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Abstract

This work describes a Java based development platform
which is intended to support ad hoc network researchers
in application and protocol design. Software development
within this environment is expected to follow a bottom up
approach. Basic functionality is implemented in elemen-
tary components which can be combined to more complex
ones by using well defined interfaces. With dynamically
changing network links being rather the common case than
a failure situation, asynchronous communication has been
selected as the main communication paradigm within this
platform. Reusability of components in different execution
contexts by providing an appropriate machine abstraction
is a further important design decision which drove the plat-
form development. Code written once can be executed in a
pure simulation mode, in a hybrid setting with real devices
being attached to a running simulation and, finally, in a set-
ting using real devices only. Software development follow-
ing this three-tier development process paired with the plat-
form’s rich visualization features emerged to significantly
ease the burden of debugging and parameterizing in such
highly dynamic and inherently distributed environments. In
conjunction with a core middleware platform a rich set of
generic services has been implemented with the most im-
portant ones being described in this work. Several appli-
cation programs have already been implemented on top of
these services. These applications which are described in
this work as well serve as a proof of concept for both the
platform itself and the utilized set of generic services.

1 Introduction

Future paradigms as ubiquitous and pervasive comput-
ing rely on countless mobile devices interacting among one
another using wireless communication. Groups of these de-
vices may form ad hoc networks at any time. These net-
works can be divided into three general classes. (1) Pure
infrastructureless networks which totally rely on other mo-
bile devices using multi-hop routing for distant interactions,
(2) single-hop ad hoc infrastructure using wireless commu-
nication as the last hop into a more reliable backbone net-

work and (3) hybrid networks mixing these two types. Hy-
brid networks integrate infrastructure to improve reliability
of mobile multi-hop ad hoc networks. Beside “traditional”
infrastructure such as WLAN access points or 3G networks,
it is also possible to think of mesh networks or even sin-
gle installed mobile devices to provide infrastructural duties
selforganized.

In all the described scenarios the mobile and wireless
network parts are characterized by limited energy resources,
a broadcast based communication media, and a dynami-
cally changing network topology due to device mobility or
energy conserving sleep cycles. Software development in
such an environment requires new tools and programming
paradigms which address the special needs under these
harsh conditions. In addition, implementing and evaluating
applications and algorithms in a mobile ad hoc environment
is an extensive task when using real mobile devices in field
trials. A large amount of devices are needed and of course
enough people to handle them. Thus, it is very hard to ob-
tain reproducible scientific results. Using network simula-
tors for testing and evaluating network protocols for multi-
hop ad hoc networks is state of the art. Most of these simula-
tors are not intended to implement applications on top of the
simulated network. Moreover, testing applications solely in
a simulated and thus idealized environment may produce
misleading results or interpretations. A promising approach
is the three step development process originally proposed in
[25]. Applications are implemented, tested and evaluated
in a simulated environment first. Second, the application is
tested with real user behavior but still in a simulated envi-
ronment. Finally, dedicated field trials are used as proof of
concept.

The JANE development environment described in this
work can be used to implement and test protocols and
applications by following the described three-tier design
paradigm. Component based design and asynchronous
communication among components are forming the key in-
gredients of the JANE development environment. The ap-
proach is motivated by the observation that realizing a “tra-
ditional” view of the network stack and stream oriented syn-
chronous communication does not cope well with the ex-
treme dynamics of an ad hoc environment. For instance, a



process blocked at a stream in order to obtain data from an-
other mobile device might frequently be tied up with error
handling due to stream disconnection. Error handling, how-
ever, should be an exception and not the general case. Event
based programming perfectly fits in a frequently chang-
ing environment since applications and protocols can adapt
immediately when the surrounding of a device changes.
Blocking in contrast requires a timeout to occur before the
blocked entity can be transferred into the next state (e.g. to
realize that the stream sender is no more available).

For ad hoc networks it is a well established fact that
ISO/OSI protocol layers require cross layer communication
which contrasts the original idea of hiding all protocol pe-
culiarities. For instance, in an ad hoc scenario neighbor-
hood information maintained at the MAC layer should be
provided to upper layers as well. This avoids unnecessary
message exchange in order to build up the same view at a
higher layer. The component based design followed by the
JANE environment takes the idea of cross layering one step
further. Communication among components is possible by
using any handler method which has been published at the
device. Components themselves are not explicitly layered.
This follows implicitly from the components functional de-
pendencies.

The rest of this paper is organized as follows: The first
section introduces the JANE architecture. Section 3 intro-
duces JANE’s network abstraction and the implementations,
Section 4 introduces a generic routing framework, and Sec-
tion 5 a generic neighbor discovery service The three JANE
execution modes, simulation, hybrid, and platform, are de-
scribed in Section 6, 7 and 8 respectively. Some application
examples which have been realized using JANE are shortly
sketched in Section 9. Related work is given in Section 10
and the paper is concluded with Section 11.

2 The JANE Architecture

In JANE, everything is a service. This includes applica-
tion components, basic middleware services, network lay-
ers, routing algorithms, and even hardware such as GPS
receivers are represented as a JANE service. Services are
strict components and cannot be accessed directly. Commu-
nication with other services is only allowed using an event
based communication mechanism provided by an operat-
ing system abstraction. Thus, each device runs a couple of
services, locally interacting using asynchronous signals and
events. Also the ad hoc network is modeled using event-
driven services. JANE networks provide asynchronous mes-
sage oriented communication with other devices. Message
sending and receiving is mapped to the local event based in-
teraction primitives. This model perfectly fits to the extreme
event-driven environment of mobile ad hoc networks.
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Figure 1. Service interaction in a JANE simu-
lation run.

2.1 JANE Services

A service component consists of at least one Java object
which provides methods for event handling. These can be
arbitrary methods with no return value. Events can be gen-
erated by other services, by the service itself or by an op-
erating system component. By exporting interfaces or ad-
ditional event handling objects other services are enabled
to trigger these methods. At basic, the main service object
provides a start and a finish method triggered by the operat-
ing system. A service is able to generate new events using
the operating system. For triggering itself, it can start and
stop timeouts. For triggering others, it must use the operat-
ing systems service interaction component. Each service is
uniquely identified, so that it can be addressed by others.

As depicted in Fig. 1, JANE distinguishes three service
types: runtime service, simulation service and global ser-
vice. A runtime service can be executed in all JANE envi-
ronments while a simulation service has access to simula-
tion and thus global knowledge. This includes exact device
positions of all devices, exact simulation time, simulation
control and visualization settings. Moreover, this service
type is able to generate events for services on other devices
using the same asynchronous service interaction primitives
as used for local interaction. Thus, it is possible to im-
plement network services based on generating events on
neighboring devices. Simulation services are also used to
implement services that avoid computational expensive net-
work load using global knowledge and direct device inter-
action. This is also needed, when services are evaluated
and some necessary services should not influence simula-
tion results. In contrast to the other services which are al-
ways assigned to a mobile device, global services are sim-
ulation services which are instantiated only once within the



Local
Event
Queue

Global
Event
Queue

Platform Core Simulation Core

Device
Move-
ment

Services

Manager
Service

Timer

Service
Interaction System

Timer Execution
Manager

Simulation
Knowledge

Hybrid Core

JANE Operating System

Figure 2. The Architecture of the JANE oper-
ating system.

simulation. These services are mapped to each device. As
simulation services, these are also used to realize function-
ality based on simulation and global knowledge but using a
central approach not a distributed. Other purposes are real-
izing global visualization for painting background graphics
or implementing global statistics. The services, in particular
runtime services, do not see any difference between these
service types when interacting. For any service type it is
always possible to find out the service identification of the
service causing the execution of an event handler. Simula-
tion and global services can also retrieve the hosting device
of the initiating service. This enables them to reply directly
to the device they received an event from.

2.2 Operating System Abstraction

The event driven core of a JANE device is hidden in an
operating system abstraction (see Fig. 2). In contrast to
other simulation environments, it is not possible to access
the event queue or other simulation internals directly. Ser-
vices are implemented on top of this operating system and
thus can easily be ported to other environments. The basic
duties of the JANE operating system are service manage-
ment, service interaction, event execution management and
timeout management. The service interaction directives are
described in section 2.3 in detail.

Service management handles service starting and shut-
down at runtime and at device startup. Each service is
able to start and shutdown other services. To lookup other
services for interacting, a simple service discovery mecha-
nism is provided. This is based on the Java class hierarchy
and lists all identifications of services implementing a given
class or interface.

Instead of adding events to the simulation event queue
directly, a service is able to set and remove timeouts. This
enables a service to generate events by itself, e.g. to realize
periodic tasks or to timeout communication tasks. Timeouts
are set using time deltas relative to the device’s local clock.

The execution manager schedules the events on a device.
Here, it is possible to reorder contemporary events, e.g. by
using service priorities. The current implementation uses
a FIFO ordering. The execution manager also ensures that
every event is executed atomic and that each service handles
only one event at a time.

2.3 Service Interaction

JANE provides two types of asynchronous service inter-
action: (1)Signaling and (2) event firing and catching.

A service signal addresses an event handler object using
a known receiver identification and calls asynchronously a
public method of the receiving object. By default a service
can be addressed by signals using its service ID. Addition-
ally, every service is able to register objects for signal re-
ceiving. The signal receiving event is executed in the con-
text of the receiving service (also in the case of registered
handler objects). To keep things simple, it is possible to ex-
port interfaces for the service and its event handler objects.
Other services can request signal proxies automatically gen-
erated by the operating system using the exported interfaces.
Thus, a service can send signals to another service and asyn-
chronously execute a signal handler method by calling ex-
actly the same method on the generated signal proxy. To
reply to an asynchronous call, the sender can pass callback
objects. The receiver gets a signal proxy as a method ar-
gument, which also generates asynchronous signals that are
send back again. Thus, also more complex interactions can
easily be implemented. An example is a message status han-
dler for network communication where the current status of
a message propagation task is signaled asynchronously.

A service can also interact with others by firing a service
event. These events are not addressed to a specific receiver
as a signal. Instead, other services can register event han-
dlers which are called when such an event occurs. To spec-
ify the events which are of interest event templates are used.
A fired event is matched to all registered templates imple-
menting the same class or one of it’s superclasses. Register-
ing a superclass template can be used to receive all derived
events. An event object is matched using its attributes. A
template attribute with a null value matches all possible val-
ues. Initialized attributes must be equal to the correspond-
ing event attribute. In case of a Java Class attribute, the
instanceof relationship is used instead. By default, an event
contains the unique identification of the sender and its Java
class. Thus, a receiver is able to specify the sender by pro-
viding one of the interfaces the sender implements. It is
possible to enable template matching also for every event
attribute given as Java object. The template matching is re-
stricted by a given reflection depth, which is one (only ser-
vice event attributes are matched) by default. Using a higher
reflection depth causes additional computational load. But
a fired event is only reflected to the maximum depth of
all registered templates of the same event type. The regis-



tered event handler object can implement a default handler
method which is able to handle every event type. Or it can
implement an event handler interface specified by the event
as it is known from signals. Thus, the event can execute the
correct method and pass all necessary event attributes. The
event handler does not need to cast the event and it is possi-
ble to implement event handler methods for different events
within one object.

3 JANE Networks

In JANE, also a network is implemented as a set of ser-
vices and event handling objects. The main purpose of
JANE is to simulate mobile ad hoc networks but it is also
possible to simulate hybrid settings by starting multiple net-
work services. In a hybrid setting, a wireless ad hoc network
is combined with a wireless infrastructure network. Also
multiple wireless ad hoc networks are possible and devices
can be connected with fixed wired network links. Due to
the open service architecture it is possible and also simple
to realize additional networks beside the ones presented in
this paper.

A JANE network is represented at the link layer. Ba-
sically, it provides asynchronous message oriented unicast
and broadcast communication which addresses direct neigh-
bors in a wireless ad hoc setting. Other services can com-
municate over the network by signaling a message commu-
nication task to one of the running network services. To
retrieve message status events, the client is able to provide a
callback handler which can be signaled by the network ser-
vice. At minimum, a network signals success, failure and
timeout for reliable communication and at least it signals
when a message has been completely processed locally, e.g.
completely put on the media.

Networks can also provide an extended network interface
which is mainly intended for wireless networks. It provides
additional communication paradigms addressing the broad-
cast property of the wireless media. In most wireless net-
works, unicast communication is much more reliable than
broadcasts since the link layer uses acknowledgments to in-
crease reliability. Thus, there is a tradeoff between using
the media’s broadcast property and message reliability. To
cope with this problem, the extended link layer provides re-
liable communication paradigms which also use the broad-
cast property: (1) An addressed multicast sends a message
to a known receiver set in the direct neighborhood and waits
for acknowledge messages from all receivers. In the best
case, the message is transmitted only once. (2) An ad-
dressed broadcast is an addressed multicast and addresses
also a known receiver set but the message is also received
and processed by all other devices within the senders broad-
cast region. When a subset of the neighboring devices is
known, a broadcast to all neighbors is therefore much more
reliable. A special case addresses only one device. This is a
unicast while all receiving neighbors are implicitly set into

promiscuous mode, e.g. using an additional header flag.
JANE networks provide configuration at message level.

Other services are able to change the network’s behavior
for each message task. Usage scenarios are the reduction
of signal strength while broadcasting and the adaptation
of timeouts and retries when using reliable communication
paradigms. Thus, it is possible to adapt the network very
dynamically and not only globally for all services.

For simulating network communication, a message must
specify its size. This reduces computational load and also
enables the developer to use simple message implementa-
tions which are not necessarily optimized for network com-
munication. The developer can also piggyback additional
e.g. statistical data which should not increase the message
size. Additionally, messages are able to define arbitrary
shapes for network visualization. Received messages are
delivered as events, so that a service must explicitly regis-
ter itself or an event handling object for message reception.
The event receiver has also access to an enriched message
header which also provides signal strength respectively dis-
tance information of the message sender.

For simulating wireless ad hoc networks JANE currently
provides three network implementations with increasing
simulation detail: a collision free and a shared network
model and an implementation of the IEEE802.11 MAC pro-
tocol. For hybrid settings it provides a simple wireless
single-hop infrastructure and a simple wired network.

3.1 Linkcalculator

The JANE simulation core provides a link precalculation
where network implementations can be based on. Depend-
ing on a maximum communication range, this component
generates events when a device comes into communication
range of another device. These events are calculated from
mobility data of the mobility sources. Since devices are
moved on straight lines, exact link establishment events can
be calculated easily. Link information and link events are
provided to simulation services. Network services can thus
depend their decisions on a reduced device set or use these
links directly without any adaptation. Precalculation im-
proves the simulation performance in large network scenar-
ios where the average links per device is lower than the total
amount of devices or when communication link changes are
less frequent than communication events on each device in
average.

3.2 Collisionfree Network

The simplest network implementation models the wire-
less ad hoc network as spontaneous but reliable unidirec-
tional links between neighboring devices with arbitrary but
circular communication ranges. Thus, a message is only lost
when a link breaks down due to device mobility. Moreover,
this network does not simulate a shared media. Unicasts



are also delivered over unidirectional links but are only sig-
naled as successful, if the receiver has a link to the sender
for “virtual" acknowledgement. The network is realized as
global service and is based on the exact linkcalculator links.
Devices that like to take part within the network must start a
local service that registers themselves within the global ser-
vice. To simulate packet losses when devices are mutually
within their communication ranges, the network addition-
ally asks an exchangeable component which can base the
packet loss decision on the positions and communication
ranges of the two devices, as well as on arbitrary random
distributions.

This network is mainly intended for simulations where
device mobility patterns or spontaneous network structures
are the main focus. Moreover it provides fast simulation
runs since the overhead for network simulation is very low.
For instance, a usage scenario for this type of network is
measuring the hop count of a message needed from sender
to receiver using a geographic routing protocol [17]. No
detailed network simulation is needed in this case.

3.3 Shared Network

This network models the wireless ad hoc network as
a shared medium with arbitrary circular communication
ranges. No radio propagation model is used. Message re-
ception only depends on the sender’s communication range.
To avoid collisions, an idealized carrier sense and RTS/CTS
mechanism is used. The coordination of the concurrent
media access is achieved using global knowledge, which
avoids concurrent access using a fair scheduling. The ideal-
ization leads to reliable unicast communication in fully con-
nected and stationary networks. Broadcast messages can be
lost when the hidden terminal problem occurs, i.e. no car-
rier sense is possible. Unicasts can be lost due to mobility
which causes link breaks or when a receiving device comes
into communication range of another currently sending de-
vice. As the collision free network, this network is also re-
alized in a global service on top of the linkcalculator. It can
also use a randomized message reject component to simu-
late message losses.

Due to the simple coordination function and thus low
simulation overhead, this network is also used to achieve
fast simulation runs. This implementation is used when the
behavior of a shared network is needed, but the main focus
is still on device mobility and network structure. Regions
with a higher device density are simulated more realisti-
cally in particular when addressed broadcast is compared
with unicast communication. An example scenario is the
en-passant communication (see section 9.1) where devices
efficiently exchange data objects while passing each other.
The device mobility is the main focus but also the usage of
the media’s broadcast property is important.

3.4 802.11 MAC

JANE also contains an implementation of the
IEEE802.11 standard for ad hoc networks. The im-
plementation is divided into three services: the medium,
the physical layer and the MAC layer. A global service
simulates the radio propagation model of the shared
medium, e.g. a two-ray-ground model. It uses discrete
slots for calculating the receive respective the interference
signal strength observed on other devices which is signaled
to the device’s local physical layer services. Due to all
observed signal strength, the physical layer decides whether
a signal is received or not. Like the ns2 [14] physical layer
implementation, it also regards capture effects, so that a
signal is received, when the signal to noise ratio is greater
than a specific threshold. The MAC layer implements only
the ad hoc part of the IEEE802.11 standard. The sending
of MAC frames is mapped to turning the radio on for a
time delta calculated from the frame length and the used
data rate. As mentioned above, messages in JANE always
provide their size for network simulation.

Additionally to the standard, the implementation pro-
vides also the extended link layer directives. This is
achieved by an implicit promiscuous mode. The sender
sets an additional flag within the MAC header, so that a
unicast is received by all devices in communication range.
In a piggybacked header, all other receivers are listed and
a flag indicating addressed broadcasts or addressed multi-
casts. The additional receivers acknowledge the received
message with a link layer unicast. The possibility of ex-
tending the 802.11 MAC protocol for supporting addressed
multicasts and broadcasts directly has not yet been investi-
gated. This network can also be configured on a per mes-
sage basis. Currently, signal strength variation, frame retry
counters and timeout deltas can be adapted for each message
that is communicated. Simulating the network with such a
high detail causes very expensive simulation runs. But for
investigating routing protocols or also regarding link layer
effects, such a detailed simulation is necessary.

3.5 Wireless Infrastructure

For allowing simulations of hybrid network scenarios, a
wireless single-hop infrastructure network is contained in
JANE as well. It consists of two runtime services and two
global services. To declare a device as a part of the infras-
tructure, a base station runtime service is started. They are
positioned at fixed places and are connected to each other,
independent of their distances. A governing global service,
the base station network service, manages these devices and
forwards messages between them.

Other devices, running a client runtime service, can
move freely around and are connected to a base station,
when they are located in sending range (see Fig. 3). An-
other global service, the client network, organizes the con-
nections between clients and base stations and manages the



Figure 3. A hybrid scenario showing three
base stations and seven mobile devices. Cir-
cles represent sending ranges and lines rep-
resent connections.

links provided by JANE’s linkcalculator in a network graph.
Furthermore it allows queuing of messages, which can be
used to simulate erroneous behavior like lost or delayed
messages and congestion. Packet collision and changing of
transmission ranges are laid aside purposely, thus every de-
vice has an unchanging sending capacity. In other words,
the medium is not shared. JANE’s ability to combine differ-
ent network protocols in the same simulation allows adding
of other protocols as required. When the focus lies on the
mobility of devices, this abstraction is sufficient.

To transmit a message, a device sends a unicast to the
base station, to which it is currently linked. The message is
forwarded internally in the base station network service to
the base station to which the receiver is linked to and ob-
tained finally via unicast. If the receiver is currently not
available, types of messages can be specified, which are
stored on the base station until the receiver finally arrives.
Broadcasted messages reach all other devices linked to the
same base station, but are not forwarded by the base sta-
tion, thus a cell broadcast. If a device moves, it will leave
the sending range of its base station eventually, but will be
logged into another one immediately, if there is one avail-
able. This handover between base stations happens without
effect on message transfers. This network can be used as a
simple implementation of a UMTS network.

3.6 Fixed Infrastructure

Based on the collision free network JANE provides also
a wired network model. Fixed links between devices can be
added in advance to the linkcalculator and the links are sim-
ulated as permanent links within the collision free network.

Thus, messages can be send completely reliable over these
links. But as the wireless implementation, this implementa-
tion can only address direct neighbors at the link layer and a
routing protocol is needed for addressing an arbitrary device
within this network.

It is still possible that devices with fixed links are mobile
but the normal setting is to use fixed positions for these de-
vices. To include a device into the network it has to register
itself at this global service.

4 Generic Routing Framework

Reliable end-to-end communication between a source
and one or a set of destination devices forms a basic com-
munication primitive which is prevalent in many ad hoc net-
work applications. The choice of the appropriate routing
protocol to enable message transport from source to destina-
tion depends on the network characteristics. A non dynamic
network might be addressed by proactive routing protocols
building up a routing infrastructure which, once installed,
may change very infrequently and thus produce a minimum
amount of control overhead. However, as dynamism in-
creases proactive routing should be exchanged by reactive
routing which is setting up a routing path only if commu-
nication between two end devices is required [9]. Finally,
when location context is available due to GPS, for instance,
the application of highly scalable geographic routing proto-
cols [16] might be a good choice. Summarizing, as ad hoc
network properties like dynamism or location context may
vary both spatially and temporally, an ad hoc networking
environment should provide a tool box of different routing
protocols which might transparently or even explicitly be
selected in order to fit the needs of the current ad hoc net-
working scenario.

The JANE environment follows a routing approach
which enables the implementation of new and the combina-
tion of existing routing algorithms in a uniform way. This is
achieved by providing a generic routing service which im-
plements the common routing functionality, including mes-
sage queuing and interfacing with a one hop communica-
tion service (e.g. the link layer service). The characteristic
of the desired routing protocol will be determined by rout-
ing algorithms being separate services running on top of the
generic routing service. These algorithms will decide the
next forwarding device (or forwarding devices), and will tell
the routing service by using the appropriate signal, where to
forward the message next.

In order to start message forwarding any service using
the generic routing service has to obtain a routing header
from the desired routing algorithm. Routing header and
payload are provided to the routing service which is respon-
sible to invoke the routing start method of the routing al-
gorithm matching the header. For this purpose, a routing
header has to store the service ID of the routing algorithm
which is responsible to handle it. This mechanism is used



for message reception during routing as well. Whenever a
message arrives at the device it is first passed to the generic
routing service, which in turn stores the payload in a mes-
sage queue and passes the routing header to the appropriate
routing algorithm by using the routing algorithm ID stored
in the routing header.

The routing service provides the routing algorithm with a
set of commands which can be used by a routing algorithm
in order to determine the next routing action. The routing
service commands drop, ignore, and deliver can be used
in order to terminate routing of the currently handled mes-
sage. At this, drop and ignore will simply remove header
and payload from the routing service’s message queue. De-
liver does the same, but causes the routing service as well
to deliver the message to its intended destination service,
which has to reside on the current device. Distinguishing
between drop and ignore might be necessary for protocols
which are allowed to receive a message but need not to take
any further forwarding action. For instance, a device using a
routing protocol flooding a message towards a final destina-
tion might receive a message more than once and has, thus,
to ignore all message copies received more than once. In
contrast, drop will be issued by a routing protocol whenever
the message can’t be forwarded further on due to a routing
failure.

When deciding to forward a message to the next hop the
routing algorithm might use three possible primitives. Uni-
cast can be used to send the message to exactly one reach-
able neighbor device, multicast will address a subset of all,
and finally broadcast can be used to send the message to
all one hop neighbors. At this, the routing algorithm gets
informed by the generic routing service when the message
was completely passed onto the wireless channel. In ad-
dition, for reliable forwarding the generic routing service
might detect a forwarding error when a receiver is no more
available. In this case the routing algorithm is informed
by issuing its forwarding error handler routine. Finally,
if the underlying one hop communication service supports
promiscuous mode, a routing algorithm will be informed by
all received routing messages sent by any neighboring de-
vice.

As an additional feature the generic routing service pro-
vides a multimodal protocol design as well. For instance,
combining protocols is reasonable for localized geographic
routing which often employs a combination of a greedy
routing and a planar graph recovery strategy [16]. Recovery
is invoked whenever greedy routing fails. The generic rout-
ing service implements this principle in a general way by
providing a delegate command. In case of a routing failure
a routing protocol can use this command in order to instruct
another existent routing algorithm to continue handling the
message. However, selecting the right protocol is not part
of the generic routing service but has to be decided by the
routing algorithm itself. This is accomplished by providing

the header of the desired algorithm to the routing service.
The generic routing service in turn only serves as the media-
tor between the delegation source and destination algorithm.
Note that the delegation mechanism is not only useful to re-
cover from routing failures, but might also be used to switch
between protocols explicitly. For instance, in a Geocast sce-
nario (i.e. all devices within a certain area are the message’s
receivers) a message might first be sent towards the destina-
tion area by using a single path geographic or even topology
based protocol. On arrival at the target border the routing
service might be instructed to switch to a restricted flooding
of the devices located within the target area.

5 Neighbor Discovery

The majority of ad hoc routing protocols, for instance,
require a permanent view on the one hop neighbor devices
which are available at the moment. This is accomplished by
periodically exchanging short beacon messages which keep
the current entries in a neighbor list alive. When a bea-
con message from a specific neighbor is no longer received,
the neighbor entry is removed from the neighbor list again.
Some routing protocols require more information than the
current availability of neighbors. For instance, devices run-
ning geographic routing protocols need to exchange in-
formation about the current physical location among each
other. Information about neighbor devices is not only of in-
terest from a routing point of view but may be required in
certain application scenarios as well. For instance, an appli-
cation might automatically exchange an electronic business
card with other users which are immediately reachable in
the one hop neighborhood and which matches a certain user
profile.

In order to save energy resources and communication
bandwidth it is reasonable to avoid each protocol and appli-
cation to implement its own beaconing mechanism. In ad-
dition, factorizing out a common functionality which is im-
plemented in one generic service is likewise a good software
design. The JANE platform provides two main abstractions
in order to provide a permanent view on all neighbor devices
in vicinity. Determining the beacon intervals and interfac-
ing with the network in order to send beacons to all imme-
diate one hop neighbor devices is accomplished by the bea-
coning service. The service keeps a simple data structure,
which stores all neighbor devices it reached a beacon mes-
sage from, and removes neighbors after a certain timeout
interval. At this, beaconing period and the timeout interval
depend on the implementation of this service. For instance,
these times might be fixed, randomized, or depending on the
current network dynamic.

Any service implementing the beaconing service inter-
face has to provide a method which enables other services
to append data to each beacon message. With this method
several protocols can use a running beaconing service in or-
der to exchange their data among the neighboring devices.



Since the beaconing service just provides information about
current available one hop neighbor devices, providing ad-
ditional information like location information and storing
locally available neighbors, which are reachable in more
than one hop has to be accomplished by additional services
running on top of the beaconing service. Implementations
providing this service can be found in the JANE neighbor
discovery package. The common interface of a neighbor
discovery service provides methods in order to request ad-
dresses and data items known about neighbor devices in
vicinity. At this, data can be requested by providing the
neighbor discovery service a data filter. The method will
return only these stored data items which are matching the
provided filter.

In order to keep the exchanged messages small, a neigh-
bor discovery service is not responsible to provide a com-
plete local view on the network graph. Instead, a service
may only request the set of neighbors which are reachable in
a certain amount of hops. For one hop neighbors, however,
a neighbor discovery service provides the devices which can
be reached using this device as a gateway. In a reverse way,
for a given neighbor device the set of gateway devices can
be requested as well. More precisely, for a destination de-
vice which is an i-hop neighbor, this method returns those
1-hop neighbors which can reach the destination in i − 1
hops.

The current JANE neighbor discovery package has two
neighbor discovery implementations. One provides infor-
mation about all neighbors which can reach each other, and
one which provides both information about the one and the
two hop neighbors. A more sophisticated implementation
keeping information about a parameterized number of n hop
neighbors is not implemented so far, but is in principle cov-
ered by the neighbor discovery interface as well.

6 Simulation Core

JANE’s primary duty is to simulate a mobile ad hoc envi-
ronment. As most ad hoc network simulators, also JANE’s
simulation core contains a discrete simulation kernel with
a central event queue. On top of this kernel all other sim-
ulation components have been build. For each simulated
device, the simulation internals are hidden by a simulated
operating system. It maps the operating system components
to the simulation specifics. A device manager is responsible
for the device mobility provided by a mobility source which
will be discussed in section 6.2. It might additionally own a
linkcalculator component as described in section 3.1 in or-
der to speed up the simulation of wireless networks. More-
over, the device manager is responsible for the visualization
of a device into a decoupled visualization component.

6.1 Simulation Operating System

Each simulated device has its own operating system
component. Thus, it is possible to realize different operating

system behaviors on each device. One aspect is the device’s
local clock. It is possible to use the time given by the event
queue, so that all devices have one global time base. An-
other implementation uses randomized drifting clocks, so
that also timeouts with the same delta can have different
simulated durations. The execution manager uses the event
queues zero execution time per event by default, but it is
possible to simulate a fixed or a randomized execution time
for each service event on this device. The timeout man-
ager uses the local clock for timeout delta calculation and
operates directly on the event queue. Timeout handlers are
executed as all other service event handlers by the device’s
execution manager.

The simulation operating system must support all three
service types. Thus it must also provide access to simulation
knowledge. For event generation on other devices it has
direct access to all other devices and thus, for example, can
send signals to services on another device. These events are
handled by the execution manager on the receiving device.

6.2 Device Mobility

Since JANE is intended for a mobile environment, the
simulation core must realize device mobility. At startup,
it is possible to add mobility sources to the simulation. A
mobility source provides enter and move events for a set of
devices. A move event specifies the position of a device
at a given time. The device manager moves the device on
a straight line with a constant velocity from one position
to another within the time delta given by two consecutive
move events. Thus, arbitrary device movement can be ap-
proximated using a sequence of lines.

Beside simple stationary scenarios where device place-
ment follows given rules and simple random waypoint and
random walk variants [10] also more complex mobility
sources have been implemented. The pathnet mobility
source uses a graph given as XML file for device move-
ment. Vertices are crossings or endpoints and contain rout-
ing probabilities to endpoints for outgoing edges. Endpoints
(e.g. rooms) can be arbitrary randomized position genera-
tors and can be entered over at least one graph edge. Edges
can have an arbitrary width so that devices are moved on
a lane and not only on a strict line. Devices are moved on
the pathnet by providing the next endpoint and the moving
speed. The device’s route within the pathnet is chosen at
random due to the given routing probabilities. The endpoint
provides the final position. Pathnet move events can be gen-
erated at random or by a given timetable. The timetable re-
alization groups the device in classes and schedules events
for a set of classes at a set of pathnet endpoints. The device
enters and leaves these events randomized and also one of
the possible endpoints are chosen at random. By combining
different mobility sources, complex mobile settings can be
generated easily.

Some mobility models also provide an interactive set-



ting. There, the devices can also be moved by user in-
teraction with the simulation GUI at runtime. The device
movement is restricted by the underlying mobility models.
Using the pathnet model, the user can only move devices
between pathnet endpoints. This setting is used for interac-
tively “playing” with the mobility scenario during testing or
debugging and also for application demonstration.

At startup, devices can be grouped together. Each device
group is assigned to a mobility source, so that it is possi-
ble to model different device behavior. Each group can be
started with a different set of services. This feature is used
to set up simulation with heterogeneous functionality and
behavior very simple. Device can be stuck to fixed posi-
tions providing selforganized ad hoc infrastructure features
while the rest randomly moves on the plane. Other scenar-
ios are used to analyze applications only on a small subset
of devices while the rest only act as transparent multi-hop
communication routers. Different mobility patterns can also
be used in combination with different simulated user behav-
ior patterns implemented as services on a device. Besides
grouping, it is of course possible to assign each device its
own service set.

6.3 Visualization

For testing, debugging and demonstration JANE pro-
vides extensive visualization possibilities. Every service is
able to visualize its state by providing arbitrary shapes like
lines, rectangles, ellipses or collection of shapes. Shapes
can be defined using simulation positions or by using de-
vice addresses as points. Thus, the network for example is
able to simply paint network links or a message progress of
a transmission between two devices. The shape rendering is
decoupled from the simulation so that it does not influence
the simulation behavior. The rendering unit can use a GUI
canvas (e.g. Java2D and OpenGL [28]) for drawing and, if
desired, the unit can also render to file e.g. as Postscript,
PNG or XML.

Using the visualization is computational expensive and
slows the simulation down. But it gives sometimes better
insights as it can be achieved by evaluating trace files. For
long running statistic evaluation, the visualization can com-
pletely be deactivated. This causes no additional compu-
tation load if the service shape generation is implemented
appropriately by providing the shapes only on demand.

The visualization GUI can be extended to pass user inter-
action to a running simulation. This causes, of course, non
determinism and thus non reproducible simulation runs. But
for testing and also for presentation this is a very helpful
feature. Such user interaction can use the same operating
service abstractions like a global service. A user interac-
tion is therefore able to generate arbitrary events for each
running service on each simulated device. In combination
with a mobility source which also supports user interaction,
it is also possible to influence the device mobility using the
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Figure 4. JANE merges services on extern de-
vice with the services on a simulated device
on a virtual device with a virtual OS. This is
achieved using Java RMI.

visualization GUI.

7 Hybrid Setting

In particular for applications in mobile ad hoc networks,
it is necessary to evaluate and test the application compo-
nents not only with simulated, but also with real user inter-
action. But only a simulation enables the application de-
veloper to test applications using a very large amount of
(simulated) devices. Thus, it is helpful if real devices can
be connected to the simulation and users are able to interact
with others using a real device on a simulated network. This
hybrid setting makes it also possible to integrate simulated-
only devices, e.g. as transparent message routers in a multi-
hop scenario or to represent passive users. Moreover, also
simulated user behavior can be used to create large scenar-
ios for tests with real user interaction.

Real devices are connected to an existing device within
the simulation. The client is able to choose the device or is
assigned to an arbitrary unconnected one. The extern device
can start arbitrary runtime services. Services on the simu-
lated and on the connected real devices are merged trans-
parently as if they were on the same platform (see figure 4).
A service does not see any difference when interacting with
another service. It is possible to start only the non runtime
service within the simulation and the rest on the real device
or letting everything within the simulation and just start an
extern application GUI instead of a service simulating user
behavior. This transparency can easily be achieved due to
the event based interaction between services. Synchronous
operating system calls causes the simulation to stop between
two event executions until it is completely processed, so that
an event stays atomic and no inconsistencies can occur. Ser-
vices and registered event handlers are stored within the ex-



tern operating system and the simulated operating system,
respectively. Only event handler call descriptions are trans-
mitted. These calls are appended to the simulation event
queue or to a thread driven event queue on the extern de-
vice to decouple the operation of simulation and extern de-
vices. This causes, of course, non reproducible simulation
behavior. However, the hybrid scenario is used for real user
behavior which is indeed non deterministic.

The connection is achieved using Java RMI. This enables
the connection of extern devices also over a network. Using
WLAN for connection allows to integrate also small wire-
less devices as PDAs which gives the user a good feeling of
the real live behavior and operation of the application.

8 Platform Core

All implemented runtime services can be tested also in
an execution environment using real devices and a wireless
network interface. This is possible without any modifica-
tion of the services. Thus, the application code can be com-
pletely implemented and tested within a simulated environ-
ment and can afterwards be used on a real device without
any additional effort.

The execution manager of the platform uses a simple
thread driven FIFO queue for contemporary events. Timed
events of the timeout manager are driven by the standard
Java timer system and are queued to the execution manager.
A multithreaded core is also possible but was not needed yet
since only single prototype applications have been tested so
far.

Since the platform does not provide network communi-
cation within the operating system, the network communi-
cation is implemented within a runtime service which maps
the communication events to network communication and
vice versa. The implementation uses UDP unicasts and
broadcasts and maps the extended link layer features to
these primitives. For demonstration purposes, the network
connectivity can be reduced by simply discarding messages
due to virtual device positions and sending ranges.

Messages are serialized using the standart Java object
serialization. The network implementation also allows to
hook in specialized serializer for a more efficient bit pack-
ing. Some of the standard services in particular the beacon-
ing service provides more efficient message packing.

For applications and algorithms using device positions a
service has been implemented which provides the current
device position from GPS or by user interaction. Addition-
ally, a GUI service can visualize the local running services
and if beaconing is used, also the current neighborhood (see
fig. 5).

9 JANE in Action

We have implemented JANE to investigate applications
in mobile multi-hop ad hoc networks in order to derive new

Figure 5. Visualization of geographical clus-
ter based routing and neighbor discov-
ery seen from the perspective of node
136.199.54.252.

selforganizing and new communication patterns in this type
of network. Also several applications were developed us-
ing hybrid networks, combinations of ad hoc with wireless
infrastructured networks. In the past years a couple of appli-
cations have been realized. The experiences and also the ap-
plication needs led to an iteration and extension process that
resulted in the current version of JANE. Exemplarily, some
of these JANE applications and some work-in-progress ap-
plications are sketched in the following sections.

9.1 En-passant Communication

The en-passant communication pattern [19] is used to ef-
ficiently synchronize data objects when devices passes one
another. It is possible that not only two devices are in-
volved in this process, e.g. when two groups pass one an-
other. The data exchange protocol handles this by using
the extended link layer features of JANE. Data objects and
protocol messages are propagated as addressed broadcast.
Thus, all neighboring devices receive and store data objects.
When an object is not needed locally it is stored and pro-
vided altruistically to others. If possible, it won’t be trans-
mitted any more when it is needed locally.

The en-passant communication has also been evaluated
in field trials using JANE’s platform mode (fig.8). Field
trials are very extensive and thus only smaller scenarios with
up to six devices were realized. Although the addressed
broadcast has been realized using only UDP unicasts and
broadcasts, the advantage of this communication paradigm
has been observed.

9.2 UbiSettlers

UbiSettlers [22] is a real-time strategy multi-player
game, running in an ad hoc network in combination with an
infrastructured network. It is roughly inspired by a popular
German board game called ”The Settlers. Every player con-
trols an island and tries to establish an infrastructure, con-



Figure 6. Screenshot of the UbiSettlers game.

sisting of buildings, which are constructed using resources
like Stone, Grain, Iron Ore, Wood and other. The build-
ings again provide bonus on the gathering of resources, thus
enabling players to get more powerful structures. UbiSet-
tlers is working just fine in single-play, but teamwork with
other players is better and in fact emphasized by things like
allowing only collaborating players to construct high-level
buildings like a cathedral. Another way to get additional
resources is trading. Each player is able to send out trade
offers stating a proposal to give some own, not needed re-
sources in return for other resources. Other players receiv-
ing such an offer can respond and establish trading with a
simple handshake model. Devices not running UbiSettlers,
forward messages altruistically, by using an implementation
of the Lightweight Mobile Routing protocol (LMR). The
graphical user interface of UbiSettlers is designed for using
on PDAs in an intuitive way. Every action in the game is
visualized, enabling players to react immediately.

9.3 UbiBay
The UbiBay application [18] realizes auctions solely on

top of a mobile multi-hop ad hoc network. Auctions take
place at so-called marketplaces, geographic locations with
a higher device density. Devices does not need to be at
a marketplace to start or to join an auction. It is possible
to send agents to the location using position based routing
strategies which are hosted by the devices currently located
there. These agents act on behalf of the users and return to
the users device when the auction is finished. Figure 7 de-
picts a screenshot of the ubibay application simulated using
a pathnet mobility model.

9.4 NetNibbles
Basically, NetNibbles is a multi-player variant of the

well-known game Nibbles (also known as Snake) designed

Figure 7. The UbiBay application on top of a
pathnet mobility model. The auction market-
place is located in the middle.

for ad hoc environments. Players control a never stopping
Snake and collect edible objects which lengthen the body of
the Snake permanently. At the same time, they try to avoid
obstacles, such as walls and the bodies of other Snakes from
other players. Multiple players thereby establish a logical
group. Like in most games the players can achieve some
score and they usually want to propagate their high score.
For that purpose, a top ten high score list is introduced and
maintained by a game server residing in a special device.
Every time a player achieves a new high score, which is de-
termined based upon the top ten list stored locally on each
device, that high score list is updated and propagated within
the logical group using ad hoc communication. After termi-
nating a full game session, the central game server will be
updated only once. Due to the fact that different players -
maybe in different groups - can achieve new high scores at
the same time, the high score list might be updated at dif-
ferent places concurrently. The central server finally needs
to conciliate the potentially conflicting different high score
lists, integrating them appropriately.

9.5 HyMN

HyMN (Hybrid Multimedia Network system [5]) is de-
signed for users interested in live multimedia news from
certain events like e.g. Football Championships, Olympic
Games etc. For instance mobile devices from football fans
create an interest group in a local ad hoc network parti-
tion. Multitudes of such groups co-exist e.g. football fans
in pubs, those watching another match, traveling ones, and
more. In each of these cases, a considerable number of de-
vices have shared interests and might join forces in a lo-
cal setting. The devices in the ad hoc network running
HyMN organize themselves in clusters, where the cluster-
heads maintain uplinks to a backbone network in order to
receive multimedia news related to the interests of the ad



hoc members. Thus, the football fans will receive informa-
tion such as small videos, pictures or text messages each
time something interesting is happening during the match.
The received multimedia files remain stored on the mobile
devices and will be provided to devices joining the group at
a later time. For optimization, the HyMN backbone splits
the files into chunks, which are sent concurrently to differ-
ent clusterheads within a single ad hoc network partition.
Until everyone received the complete file, the chunks are
exchanged via Wi-Fi among interested devices.

9.6 Distributed Script

Distributed Script [20] is intended to enable students to
create a script during a university lecture in a distributed
manner. The lecture itself is modeled as a geographic con-
text given by locations and times. Inside a lecture context,
devices are able to communicate over a few hops using a ge-
ographic bounded version of DSR (Dynamic Source Rout-
ing [24]) and geographic bounded broadcasting strategies.
Due to the well known geographic locations, devices lo-
cated there can be addressed using position-based routing
strategies as GCR(Geographic Cluster-based Routing [17]).
Thus, it is also possible for absent students to create con-
sistent parts of a script by communicating with the lecture
context. Newly created material is initially propagated us-
ing SPBM (Scalable Position-Based Multicast [29]) to ad-
dress as much interested students as possible. Missing lec-
ture material is exchanged between neighboring devices di-
rectly, also outside a lecture context when devices passes by
(so-called En-Passant communication [19]).

As all JANE applications which have been developed in-
cluding a graphically user interface also this application can
be used in all three JANE modes. A hybrid mode example
of JANE is depicted in figure 8.

10 Related Work

This section gives an overview over other popular sim-
ulating environments. While comparing them with JANE,
especially the power to build arbitrary working applications
using the vast set of available services emphasizes JANE’s
ability to serve as a middleware.

GloMoSim [8] is a network simulator which focuses on
scalability. It uses the capabilities of the parallel discrete-
event simulation language Parsec [7]. Implemented proto-
cols are build to use a layered approach and standard APIs
are used between different layers, which enables users to
integrate new models easily. Simulation scenarios are de-
scribed via text files. It has various applications, transport
and routing protocols, as well as miscellaneous mobility
schemes. Because of the parallel approach, GloMoSim al-
lows to run simulations with thousands of devices, which
can be visualized either during runtime or later.

QualNet [4] was developed by Scalable Network Tech-
nologies based on GloMoSim. It has a lot more network

models and protocols, as well as more tools to ease creating
simulation scenarios and is sold as a pure sequential and a
parallel version.

Ns/2 [14] is a discrete event based network simulator
written in C++ and probably the best known and widely ac-
cepted simulator for computer networks. The first version
ns/1 was already developed back in 1995, and meanwhile,
it is the best supported simulator available. In the begin-
ning, it did only support stationary networks, but was en-
hanced with mobile ad hoc network abilities in 1998 by the
Monarch Project of the Carnegie Mellon University [23].
Now a huge number of different network protocols, as well
as all popular routing algorithms are disposable, e.g. a com-
plete implementation of IEEE 802.11 [1], as well as differ-
ent projects to integrate UMTS networks [6, 15]. Simula-
tions are defined through scripts written in OTcl [3]. Ns/2
performs the simulation and stores results in a trace file,
which can be analyzed and visualized with external tools,
like the Network Animator “nam” [13]. New protocols are
directly integrated in the source code of ns/2 and are avail-
able in simulation scripts after compiling. However, it is
generally known, that it takes a long time for getting used
to ns/2 [11]. Also it is worth mentioning, that ns/2 scales
quite bad as soon as more than a few hundred devices are
analyzed and its memory requirements are huge.

With ANSim (Ad Hoc Network Simulation) [21], a net-
work simulator was developed at the University of Bruch-
sal, that purposely skips a detailed simulation of the MAC-
Layer and transmitting protocols and concentrates on mo-
bility of devices. The gained amount of processing power
is used to simulate large scenarios as quick as possible. Re-
sults are visualized directly during running time and sce-
nario parameters can be specified in a GUI, which can be
used as a scenario generator for ns/2 and GloMoSim, too.

OPNET Modeler [2] is a commercial simulation envi-
ronment that allows detailed simulations of vast networks.
It provides hundreds of vendor specific and generic device
models. Mobile devices can be placed and moved any-
where in a 3-dimensional area. Its modeling paradigm al-
lows defining the behavior of individual objects at a “Pro-
cess Level”, which are interconnected to form devices at
a “Node Level”. Devices finally are linked at a “Network
Level”. Simulations can be parallelized to use multiple pro-
cessors.

A parallel network simulator for simulating very large
stationary multi-protocol networks is Dartmouth Scalable
Simulation Framework (DaSSF) [26], which is a C++ im-
plementation of the Scalable Simulation Framework (SSF)
API [12]. Parallel simulations with tens of thousands de-
vices are possible using shared and distributed memory con-
figurations on a variety of different architectures.

The Staged Network Simulator (SNS) [30] uses a per-
formance technique, to improve the simulation scale. It is
based upon ns/2, but is able to simulate around 50 times



Figure 8. Screenshot of JANE in hybrid mode running the Distributed Script application. The two
Application GUIs on the right are connected to devices visualized within JANE’s simulation GUI on
the left.

faster on certain scenarios. Thus, it can be used to perform
simulations of very large networks of up to 10000 devices.
The concept is to eliminate redundant computations through
function caching and reuse. SNS supports all protocols that
are implemented in ns/2.

The Georgia Tech Network Simulator (GTNetS) [27] is
a distributed simulator. GTNetS does not use distributed
shared memory as DaSSF. Instead, it allows the creation of
remote links between two devices in different simulators.
Connectivity of such a link is determined after a packet has
been transfered to the receiver’s simulator. GTNetS has ini-
tially been developed as teaching tool since the common
simulators lacks in simple extensibility and ease of use.

11 Conclusion and Future Work

We have presented JANE, an application development,
evaluation and testing environment for mobile ad hoc net-
works. It was pointed out that JANE is more than just a
simulation environment but provides the user a middleware
platform for applications in an event-triggered ad hoc net-
working environment.

JANE is not only intended for pure multi-hop ad hoc net-
works. It is possible to use different network types at the
same time to realize applications for hybrid networks com-
bining pure mobile ad hoc networks with wireless infras-
tructure, like is shown in the UbiSettlers, NetNibbles and
HyMN applications.

The generic routing framework provides standard
position-based and topology-based routing protocols which
can be chosen and adapted by the application for each com-
municated message. This framework can also be used to
combine standard protocols to new, multimodal protocols
as the Distributed Script application does by combining the
position-based GCR with the topology-based DSR.

While the simulation and the hybrid mode of JANE has
been evolved to a productive environment, the platform
mode of JANE has still a proof-of-concept character rather
than a ready to use application platform. The mapping of
the JANE communication primitives to UDP unicasts and
broadcasts does not provide the possibilities of the environ-
ment as it should be. A deeper integration of JANE’s net-
work capabilities within a Linux kernel module is still work
in progress. Although the single threaded platform event-
queue is good enough for application prototype tests and
demonstrations, a multithreaded core is much more suit-
able for realizing large environments or multi-application
tests. The environment is extended continuously. Beside
standard position-based and topology-based unicast rout-
ing protocols currently available within the routing frame-
work, also other protocols, for example multicast protocols,
should be realized. Finally, the proposed local communi-
cation paradigms have not yet been realized within a stan-
dard DCF like 802.11. Since addressed mulitcast/broadcast
is well suited for wireless ad hoc networks it is planned to
adapt the 802.11 MAC or to propose a new DCF for wire-
less ad hoc communication.
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