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1 Introduction and summary of results

Our goal is to develop tools for studying circle compactifications ofN = 4 Super-Yang-Mills

theory on S1 with a general SL(2,Z)-duality twist (also known as a “duality wall”) inserted

at a point on S1. The low-energy limit of such compactifications encodes information about

the operator that realizes the SL(2,Z)-duality, and can potentially teach us new facts

about S-duality itself. Some previous works on duality walls and related compactifications

include [1]–[10].

In this paper we consider only the abelian gauge group G = U(1), leaving the extension

to nonabelian groups for a separate publication [11]. We focus on the Hilbert space of

ground states of the system and study it in two equivalent ways: (i) directly in field theory;
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and (ii) via a dual type-IIA string theory system (extending the techniques developed in [5]).

As we will show, the equivalence of these two descriptions implies the equivalence of:

(i) the Hilbert space of ground states of U(1)n Chern-Simons theory with action

L =
1

4π

n∑

i=1

kiAi ∧ dAi −
1

2π

n−1∑

i=1

Ai ∧ dAi+1 −
1

2π
A1 ∧ dAn ,

on T 2, and

(ii) the Hilbert space of ground states of strings of winding number w = 1 on a certain

target space that contains the mapping torus with T 2 fiber:

M3 ≡
I × T 2

(0, v) ∼ (1, f(v))
, (v ∈ T 2) ,

where I = [0, 1] is the unit interval, and f is a large diffeomorphism of T 2 corre-

sponding to the SL(2,Z) matrix

W ≡

(
kn −1

1 0

)
· · ·

(
k2 −1

1 0

)(
k1 −1

1 0

)
. (1.1)

We will explain the construction of these Hilbert spaces in detail below.

An immediate consequence of the proposed equivalence of Hilbert spaces (i) and (ii)

is the identity

det




k1 −1 0 −1

−1
. . .

. . .
. . .

0
. . .

. . .
. . . 0

. . .
. . .

. . . −1

−1 0 −1 kn




= tr

[(
kn −1

1 0

)
· · ·

(
k2 −1

1 0

)(
k1 −1

1 0

)]
− 2 . (1.2)

which follows from the equality of dimensions of the Hilbert spaces above. This is a known

identity (see for instance [12]), and we will present a proof in appendix A, for completeness.1

Moreover, equivalence of the operator algebras of the systems associated with (i) and

(ii) allows us to make a stronger statement. The operator algebra of (i) is generated by

Wilson loops along two fundamental cycles of T 2, and keeping only one of these cycles

gives a maximal finite abelian subgroup. Let Λ ⊆ Z
n be the sublattice of Zn generated

by the columns of the Chern-Simons coupling constant matrix, which appears on the l.h.s.

of (1.2). Then, the abelian group generated by the maximal commuting set of Wilson loops

is isomorphic to Z
n/Λ. The operator algebra of (ii), on the other hand, is constructed by

combining the isometry group of M3 with the group of operators that measure the various

1The continuum limit of (1.2) with n → ∞ and ki → 2 + 1

n2 V ( i

n
) might be more familiar. It

leads to a variant of the Gelfand-Yaglom theorem [13] with a periodic potential: det[−d2/dx2 + V (x)] =

tr
[

P exp
∮

(√
V + V

′

2V

V
′

2V

−
√
V −

√
V

)

dx
]

− 2 (up to a renormalization-dependent multiplicative constant).
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components of string winding number in M3. The latter is captured algebraically by the

Pontryagin dual ∨(· · · ) of the torsion part Tor of the homology group H1(M3,Z). (The

terms will be explained in more detail in section 4.3.) Thus, ∨TorH1(M3,Z) as well as

the isometry group are both equivalent to Z
n/Λ. Together, ∨TorH1(M3,Z) and Isom(M3)

generate a noncommutative (but reducible) group that is equivalent to the operator algebra

of the Wilson loops of the Chern-Simons system in (i). The subgroup ∨TorH1(M3,Z)

corresponds to the group generated by the Wilson loops along one fixed cycle of T 2 (let

us call it “the α-cycle”) and Isom(M3) corresponds to the group generated by the Wilson

loops along another cycle (call it “the β-cycle”), where α and β generate H1(T
2,Z). The

situation is summarized in the following diagram:

Chern-Simons

Hilbert space on T 2

❅
❅

❅
❅❘

String ground states

on Mapping Torus M3

�
�

�
�✠

�
❅

❅
�

Wilson loops

on β-cycle

Wilson loops

on α-cycle

Isometry group of M3

∨TorH1(M3,Z)

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✂✌

dim

tr

[(
kn −1

1 0

)
· · ·

(
k1 −1

1 0

)]
− 2

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

dim

∼
=

∼
=

=det




k1 −1 0 −1

−1
. . .

. . .
. . .

0
. . .

. . .
. . . 0

. . .
. . .

. . . −1

−1 0 −1 kn




We will now present a detailed account of the statements made above. In section 2

we construct the SL(2,Z)-twist from the QFT perspective, and in section 3 we take its

low-energy limit and make connection with U(1)n Chern-Simons theory, leading to Hilbert

space (i). In section 4 we describe the dual construction of type-IIA strings on M3. In

section 5 we develop the “dictionary” that translates between the states and operators of

(i) and (ii). We conclude in section 6 with a brief summary of what we have found so far

and a preview of the nonabelian case.

2 The SL(2,Z)-twist

Our starting point is a free 3+1D U(1) gauge theory with action

I =
1

4g2ym

∫
F ∧∗ F +

θ

2π

∫
F ∧ F,

– 3 –
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where F = dA is the field strength. As usual, we define the complex coupling constant

τ ≡
4πi

g2ym
+

θ

2π
≡ τ1 + iτ2.

The SL(2,Z) group of dualities is generated by S and T that act as τ → −1/τ and τ → τ+1,

respectively.

Let the space-time coordinates be x0, . . . , x3. We wish to compactify direction x3 on

a circle (so that 0 ≤ x3 ≤ 2π is a periodic coordinate), but allow τ to vary as a function of

x3 in such a way that

τ(0) =
aτ(2π) + b

cτ(2π) + d
,

where W ≡
(
a b

c d

)
∈ SL(2,Z) defines an electric/magnetic duality transformation. Such a

compactification contains two ingredients:

• The variable coupling constant τ ; and

• The “duality-twist” at x3 = 0 ∼ 2π.

We will discuss the ingredients separately, starting from the duality-twist.

The duality-twist can be described concretely in terms of an abelian Chern-Simons

theory as follows. Represent the SL(2,Z) matrix in terms of the generators S and T

(nonuniquely) as (
a b

c d

)
= T k1ST k2S · · ·T knS , (2.1)

where k1, . . . ,kn are integers, some of which may be zero. To understand how each of

the operators T and S act separately, we pretend that x3 is a time-direction and impose

the temporal gauge condition A3 = 0. At any given x3 the wave-function is formally

Ψ(A), where A is the gauge field 1-form on the three-dimensional space parameterized by

x0, x1, x2. The action of the generators S and T on the wave-functions is then given by

(see for instance [14, 15]):

S : Ψ(A) →

∫
e−

i
2π

∫
A∧dA′

Ψ(A′)DA′ , T : Ψ(A) → e
i
4π

∫
A∧dAΨ(A) .

It is now clear how to incorporate the duality twist by combining these two elements to

realize the SL(2,Z) transformation (2.1). We have to add to the action a Chern-Simons

term at x3 = 0 with additional auxiliary fields A1, . . . , An+1 and with action

ICS =
1

4π

n∑

i=1

kiAi ∧ dAi −
1

2π

n∑

i=1

Ai ∧ dAi+1 , (2.2)

and then set

A1 = A|x3=0 , An+1 = A|x3=2π .

The second ingredient is the varying coupling constant τ(x3). Systems with such a varying

τ are known as Janus configurations [16]. They have supersymmetric extensions [17]–[19]
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where the Lagrangian of N = 4 Super-Yang-Mills with variable τ is modified so as to

preserve 8 supercharges. In such configurations the function τ(x3) traces a geodesic in the

hyperbolic upper-half τ -plane, namely, a half-circle centered on the real axis [19]. In this

model, the surviving supersymmetry is described by parameters that vary as a function

of x3, so that in general the supercharges at x3 = 0 are not equal to those at x3 = 2π.

This might have been a problem for us, since we need to continuously connect x3 = 0 to

x3 = 2π to form a consistent supersymmetric theory, but luckily, we also have the SL(2,Z)-

twist, and as shown in [20], in N = 4 Super-Yang-Mills (with a fixed coupling constant

τ), the SL(2,Z) duality transformations do not commute with the supercharges. Following

the action of duality, the SUSY generators pick up a known phase. But as it turns out,

this phase exactly matches the phase difference from 0 to 2π in the Janus configuration.

Therefore, we can combine the two separate ingredients and close the supersymmetric

Janus configuration on the segment [0, 2π] with an SL(2,Z) duality twist that connects 0

to 2π. We describe this construction in more detail in appendix B.

The details of the supersymmetric action, however, will not play an important role in

what follows, so we will just assume supersymmetry and proceed. Thanks to mass terms

that appear in the Janus configuration (which are needed to close the SUSY algebra [19]),

at low-energy the superpartners of the gauge fields are all massive (see appendix B), with

masses of the order of the Kaluza-Klein scale, and we can ignore them. We will therefore

proceed with a discussion of only the free U(1) gauge fields.

3 The low-energy limit and Chern-Simons theory

At low-energy we have to set A1 = An+1 in (2.2), since the dependence of A on x3 is

suppressed. Then, the low-energy system is described by a 2+1D Chern-Simons action

with gauge group U(1)n and action

I =
1

4π

n∑

i,j=1

KijAi ∧ dAj ,

with coupling-constant matrix that is given by

K ≡




k1 −1 0 −1

−1
. . .

. . .
. . .

0
. . .

. . .
. . . 0

. . .
. . .

. . . −1

−1 0 −1 kn




. (3.1)

We now make directions x1, x2 periodic, so that the theory is compactified on T 2, leaving

only time uncompactified. The dimension of the resulting Hilbert space of states of this

compactified Chern-Simons theory is | detK|.

Next, we pick two fundamental cycles whose equivalence classes generate H1(T
2,Z).

Let α be the cycle along a straight line from (0, 0) to (1, 0), and let β be a similar cycle
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from (0, 0) to (0, 1), in (x1, x2) coordinates. We define 2n Wilson loop operators:

Uj ≡ exp

(
i

∮

α

Aj

)
, Vj ≡ exp

(
i

∮

β

Aj

)
, j = 1, . . . , n.

They are unitary operators with commutation relations given by

UiUj = UjUi , ViVj = VjVi , UiVj = e2πi(K
−1)ijVjUi .

[(K−1)ij is the i, j element of the matrix K−1.] In particular, for any j = 1, . . . , n the

operator
∏n
i=1 U

Kij

i commutes with all 2n operators, and hence is a central element. In an

irreducible representation, it can be set to the identity. The Ui’s therefore generate a finite

abelian group, which we denote by Gα. Similarly, we denote by Gβ the finite abelian group

generated by the Vi’s. Both groups are isomorphic and can be described as follows. Let

Λ ⊆ Z
n be the sublattice of Zn generated by the columns of the matrix K. Then, Zn/Λ is

a finite abelian group and Gα ∼= Gβ ∼= Z
n/Λ, since an element of Zn represents the powers

of a monomial in the Ui’s (or Vi’s), and an element in Λ corresponds to a monomial that

is a central element. We therefore map

Gα ∋
n∏

i=1

UNi

i 7→ (N1, N2, . . . , Nn) ∈ Z
n (mod Λ) , (3.2)

and similarly

Gβ ∋
n∏

i=1

VMi

i 7→ (M1,M2, . . . ,Mn) ∈ Z
n (mod Λ) . (3.3)

We denote the operator in Gα that corresponds to v ∈ Z
n/Λ by Oα(v), and similarly we

define Oβ(v) ∈ Gβ to be the operator in Gβ that corresponds to v. For u, v ∈ Z
n/Λ we

define

χ(u, v) ≡ e2πi
∑

i,j(K
−1)ijNiMj , (u, v ∈ Z

n/Λ). (3.4)

The definition is independent of the particular representatives (N1, . . . , Nn) or

(M1, . . . ,Mn) in Z
n/Λ. The commutation relations can then be written as

Oα(u)Oβ(v) = χ(u, v)Oβ(v)Oα(u) . (3.5)

We recall that for any nonsingular matrix of integers K ∈ GL(n,Z), one can find

matrices P,Q ∈ SL(n,Z) such that

PKQ = diag(d1, d2, . . . , dn) (3.6)

is a diagonal matrix, d1, . . . , dn are positive integers, and di divides di+1 for i = 1, . . . , n−1.

The integers d1, . . . , dn are unique, and we have

Z
n/Λ ∼= Zd1 ⊕ · · · ⊕ Zdn ,

where Zd is the cyclic group of d elements. The matrix on the r.h.s. of (3.6) is known as the

Smith normal form of K. The integer dj is the greatest common divisor of all j× j minors

of K. For K of the form (3.1), the minor that is made of rows 2, . . . , n − 1 and columns

1, . . . , n − 2 is (−1)n−2, so it follows that dn−2 = 1 and therefore also d1 = · · · dn−2 = 1.

We conclude that

Gα ∼= Gβ ∼= Zdn−1
⊕ Zdn .
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4 Strings on a mapping torus

The system we studied in section 2 has a dual description as the Hilbert space of ground

states of strings of winding number w = 1 (around a 1-cycle to be defined below) on a

certain type-IIA background. We will begin by describing the background geometry and

then explain in section 5 why its space of ground states is isomorphic to the space of ground

states of the SL(2,Z)-twisted compactification of section 2.

Set

W =

(
kn −1

1 0

)
· · ·

(
k2 −1

1 0

)(
k1 −1

1 0

)
= TknS · · ·Tk2STk1S ≡

(
a b

c d

)
∈ SL(2,Z) .

(4.1)

We will assume that | trW | > 2 so that W is a hyperbolic element of SL(2,Z). (The

case of elliptic elements with | trW | < 2 was covered in [5], and parabolic elements with

| trW | = 2 are conjugate to ±Tk for some k 6= 0, and since they do not involve S, they are

elementary.)

Let 0 ≤ η ≤ 2π denote the coordinate on the interval I = [0, 2π] and let (ξ1, ξ2) denote

the coordinates of a point on T 2. The coordinates ξ1 and ξ2 take values in R/Z (so they

are periodic with period 1). We impose the identification

(ξ1, ξ2, η) ∼ (dξ1 + bξ2, cξ1 + aξ2, η + 2π). (4.2)

The metric is

ds2 = R2dη2 +

(
4π2ρ2

τ2

)
|dξ1 + τ(η)dξ2|

2

where R and ρ are constants, and τ = τ1 + iτ2 is a function of η (with real and imaginary

parts denoted by τ1 and τ2) such that

τ(η − 2π) =
aτ(η) + b

cτ(η) + d
,

thus allowing for a continuous metric.

4.1 The number of fixed points

We will need the number of fixed points of the SL(2,Z) action on T 2, i.e., the number of

solutions to:

(ξ1, ξ2) = (dξ1 + bξ2, cξ1 + aξ2) (mod Z
2) .

Let f : T 2 → T 2 be the map given by

f : (ξ1, ξ2) → (dξ1 + bξ2, cξ1 + aξ2) . (4.3)

The Lefschetz fixed-point formula states that

∑

fixed point p

i(p) =
2∑

j=0

(−1)j tr(f∗|Hj(T
2,Z)) = 2− trW = 2− a− d.

– 7 –
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The index i(p) of a fixed point is given by [21]:

i(p) = sgn det(J (p)− I) = sgn det(W − I) ,

where J (p) is the Jacobian matrix of the map f at p. In our case, i(p) is either +1 or −1

for all p, and therefore the number of fixed points is

|2− trW | = | det(W − I)| = |2− a− d| .

4.2 Isometries

Let v1, v2 ∈ R/Z be constants and consider the map

(ξ1, ξ2, η) 7→ (ξ1 + v1, ξ2 + v2, η). (4.4)

It defines an isometry of M3 if
(
a c

b d

)(
v2
v1

)
≡

(
v2
v1

)
(mod Z) . (4.5)

Set

H ≡W T − I =

(
a− 1 c

b d− 1

)
, v ≡

(
v2
v1

)
. (4.6)

Then, the isometries are given by v = H−1
(
n2
n1

)
for some n1, n2 ∈ Z. The set of vectors v

that give rise to isometries therefore live on a lattice Λ̃ generated by the columns of H−1.

Since H ∈ GL(2,Z) we have Z
2 ⊆ Λ̃, and since the isometries that correspond to v ∈ Z

2

are trivial, the group of isometries of type (4.4) is isomorphic to Λ̃/Z2. Changing basis

to u ≡ Hv, we can replace v ∈ Λ̃/Z2 with u ∈ Z
2/Λ′, where Λ′ ⊆ Z

2 is the sublattice

generated by the columns of H, and the group Giso of isometries of type (4.4) is therefore

Giso
∼= Λ̃/Z2 ∼= Z

2/Λ′ . (4.7)

Its order is

|Giso| = | detH| = |2− a− d|. (4.8)

4.3 Homology quantum numbers

To proceed we also need the homology group H1(M3,Z). Let γ be the cycle defined by a

straight line from (0, 0, 0) to (0, 0, 2π), in terms of (ξ1, ξ2, η) coordinates. Let α
′ be the cycle

from (0, 0, 0) to (1, 0, 0) and let β′ be the cycle from (0, 0, 0) to (0, 1, 0). The homology group

H1(M3,Z) is generated by the equivalence classes [α′], [β′] and [γ], subject to the relations

[α′] = d[α′] + c[β′] , [β′] = b[α′] + a[β′]. (4.9)

Now suppose that (c1 c2) is a linear combination of the columns of H [defined in (4.6)] with

integer coefficients. Then the relations (4.9) imply that c1[α
′]+ c2[β

′] is zero in H1(M3,Z).

With Λ′ ⊂ Z
2 being the sublattice generated by the columns of H, as defined in section 4.2,

it follows that

H1(M3,Z) ∼= Z⊕ (Z2/Λ′), (4.10)

– 8 –
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where the Z factor is generated by [γ] and (Z2/Λ′) is generated by [α′] and [β′]. In partic-

ular, the torsion part is

TorH1(M3,Z) ∼= Z
2/Λ′ . (4.11)

Denote the Smith normal form [see (3.6)] of the matrix H by
(
d′
1
d′
2

)
. We prove in

appendix A that dn−1 = d′1 and dn = d′2, where dn−1 and dn were defined in (3.6). Thus,

combining (4.7) and (4.10) we have

Z
2/Λ′ ∼= Giso

∼= TorH1(M3,Z) ∼= Zdn−1
⊕ Zdn .

The physical meaning of these results will become clear soon.

4.4 The Hilbert space of states

As we have seen in section 4.2, the Hilbert space of string ground states has a basis of

states of the form |v′〉 with v′ ∈ Λ̃/Z2. In this state, the string is at (ξ1, ξ2) coordinates

given by v′. According to (4.7), an element v ∈ Λ̃/Z2 defines an isometry, which we denote

by Y(v), that acts as

Y(v)
∣∣v′
〉
=
∣∣v + v′

〉
, v,v′ ∈ Λ̃/Z2 .

Given the string state |v′〉, we can ask what is the element in H1(M3,Z) that represents

the corresponding 1-cycle. The answer is [γ] + N ′
1[α

′] + N ′
2[β

′], where the torsion part

N ′
1[α

′]+N ′
2[β

′] is mapped under (4.11) to v′. To see this, note that for 0 ≤ t ≤ 1, the loops

Ct in M3 that are given by





(4πs, tv′1, tv
′
2) for 0 ≤ s ≤

1

2

(2π, tv′1 + (2s− 1)t[(d− 1)v′1 + bv′2], tv
′
2 + (2s− 1)t[cv′1 + (a− 1)v′2]) for

1

2
≤ s ≤ 1

[which go along direction η at a constant (ξ1, ξ2) given by tv′, and then connect tv′ to its

SL(2,Z) image tWv′] are homotopic to the loop corresponding to string state |0〉. Setting

t = 1 we find that C1 breaks into two closed loops, one corresponding to string state |v′〉,

and the other is a closed loop in the T 2 fiber above η = 0, which corresponds to the

homology element

((d− 1)v′1 + bv′2)[α
′] + (cv′1 + (a− 1)v′2)[β

′] ,

and this is precisely the element corresponding toHv′ ∈ Z
2/Λ′ ∼= TorH1(M3,Z), as defined

in section 4.3.

We now wish to use the torsion part of the homology to define a unitary operator R(ũ)

for every ũ ∈ Z
2/Λ′. This operator will measure a component of the charge associated with

the homology class of the string. For this purpose we need to construct the Pontryagin dual

group ∨TorH1(M3,Z), which is defined as the group of characters of TorH1(M3,Z) (i.e.,

homomorphisms from TorH1(M3,Z) to R/Z). The dual group is isomorphic to Z
2/Λ′, but
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not canonically. In our construction ũ is naturally an element of the dual group and not

the group itself. We define R(ũ) as follows. For

ũ = (M ′
1,M

′
2) ∈ Z

2/Λ′ , v = (N ′
1, N

′
2) ∈ Z

2/Λ′ ,

we define the phase

ϕ(ũ,v) ≡ e2πi(H
−1)ijN

′
iM

′
j , ũ ∈ Z

2/Λ′ , v ∈ Z
2/Λ′ . (4.12)

This definition is independent of the representatives (N ′
1, N

′
2) and (M ′

1,M
′
2) of v and ũ,

and it corresponds to the character of TorH1(M3,Z) associated with ũ. We then define

the operator R(ũ) to be diagonal in the basis |v〉 and act as:

R(ũ)|v〉 = ϕ(ũ,v)|v〉 , ũ ∈ Z
2/Λ′ , v ∈ Z

2/Λ′ .

From the discussion above about the homology of the string state, and from the linearity

of the phase of ϕ(ũ,v) in ũ and v, it follows that

R(ũ)Y(v) = ϕ(ũ,v)Y(v)R(ũ) . (4.13)

5 Duality between strings on M3 and compactified SL(2,Z)-twisted U(1)

gauge theory

We can now connect the string theory model of section 4 with the field theory model of

section 3. We claim that the Hilbert space of ground states of a compactification of a U(1)

gauge theory on S1 with an SL(2,Z) twist and string ground states on M3 are dual. This

is demonstrated along the same lines as in [5]. We realize the (supersymmetric extension of

the) U(1) gauge theory on a D3-brane along directions x1, x2, x3. We compactify direction

x3 on a circle with a Janus-like configuration and SL(2,Z)-twisted boundary conditions.

We assume that the Janus configuration can be lifted to type-IIB, perhaps with additional

fluxes, but we will not worry about the details of the lift. We then compactify (x1, x2)

on T 2 and perform T-duality on direction 1, followed by a lift from type-IIA to M-theory

(producing a new circle along direction 10), followed by reduction to type-IIA along di-

rection 2. This combined U-duality transformation transforms the SL(2,Z)-twist to the

geometrical transformation (4.2). It also transforms some of the charges of the type-IIB

system to the following charges of the type-IIA system:

D3123 → F13 , F11 → P1 , F12 → F110 , D11 → F11 , D12 → P10 . (5.1)

where Pj is Kaluza-Klein momentum along direction j, Dpj1...jr is a Dp-brane wrapped

along directions j1, . . . , jr, and F1j is a fundamental string along direction j.

Now suppose we take the limit that all directions of M3 are large. The dual geometry

has a Hilbert space of ground states which corresponds to classical configurations of strings

of minimal length that wind once around the x3 circle. This means that the projection of

their H1(M3,Z) homology class on the Z factor of (4.10) is required to be the generator [γ].

The torsion part of their homology is unrestricted. The string configurations of minimal
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length must have constant (x1, x2) which in particular means that (x1, x2) is invariant

under the SL(2,Z) twist, i.e.,
(
a c

b d

)(
x2
x1

)
≡

(
x2
x1

)
(mod Z) .

But this is precisely the same equation as (4.5), and indeed when the isometry that cor-

responds to a vector v ∈ Λ̃/Z2 acts on the solution with (x1, x2) = (0, 0) it converts it to

the solution with (x1, x2) = (v1, v2). The dimension of the Hilbert space of ground states

of the type-IIA system is therefore the order of Giso, which is given by (4.8). This is also

the number of fixed points of the W action on T 2, as we have seen in section 4.1. Since

the number of ground states of the Chern-Simons theory is | detK|, we conclude from the

duality of the Chern-Simons theory and string theory that

| detK| = |Giso| = |2− a− b| .

This is the physical explanation we are giving to (1.2).

5.1 Isomorphism of operator algebras

Going one step beyond the equality of dimensions of the Hilbert spaces, we would like to

match the operator algebras of the string and field theory systems. Starting with the field

theory side, realized on a D3-brane in type-IIB, consider a process whereby a fundamental

string that winds once around the β-cycle of T 2 is absorbed by the D3-brane at some time

t. This process is described in the field theory by inserting a Wilson loop operator V1 at

time t into the matrix element that calculates the amplitude. On the type-IIA string side,

the charge F12 that was absorbed is mapped by (5.1) to winding number along the α′ cycle

(denoted by F110). The operator that correpsonds to V1 on the string side must therefore

increase the homology class of the string state by [α′]. Since the state |v〉, for v = (N ′
1, N

′
2),

has homology class [γ] +N ′
1[α

′] +N ′
2[β

′], it follows that the isometry operator Y(v′) with

v′ = (1, 0) does what we want. We therefore propose to identify

V1 → Y(v′) , for v′ = (1, 0).

By extension, we propose to map the abelian subgroup Gβ generated by the Wilson loops

V1, . . . , Vn with the isometry group generated by Y(v′) for v′ ∈ Z
2/Λ′.

Next, on the type-IIB side, consider a process whereby a fundamental string that winds

once around the α-cycle of T 2 is absorbed by the D3-brane. This process is described in the

field theory by inserting a Wilson loop operator U1 into the matrix element that calculates

the amplitude. On the type-IIA string side, the charge F11 that was absorbed is mapped

by (5.1) to momentum along the β′ cycle (denoted by P11). The operator that correpsonds

to U1 on the string side must therefore increase the momentum along the [α′] cycle by one

unit. We claim that this operator is R(ũ) for ũ = (1, 0). To see this we note that, by

definition of “momentum”, an operator X that increases the momentum by M ′
1 units

along the [α′] cycle and M ′
2 units along the [β′] cycle must have the following commutation

relations with the translational isometries Y(v′):

Y(v′)−1XY(v′) = ϕ(ũ,v′)X , ũ = (M ′
1,M

′
2) ∈ Z

2/Λ′.

– 11 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
0

But given (4.13), this means that up to an unimportant central element, we can identify

X = R(ũ), as claimed. So, we have

U1 → Y(ũ) , for ũ = (1, 0),

and by extension, we propose to map the abelian subgroup Gα generated by the Wilson

loops U1, . . . , Un with the subgroup generated by R(ũ) for ũ ∈ Z
2/Λ′.

In particular, Gα ∼= Gβ ∼= Z
n/Λ implies that (Z2/Λ′) ∼= (Zn/Λ). This is equivalent to

requiring that the Smith normal form of H is

P ′HQ′ = diag(dn−1, dn)

where dn−1 and dn are the same last two entries in the Smith normal form of K. We

provide an elementary proof of this fact in appendix A.

Since the Smith normal forms of H and K are equal, the abelian groups Z
n/Λ and

Z
2/Λ′ are equivalent, and it is also not hard to see that under this equivalence χ that was

defined in (3.4) is mapped to ϕ defined in (4.12). We have the mapping

Oα(v) → Y(v′) , v ∈ Z
n/Λ , v′ ∈ Z

2/Λ′

and

Oβ(u) → R(ũ) , u ∈ Z
n/Λ , ũ ∈ Z

2/Λ′.

The commutation relations (3.5) are then mapped to (4.13).

6 Discussion

We have argued that a duality between U(1)n Chern-Simons theory on T 2 with coupling

constant matrix (3.1) and string configurations on a mapping torus provide a geometrical

realization to the algebra of Wilson loop operators in the Chern-Simons theory. Wilson loop

operators along one cycle of T 2 correspond to isometries that act as translations along the

fiber of the mapping torus, while Wilson loop operators along the other cycle correspond

to discrete charges that can be constructed from the homology class of the string.

These ideas have an obvious extension to the case of U(N) gauge group with N > 1,

where SL(2,Z)-duality is poorly understood. The techniques presented in this paper can be

extended to construct the algebra of Wilson loop operators. The Hilbert space on the string

theory side is constructed from string configurations on a mapping torus whose H1(M3,Z)

class maps to N under the projection map M3 → S1. In other words, the homology class

projects to N [γ] when the torsion part is ignored. Such configurations could be either a

single-particle string state wound N times, or a multi-particle string state. A string state

with r strings with winding numbersN1, . . . , Nr is described by a partitionN = N1+· · ·Nr,

and the jth single-particle string state is described by an unordered set of Nj points on T
2

that is invariant, as a set, under the action of f in (4.3). The counterparts of the Wilson

loops on the string theory side can then be constructed from operations on these sets. A

more complete account of the nonabelian case will be reported elsewhere [11].
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It is interesting to note that some similar ingredients to the ones that appear in this

work also appeared in [23] in the study of vacua of compactifications of the free (2, 0) theory

on Lens spaces. More specifically, a Chern-Simons theory with a tridiagonal coupling

constant matrix and the torsion part of the first homology group played a role there as

well. It would be interesting to further explore the connection between these two problems.
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A A proof of the determinant identity and the Smith normal form of

the coupling constant matrix

Molinari gave an elegant proof [12] to a generalization of (1.2) using only polynomial

analysis. Here we present an alternative basic linear-algebra proof for (1.2). At the same

time we also demonstrate that the Smith normal form of the coupling constant matrix K

defined in (3.1),

K =




k1 −1 0
. . . −1

−1
. . .

. . .
. . .

. . .

0
. . .

. . .
. . . 0

. . .
. . .

. . .
. . . −1

−1
. . . 0 −1 kn




,

is identical to the Smith normal form of

H =W − I =

(
a− 1 b

c d− 1

)
,

where W was defined in (4.1).

We begin by moving the first row of K to the end, to get K ′
1. We have

detK = (−1)n detK ′
1

but both K and K ′
1 have the same Smith normal form. For clarity, we will present explicit

matrices for the n = 5 case. We get:

K ′
1 ≡




−1 k2 −1 0 0

0 −1 k3 −1 0

0 0 −1 k4 −1

−1 0 0 −1 k5

k1 −1 0 0 −1



,
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We will now show how to successively define a series of matrices

K ′
2, . . . ,K

′
n−1 =




−1
. . .

−1

a− 1 b

c d− 1



,

related to each other by row and column operations that preserve the Smith normal form.

At each step, we need to keep track of a 2 × 2 block of K ′
m formed from the elements on

the (n− 1)th and nth rows and the mth and (m+ 1)st columns.

H ′
m ≡

(
[K ′

m](n−1)m [K ′
m](n−1) (m+1)

[K ′
m]nm [K ′

m]n (m+1)

)

At the outset we have

H ′
1 ≡

(
[K ′

1](n−1) 1 [K ′
1](n−1) 2

[K ′
1]n 1 [K ′

1]n 2

)
=

(
−1 0

k1 −1

)
.

As will soon be clear from the construction, the matrix K ′
m has the following block form:

K ′
m =




−Im−1

−1 km+1 −1 ∗ ∗ ∗

−1 km+2 ∗ ∗ ∗

Xn−m−4 ∗ ∗

[H ′
m]11 [H ′

m]12 −1 kn
[H ′

m]21 [H ′
m]22 −1




, (A.1)

where Im−1 is the (m − 1) × (m − 1) identity matrix, ∗ represents a block of possibly

nonzero elements, Xn−m−4 represents a nonzero (n − m − 4) × (n − m − 4) matrix and

empty positions are zero. To get K ′
m+1 from K ′

m we perform the following row and column

operations on K ′
m:

• Add [H ′
m]11 times the mth row to the (n− 1)st row;

• Add [H ′
m]21 times the mst row to the nth row;

• For j = m+ 1, . . . , n, add [K ′
m]mj times the mth column to the jth column.

It is not hard to see that these operations produce a matrix that fits the general form (A.1)

with m→ m+1. Tracking how the bottom two rows transform, we find that for m < n−2,

H ′
m+1 =

(
[H ′

m+1]11 [H ′
m+1]12

[H ′
m+1]21 [H ′

m+1]22

)
=

(
[H ′

m]12 + km+1[H
′
m]11 −[H ′

m]11
[H ′

m]22 + km+1[H
′
m]21 −[H ′

m]21

)
=H ′

m

(
km+1 1

−1 0

)
.

Since, by definition, H ′
1 =

(
−1 0
k1 −1

)
, it follows that

H ′
n−2 =

(
−1 0

k1 −1

)(
k2 1

−1 0

)
· · ·

(
kn−2 1

−1 0

)
.
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It can then be easily checked that the last two steps yield:

H ′
n = H ′

n−2

(
kn−1 1

−1 0

)(
kn 1

−1 0

)
−

(
1 0

0 1

)
.

B Compatibility of the supersymmetric Janus configuration and the du-

ality twist

In this section we describe the details of the supersymmetric Lagrangian. As explained

in section 2, the system is composed of two ingredients: (i) the supersymmetric Janus

configuration; and (ii) an SL(2,Z) duality twist. We will now review the details of both

ingredients and demonstrate that their combination preserves supersymmetry.

B.1 Supersymmetric Janus

Extending the work of [16]–[18], Gaiotto and Witten [19] have constructed a supersymmet-

ric deformation of N = 4 Super-Yang-Mills theory with a complex coupling constant τ that

varies along one direction, which we denote by x3. We will now review this construction,

using the same notation as in [19]. First, the real and imaginary parts of the coupling

constant are defined as

τ =
θ

2π
+

2πi

e2
, (B.1)

It is taken to vary along a semi-circle on the upper half τ -plane, centered on the real axis:

τ = a+ 4πDe2iψ , (B.2)

where ψ(x3) is an arbitrary function.

The action is defined as

I = IN=4 + I ′ + I ′′ + I ′′′

where IN=4 is the standard N = 4 action, modified only by making τ a function of x3,

and I ′, I ′′, and I ′′′ are correction terms listed below. We will list the actions for a general

gauge group, as derived by Gaiotto and Witten, although the application in this paper is

for a U(1) gauge group, and so several terms drop out. The bosonic fields are: a gauge

field Aµ (µ = 0, 1, 2, 3), 3 adjoint-valued scalar fields Xa (a = 1, 2, 3) and 3 adjoint-valued

scalar fields Y p (p = 1, 2, 3). In the U(1) case, Xa and Y p are real scalar fields. In the

type-IIB realization on D3-branes, the D3-brane is in directions 0, 1, 2, 3, Xa corresponds

to fluctuations in directions 4, 5, 6, and Y p corresponds to directions 7, 8, 9. The fermionic

fields are encoded in a 16-dimensional Majorana-Weyl spinor Ψ on which even products

of the 9+1D Dirac matrices Γ0, . . . ,Γ9 act. Products of pairs from the list Γ0, . . . ,Γ3

correspond to generators of the Lorentz group SO(1, 3), while products of pairs from the

list Γ4,Γ5,Γ6 correspond to generators of the R-symmetry subgroup SO(3)X acting on

X1, X2, X3, and products of pairs from the list Γ7,Γ8,Γ9 correspond to generators of the

R-symmetry subgroup SO(3)Y acting on Y 1, Y 2, Y 3. We have the identity Γ0123456789 = 1.
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✲ τ1

✻

τ2

♣

♣

♣

♣♣

♣

♣

♣

✛

r r

a a+ 4πDa− 4πD

τ(2π) τ(0)✶
τ → aτ+b

cτ+d

Figure 1. In the Janus configuration the coupling constant τ traces a portion of a semi-circle

of radius 4πD in the upper-half plane, whose center a is on the real axis. We augment it with an

SL(2,Z) duality twist that glues x3 = 2π to x3 = 0.

The additional terms are

I ′ =
i

e2

∫
d4xTrΨ(αΓ012 + βΓ456 + γΓ789)Ψ ,

I ′′ =
1

e2

∫
d4xTr

(
uǫµνλ

(
Aµ∂νAλ+

2

3
AµAνAλ

)
+

v

3
ǫabcXa[Xb, Xc] +

w

3
ǫpqrYp[Yq, Yr]

)
,

I ′′′ =
1

2e2

∫
d4xTr (rXaX

a + r̃YpY
p) ,

where

−
1

4
u = α = −

1

2
ψ′ , −

1

4
v = β = −

ψ′

2 cosψ
, −

1

4
w = γ =

ψ′

2 sinψ
,

(B.3)

r = 2(ψ′ tanψ)′ + 2(ψ′)2 , r̃ = −2(ψ′ cotψ)′ + 2(ψ′)2 . (B.4)

As we are working with a U(1) gauge group, we will not need the cubic terms in I ′′.

They are nevertheless listed here for reference, and they will become relevant for extensions

to a nonabelian gauge group.

To describe the preserved supersymmetry we follow Gaiotto-Witten and work in a

spinor representation where

Γ0123 = −Γ456789 =

(
0 −I

I 0

)
, Γ3456 =

(
0 I

I 0

)
, Γ3789 =

(
I 0

0 −I

)
,

where I is an 8×8 identity matrix. The surviving supersymmetries are those parameterized

by a 16-component ε16 which takes the form

ε16 =

(
cos(ψ2 )ε8

sin(ψ2 )ε8

)
, (B.5)

where ε8 is an arbitrary constant 8-component spinor.
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B.2 Introducing an SL(2,Z)-twist

Here ψ is a function of x3 such that τ(x3) traces a geodesic on τ -plane with metric |dτ |2/τ22 .

We pick the parameters a and D so that the semi-circle (B.2) will be invariant under

τ →
aτ + b

cτ + d
.

This amounts to solving the two equations

(a− 4πD) =
a(a− 4πD) + b

c(a− 4πD) + d
, (a+ 4πD) =

a(a+ 4πD) + b

c(a+ 4πD) + d
.

The solution is:

a =
a− d

2c
, 4πD =

√
(a+ d)2 − 4

2|c|
,

and is real for a hyperbolic element of SL(2,Z) (with |a+d| > 2). Note that it is important

to have both (a± 4πD) as fixed-points of the SL(2,Z) transformation, so as not to reverse

the orientation of the τ(x3) curve, and not create a discontinuity in τ ′(x3). So, given a,

b, c, d, our configuration is constructed by first calculating a and D, and then picking

an arbitrary ψ(2π) with a corresponding τ(2π) = a+ 4πDe2iψ(2π). Next, we calculate the

SL(2,Z) dual τ(0) = (aτ(2π) + b)/(cτ(2π) + d) and match it to a point on the semicircle

according to τ(0) = a+ 4πDe2iψ(0). The function ψ(x3) can then be chosen arbitrarily, as

long as it connects ψ(0) to ψ(2π). It can then be checked that r and r̃ are continuous at

x3 = 2π.

At low-energy, the mass parameters r and r̃ in I ′′′ make the scalar fields (Xa and Y p)

massive. Note that in principle, the parameters can be locally negative [although this can

be averted by choosing ψ(x3) so that ψ′′ = 0], but the effective 2+1D masses, [obtained

by solving for the spectrum of the operators −d2/dx23 + r(x3), and −d2/dx23 + r̃(x3)] have

to be positive, since the configuration is supersymmetric and the BPS bound prevents us

from having a profile of Xa(x3) or Y p(x3) with negative energy. Similar statements hold

for the fermionic masses in I ′.

B.3 The supersymmetry parameter

As explained in [20], the SL(2,Z) duality transformation acts nontrivially on the SUSY

generators. Define the phase ϕ by

eiϕ =
|cτ + d|

cτ + d
.

Then, the SUSY transformations act on the supersymmetry parameter as

ε→ e
1

2
ϕΓ0123ε .

(See equation (2.25) of [20].)

We can now check that
|cτ + d|

cτ + d
= ei(ψ̃−ψ) , (B.6)
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where ψ̃ is defined by

τ̃ ≡
aτ + b

cτ + d
≡ a+ 4πDe2iψ̃ .

It follows from (B.6) that the Gaiotto-Witten phase that is picked up by the supersymmetry

parameter as it traverses the Janus configuration from η = 0 (corresponding to angular

variable ψ) to η = 2π (corresponding to ψ̃) is precisely canceled by the Kapustin-Witten

phase of the SL(2,Z)-duality twist. The entire “Janus plus twist” configuration is therefore

supersymmetric.

B.4 Extending to a type-IIA supersymmetric background

In section section 4 we assumed that there is a lift of the gauge theory construction to type-

IIB string theory and, following a series of dualities, we obtained a type-IIA background

with NSNS fields turned on. Here we would like to outline how such a lift might be

constructed. We start with the well-known AdS3 × S3 × T 4 type-IIB background, and

perform S-duality (if necessary) to get the 3-form flux to be NSNS. Then, take AdS3 to

be of Euclidean signature and replace T 4 with R
4, which we then Wick rotate to R

1,3. We

take the AdS3 metric in the form

ds2 =
r2

r1r5
(−dt2 + dx25) +

r1
r5

9∑

i=6

dx2i +
r1r5
r2

dr2 + r1r5dΩ
2
3

H(RR) =
2r25
g

(ǫ3 +
∗
6ǫ3) , eφ =

gr1
r5

where ǫ3 is the volume form on the unit sphere, and ∗
6 is the Hodge dual in the six dimensions

x0, . . . , x5 (of AdS3 ×S3), and where r1, r5 are constants. (We follow the notation of [22].)

We need to change variables r → x3, t → ix1 and x9 → ix0, and perform S-duality

(where the r.h.s. of arrows are the variables of section 5). We then compactify directions

x1 and x2 so that 0 ≤ xi < 2πLi (i = 1, 2). As a function of x3, we define the Kähler

modulus of the x1 − x2 torus to be

ρ = i
4π2r21L1L2

x23

Finally, we perform T-duality on direction x5 to replace ρ with the complex structure τ

of the resulting T 2. In an appropriate limit, this gives a solution where τ goes along a

straight perpendicular line in the upper half plane. We can convert it to a semi-circle with

an SL(2,R) transformation.
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