alice’s move in the initial phase

of the game. Thus, in this case, Eve effectively only possesses a

single information state.While no player has an incentive to ran-

domize in the game with perfect information in Section IV-A,

mixed strategies enter the discussion when the game is changed

to one of imperfect information. The subgame perfect equilib-

rium solution is generally unsatisfactory for such games, since

the only valid subgame in this case is the entire game itself.

Therefore, sequential equilibrium is a stronger solution concept

better suited for extensive games of imperfect information.

An extreme case of imperfect information in is the sce-

nario where it is common knowledge at all nodes that Eve is

completely unable to determine what move was made by Alice

in the first stage of the game. Let Eve then assign the a priori

probabilities to Alice’s moves over for some

and , while Eve herself randomizes over with proba-

bilities . Therefore, Eve’s left and right decision nodes

are reached with probability and , respectively. There

are three possible supports for Eve’s moves at her information

state: pure strategies or exclusively, or randomizing

over . In the general scenario where Eve randomizes over

with probabilities , her expected payoff can be

expressed as

Using a probabilistic version of backward induction, it is

straightforward to compute the sequential equilibrium of ,

which in fact turns out to be identical to the mixed-strategy NE

in (19). A similar argument holds for with no information

at Alice, which arises if no feedback is available from Bob.

It is much more reasonable to assume that the player moving

second is able to form some estimate of her opponent’s move,

known as the belief vector [29]. An example of how such a sce-

nario may play out is described here. Consider the game ,

where Alice’s belief vector represents the posterior probabilities

of Eve having played {E} and {J} in the first stage. Assume that

Bob collects signal samples and provides Alice with an infer-

ence of Eve’s move via an error-free public feedback channel.

The competing hypotheses at Bob are

(22)

for where the null hypothesis corre-

sponds to Eve listening passively and the alternative hypothesis

is that she is jamming Bob. Here, the channels are assumed

to be constant over the sensing interval [31] and known to Bob

since he possesses local CSI. Aggregating the samples into a

matrix , we observe

that under and

under , where
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Assuming that Bob employs a minimum probability of error

(MPE) detector [32], the hypothesis test is

(23)

where and are prior probabilities assigned to

the hypotheses by Bob. A worst-case assumption for the prior

probabilities is given by Eve’s minimax mixing probabilities in

(19b). Taking the logarithm on both sides of (29) and inserting

the appropriate densities

(24)

(25)

after some manipulations we obtain the test

(26)

where .

Finally, Alice determines her best response based on the

posterior probabilities (beliefs) of the hypotheses, which is

the definition of a sequentially rational strategy [29]. The

requisite posterior probabilities are

, , with

and . At equilibrium, Alice

has by definition no incentive to switch actions, which implies

that her expected payoffs are the same. Since her expected

payoff if she plays is , and

if she plays , it follows that

Alice’s best response is given by

if (27)

On the other hand, since Eve moves first in , she does not

have causal knowledge of Alice’s beliefs, and therefore con-

tinues to play her minimax strategies in (19b).

For the game where Eve moves second, she forms her

beliefs about Alice’s move ( or ) from the binary hy-

pothesis test

(28)

for . The sample matrix

follows the distributions

under and under ,

where

The MPE test at Eve thus simplifies to

(29)

where , and is the ratio of worst-

case prior probabilities based on (19a). By the equivalence of

equilibrium payoffs, Eve’s best response based on her computed

posterior probabilities is

if (30)

Since Alice has no means of estimating the beliefs possessed

by Eve, Alice plays her maximin strategy as specified by (19a)

when she moves first.

V. SIMULATION RESULTS

In this section, we present several examples that show the

equilibrium secrecy rate payoffs for various channel and user

configurations. All displayed results are based on the actual nu-

merically computed secrecy rates with 5000 independent trials

per point. NE rates are depicted using a dashed red line where

applicable. In all of the simulations, the noise power was as-

sumed to be the same for both Bob and Eve: .

For the strategic game in Fig. 5 we set

and Eve’s power is larger than Alice’s: . The op-

timal choice for the signal dimension in this scenario is .

Prior to the cross-over, a pure strategy NE in is the game

outcome since the rate ordering is that of (16), whereas after the

cross-over it is optimal for both players to play mixed strategies

according to (19). In this case, randomizing strategies clearly

leads to better payoffs for the players as Eve’s jamming power

increases, compared to adopting a pure strategy. The optimal

mixing probabilities are shown in Fig. 5(b) with a clear division

between pure and mixed strategy NE regions. The pure NE is

lost as increases since grows more quickly than .

This is because increasing under both improves Bob’s

rate and reduces Eve’s rate, since more power is available for

both signal and jamming. For AJ, increasing can only im-

prove Bob’s rate since Eve is not impacted by the artificial inter-

ference (any power devoted to artificial interference is wasted).

For the case of equal transmit powers and

parameters , the outcomes of the

strategic game as the ratio of eavesdropper to transmitter an-

tennas varies is shown in Fig. 6. We observe that a similar di-

chotomy exists between a pure-strategy saddle-point region and

a mixed-strategy equilibrium in terms of (with the transition

roughly at marked by the dashed red line).

Next, the SPE outcomes of the two extensive-form games

and over a range of transmit power ratios are

shown in Fig. 7. The red and blue dashed lines represent the sub-

game-perfect outcomes of the game where Alice moves first or

second, respectively, as defined in Proposition 2 and Corollary

1. In the extensive form game, Alice could adjust her transmis-

sion parameters ( , etc.) in addition to her overall strategy

( or ) in response to Eve’s move. For simplicity, and to allow

us to present the main result in a single figure, we have as-

sumed instead that the transmission parameters are chosen inde-

pendently of Eve’s actions, as described for the strategic game.

Observe that prior to the crossover point of and ,

both equilibria are equal as determined by Proposition 2, since
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Fig. 5. Strategic MIMO wiretap game for ,
as a function of the transmit power at Alice (a)

Resulting secrecy rates (b) Optimal mixing probabilities.

Fig. 6. Payoff versus antenna ratio for fixed transmit powers

and .

a pure-strategy NE results. We see that it is always beneficial

for Alice to move second especially as Eve’s jamming power

increases, which agrees with intuition.

Finally, in Fig. 8 we compare the equilibrium outcomes of

the extensive-form games with perfect and imperfect informa-

tion as a function of , with . The no-information

Fig. 7. Extensive-form games with perfect information,
.

Fig. 8. Extensive-form games with perfect information, ,
.

lower bound is given by the strategic game mixed-strategy NE.

For the given choice of parameters, Alice is not significantly

disadvantaged when she moves first in the idealized sce-

nario of perfect information. In sharp contrast, a carefully de-

signed hypothesis test allows Alice to significantly improve her

payoff in given a noisy observation of Eve’s move, as

compared to the no-information case. Since in this

example, an increase in Alice’s transmit power also implies an

increase in Eve’s power, which aids the hypothesis test at Bob

and thus Alice has a better estimate of Eve’s move. On the other

hand, Eve’s hypothesis test does not show the same improve-

ment as increases since the ratio between data and artificial

noise power remains virtually the same.

VI. CONCLUSION

We have formulated the interactions between a multi-an-
tenna transmitter and a dual-mode eavesdropper/jammer as a
novel zero-sum game with the ergodic MIMO secrecy rate as
the payoff function. We derived conditions under which Nash
equilibria exist and the optimal user policies in both pure and
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mixed strategies for the strategic version of the game, and we
also investigated subgame-perfect and sequential equilibria
in the extensive forms of the game with and without perfect
information. Our numerical results showed that a change in a
single parameter set while others remain constant can shift the
equilibrium from a pure to a mixed NE outcome or vice versa.
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