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ABSTRACT

Jasmin is a framework for developing high-speed and high-assurance
cryptographic software. The framework is structured around the
Jasmin programming language and its compiler. The language is
designed for enhancing portability of programs and for simplifying
verification tasks. The compiler is designed to achieve predictability
and efficiency of the output code (currently limited to x64 platforms),
and is formally verified in the Coq proof assistant. Using the super-
cop framework, we evaluate the Jasmin compiler on representative
cryptographic routines and conclude that the code generated by the
compiler is as efficient as fast, hand-crafted, implementations. More-
over, the framework includes highly automated tools for proving
memory safety and constant-time security (for protecting against
cache-based timing attacks). We also demonstrate the effectiveness
of the verification tools on a large set of cryptographic routines.

CCS CONCEPTS

• Security andprivacy→ Software security engineering;Logic
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KEYWORDS

cryptographic implementations, verified compiler, safety, constant-
time security

1 INTRODUCTION

Cryptographic software is pervasive in software systems. Although
it represents a relatively small part of their code base, cryptographic
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software is often their most critical part, since it forms the back-
bone of their security mechanisms. Unfortunately, developing high-
assurance cryptographic software is an extremely difficult task.
Indeed, good cryptographic software must satisfy multiple proper-
ties, including efficiency, protection against side-channel attacks,
and functional correctness, each of which is challenging to achieve:

• Efficiency. Cryptographic software must imply minimal overhead
for system performance, both in terms of computational and
bandwidth/storage costs. These are first-class efficiency require-
ments during development: a few clock-cycles in a small crypto-
graphic routine may have a huge impact when executed repeat-
edly per connection established by a modern service provider;

• Protection against side-channel attacks. In-depth knowledge of
real-world attack models, including side-channel attacks, is fun-
damental to ensure that the implementation includes adequate
mitigation. For example, one must ensure that the observable
timing behavior of the compiled program does not leak sensitive
information to an attacker. Failing to address these considera-
tions is a major attack vector against cryptographic implementa-
tions [1, 12]. Indeed, one prevailing view is that critical code must
adhere to the “cryptographic constant-time” discipline, in partic-
ular its control flow and sequence of memory accesses should not
depend on secrets [12]. High-assurance cryptographic software
must be guaranteed to correctly adhere to this discipline.

• Functional correctness. Specifications of cryptographic compo-
nents are often expressed using advanced mathematical concepts,
and being able to bridge the enormous semantic gap to an effi-
cient implementation is a pre-requisite for the implementor of
a cryptographic component. Moreover, implementations may
involve unconventional tasks, such as domain-specific error han-
dling techniques. Guaranteeing functional correctness in these
circumstances is harder than for other software domains, but
it is critical that it is guaranteed from day 1—contrarily to the
usual detect-and-patch approach—as implementation bugs in
cryptographic components can lead to attacks [18, 23].

Efficiency considerations rule out using high-level languages, since
the codemust be optimized to an extent that goes far beyondwhat is
achievable by modern, highly optimizing, compilers. Furthermore,

https://doi.org/10.1145/3133956.3134078


Programmed in CamlCertified in Coq

Jasmin source

Jasmin

Jasmin

Jasmin

Jasmin-low

Jasmin-lin

Asm

Parser, typechecker, simplifier
Inlining, unrolling

Stack sharing Linear scan

Lowering, reg. array exp.

Reg./stack alloc., lin. Linear scan

Jasmin Certified Compiler Jasmin Source Analysis

Annotated Jasmin AST

Functional Embedding CT Instrumentation

Dafny code Dafny code

Dafny Dafny

Boogie code Boogie code

Boogie Product generator

Boogie code

Boogie

Figure 1: Jasmin architecture.

there are concerns that highly optimizing compilers may intro-
duce security flaws [21, 26]. As a consequence, the development of
cryptographic software must be carried at assembly level, and is en-
trusted to a few select programmers. Moreover, these programmers
rely on rudimentary tooling, that is often co-developed with the im-
plementations themselves. For instance, security- and performance-
critical parts of the OpenSSL library result from an ad hoc combi-
nation of pseudo-assembly programming and scripting, known as
“perlasm”. Another alternative is to use the qhasm language [11],
that simultaneously elides low-level details that are inessential for
fine-grained performance tuning, and retains all performance- and
security-critical aspects of assembly programming. qhasm achieves
an excellent balance between programmability and efficiency, as
evidenced by a long series of speed-record-breaking cryptographic
implementations. Due to their nature, these approaches do not lend
themselves to being supported by formal verification.

Functional correctness and side-channel security requirements
for high-assurance cryptography impose going significantly be-
yond the current practices used for validating implementations,
namely code inspection, code testing (and in particular, fuzzing),
and even static analysis. Code inspection is time-consuming and
requires a high-level of expertise. Testing is particularly effective
for excluding errors which manifest themselves frequently, but
performs poorly at detecting bugs which occur with very low prob-
ability. Static analysis is useful for detecting programming errors,
but does not discover functionality bugs. A better alternative is to
create machine-assisted verification frameworks that can be used
for building rigorous proofs of functional correctness and side-
channel security. However, and as stated above, these frameworks
are not easily applicable to assembly languages.

Our contribution. We propose a tool-assisted framework, called
Jasmin, for high-speed and high-assurance cryptographic code. Jas-
min is inspired by qhasm, but it specifically addresses the lack of
independent validation that exists today and enables the creation
of high-assurance high-speed and high-security software that can

be used as a drop-in replacement for unverified routines in ex-
isting cryptographic libraries. Specifically, the Jasmin framework
goes significantly beyond current practices in cryptographic engi-
neering, by leveraging state-of-the-art methods from programming
languages, without sacrificing efficiency considerations.

More technically, we make the following contributions:

• we define the Jasmin programming language. Jasmin is designed
to significantly simplify the writing and verification of high-
speed cryptographic programs. In particular, Jasmin supports
within one single language: high-level features, including struc-
tured control flow such as loops and procedure calls, which lead
to compact code that is also easier to verify; and assembly-level
instructions (both generic and platform-specific), which give
programmers tight control over the generated code. We give a
formal, machine-checked, semantics of Jasmin in the Coq proof
assistant;

• we define and implement a formally verified compiler that trans-
forms Jasmin programs into assembly programs. The compiler
alternates between certified passes (function inlining, loop un-
rolling, constant propagation), which are proved and verified in
Coq, and passes by translation validation (register allocation),
which are programmed in a conventional programming language
and whose results are checked in Coq. The compiler is carefully
designed to achieve predictability, and to deliver efficient code;

• we define and implement a sound embedding of Jasmin programs
into Dafny [27], and use the embedding to support automated
proofs of memory safety, constant-time security, and (poten-
tially) functional correctness of Jasmin programs. The tool uses
Boogie [7] to generate verification conditions and Z3 [20] to
discharge them; for constant-time security, we use product pro-
grams as in [4]; we have also a proof-of-concept direct translation
to SMT-Libwhich we have used to replicate the correctness proof
strategy of [19] using Boolector [30].



• we validate our framework with an implementation of scalar
multiplication for Curve25519, the core cryptographic compo-
nent in key exchange and digital signature algorithms recently
adopted for widespread use in both TLS and the Signal protocol.
We prove that the Jasmin implementation is memory-safe and is
constant-time. This case study also serves as a point of compar-
ison with prior work [19], which pursues the same goal using
general-purpose verification tools; this comparison highlights
the advantages of having a single integrated formal verification
framework for high-speed cryptography.

• we carry a practical evaluation of our tools on a representative
set of examples, which comprises many qhasm implementations
included in the supercop framework. To this end, we created a
simple automatic translator from qhasm to Jasmin, which shows
that one can actually use Jasmin to program in a style very similar
to that used in qhasm. We benchmark the efficiency of the code
generated by the Jasmin compiler and show that its efficiency
matches the original implementations generated from qhasm.
Figure 1 provides a high-level view of the workflow of our

toolchain. On the left-hand side one can see the internal struc-
ture of the Jasmin compiler, which takes Jasmin code and produces
assembly code that can then be further compiled and linked to
larger programs/libraries. The various internal passes of the com-
piler will be explained in Section 5. On the right-hand side one can
see the tool-chain for reasoning about Jasmin at the source level.
This comprises a tool that can perform two types of translations
of Jasmin programs into Dafny [27], which will be described in
detail in Section 4. The first translation, which we call functional
embedding, translates Jasmin programs into Dafny programs with
consistent axiomatic semantics, including safety assertions that will
cause any unsafe Jasmin program to be rejected. This embedding
also permits translating typical functional correctness annotations
into the Dafny program and take advantage of the Dafny/Boogie
verification condition generator to discharge the associated proof
goals using the Z3 SMT solver;1 The second translation, which we
call CT instrumentation, creates a Dafny program that will be trans-
lated into a Boogie program with special annotations. These will
subsequently be intercepted by a sister program (product generator
in the figure), which produces a product program whose safety
implies the constant-time security of the original Jasmin program,
using essentially the same theoretical principles of ct-verif [4]. The
Jasmin compiler is proven in Coq to preserve safety and correctness
properties, and we sketch a manual proof in Section 5 that it also
preserves the constant-time property.

Trusted Computing Base. The Trusted Computing Base (TCB)
of the Jasmin framework currently includes Coq, the unverified
parts of the Jasmin compiler (limited to parsing, type-checking and
code pretty-printing), and the translator from Jasmin toDafny code.
Because we currently rely on Dafny for source-level verification,
we also rely on the TCB of the Dafny verification infrastructure.
Using a verified verification condition generator, together with
foundational tools for constant-time and memory safety, would
eliminate Dafny from the TCB.

1we have also developed a proof-of-concept translator to SMT-Lib in order to experi-
ment with other SMT solvers, namely Boolector.

Limitations. The emphasis of this work is on providing an end-
to-end infrastructure for high-assurance and high-speed cryptogra-
phy, and to demonstrate the effectiveness of automated methods
for memory safety and constant-time security. We also provide
support for proving functional correctness, but do not exercise this
component of the framework over substantial examples, such as
scalar multiplication of Curve25519, for two main reasons. First,
verifying functional correctness with our current infrastructure
would replicate prior work—which we discuss in Section 2—and in
particular would involve a cumbersome, hand-managed, process of
combining SMT-based and interactive verification in the Coq proof
assistant. Second, we are developing a verified verification condi-
tion generator, in the spirit of the Verified Software ToolChain [6],
which provides an integrated and foundational environment for
managing such proofs, and eventually connecting with existing
mathematical formalizations of elliptic curves [9].

Moreover, Jasmin currently lacks features that are widely used
in cryptographic implementations, e.g. floating-point arithmetic
or vectorized instructions. Adding these instructions is orthogonal
to the main contributions of this paper and is left for future work.
Similarly, Jasmin currently supports a single micro-architecture,
in contrast to qhasm and “perlasm” which support multiple ones.
Nevertheless, we leave for further work to support different micro-
architectures, and to provide stronger evidence that Jasmin offers
(at least) the same level of portability.

Access to the development. The Jasmin framework can be ob-
tained from https://github.com/jasmin-lang/jasmin.

2 MOTIVATING EXAMPLE

Wewill illustrate the design choices of the Jasmin framework and its
workflow using a classic example from elliptic curve cryptography
which we briefly introduce below.

A primer on elliptic curve cryptography. Elliptic curve cryptog-
raphy [24] relies on hardness assumptions on algebraic groups
formed by the points of carefully chosen elliptic curves over finite
fields. Let Fq be the finite field of prime order q. An elliptic curve is
defined by the set of points (x ,y) ∈ Fq ×Fq that satisfy an equation
of the form E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, for a1, a2,
a3, a4, a6 ∈ Fq (with certain restrictions on these parameters). This
set of points, together with a “point at infinity”, form a group of
size l ≈ q. The group law has a geometric interpretation, which
is not relevant for the purpose of this paper; what is important is
that the group law can be computed very efficiently—particularly
when compared to the computations underlying other algebraic
structures used in public-key cryptography—using only a few op-
erations in Fq . Similarly, scalar multiplication,2 which is the core
operation for elliptic curve cryptography, can also be computed
very efficiently.

Curve25519. X25519 is an elliptic-curve Diffie-Hellman key ex-
change protocol proposed by Bernstein [13]. It is based on the
custom-designed curve Curve25519 defined as E : y2 = x3 +
486662x2 + x over the field F2255−19. This curve was chosen to
2Given a curve point P and a scalar k ∈ Z, scalar multiplication computes the point
Q = k · P = P + . . . + P︸         ︷︷         ︸

k times

.
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provide cryptographic security, but design choices also took into
consideration the need for aggressive optimization. As a result of
these choices, Curve25519 has been adopted for widespread use in
various contexts, including the TLS and the Signal protocols.

Scalar multiplication in Curve25519 is usually implemented us-
ing Montgomery’s differential-addition chain—a.k.a. Montgomery
ladder—which permits performing the computation directly over
the x-coordinate of elliptic curve points. This algorithm is shown
in Algorithm 1. It is ideal for high-security and high-speed im-
plementation for two reasons. First, it is much simpler than the
generic algorithm for elliptic curves, so its overall efficiency essen-
tially only depends on the cost of the underlying field operations,
which can be computed very fast in modern architectures. Second,
it is highly regular and can be implemented in constant-time by
executing exactly the same code for each scalar bit (called a lad-
der step), making sure that the appropriate inputs are fed to this
code via (constant-time) swapping of (X2,Z2) with (X3,Z3). The
computations of each step in the ladder, all over Fq , are shown in
Algorithm 2. Typical implementations of the scalar multiplication
operation implement the Montgomery ladder step in fully inlined
hand-optimized assembly, and also include field multiplication and
inversion as hand-optimized assembly routines (these are needed to
recover the final x-coordinate of the result once the ladder is com-
puted). The main difference between various implementations lies
in the representation of F2255−19 field elements and their handling
in the hand-crafted assembly code, as the optimal choice varies
from one architecture to another due to word size and available
machine operations, and their relative efficiency. The higher-level
functions that call the assembly routines for the various ladder
steps and finalize the results are usually implemented in C. This is
inconvenient when formal verification is the goal, since the relevant
routines are now split between two programming languages with
very different characteristics.

Algorithm 1 Curve25519 Montgomery Ladder
Input: A scalar k and the x-coordinate xP of a point P on E.
Output: (XkP ,ZkP ) fulfilling xkP = XkP /ZkP
t ← ⌈log2 k + 1⌉
X1 ← xP ; X2 ← 1; Z2 ← 0; X3 ← xP ; Z3 ← 1
for i ← t − 1 downto 0 do

if bit i of k is 1 then
(X3,Z3,X2,Z2) ← ladderstep(X1,X3,Z3,X2,Z2)

else

(X2,Z2,X3,Z3) ← ladderstep(X1,X2,Z2,X3,Z3)
end if

end for

return (X2,Z2)

3 JASMIN LANGUAGE

The claim of this paper is that it is possible to obtain the best of
the two worlds, and to develop effective verification methodologies
whose guarantees carry to assembly-level implementations. The
key to achieving this goal is the Jasmin programming language,
which is specifically designed to ease the writing and verification

Algorithm 2 One step of the Curve25519 Montgomery Ladder

function ladderstep(X1,X2,Z2,X3,Z3)
T1 ← X2 + Z2
T2 ← X2 − Z2
T7 ← T 2

2
T6 ← T 2

1
T5 ← T6 −T7
T3 ← X3 + Z3
T4 ← X3 − Z3
T9 ← T3 ·T2
T8 ← T4 ·T1
X3 ← T8 +T9
Z3 ← T8 −T9
X3 ← X 2

3
Z3 ← Z 2

3
Z3 ← Z3 · X1
X2 ← T6 ·T7
Z2 ← 121666 ·T5
Z2 ← Z2 +T7
Z2 ← Z2 ·T5
return (X2,Z2,X3,Z3)

end function

of high-speed code, and the Jasmin verified compiler, which en-
sures that properties of programs provably carry to their assembly
implementations.

In this section, we detail the design rationale of the Jasmin lan-
guage, and then give a formal overview of its syntax and semantics.

3.1 Language design

Figures 3 and 2 show two illustrative snippets of a Jasmin imple-
mentation of scalar multiplication for Curve25519. This example
highlights one fundamental design goal of Jasmin: one can imple-
ment complete cryptographic primitives within a single language
and use different programming idioms for different parts of the
implementation. On the one hand, the ladder step is implemented
as hand-optimized code, using a convenient and uniform syntax
for instructions. This style of programming is close to qhasm, with
each statement corresponding to a single processor instruction. On
the other hand, the ladder itself uses high-level control-flow struc-
tures, including for and while loops, function calls, array notation
and the passing of arrays as parameters. This style of programming
leads to compact and intuitive code, and also greatly facilitates
safety, side-channel and functional correctness verification. We
detail these choices next.

Predictable pre-assembly programming. Jasmin aims to provide
the highest level of control and expressiveness to programmers.
Informally, the essential property that Jasmin aims to achieve is
predictability: the expert programmer will be able to precisely an-
ticipate and shape the generated assembly code, so as to be able to
achieve optimal efficiency.

Jasmin provides a uniform syntax that unifies machine instruc-
tions provided by different micro-architectures. The main purpose
of this syntax is to ease programming and to enhance portability.
However, platform-specific instructions are also available and can



Figure 2: Snippets of Jasmin ladder step function (left) gen-

erated from qhasm (right).

export fn ladderstep(reg b64 workp) {
reg b64 addt0;

reg b64 addt1;

reg bool cf;

reg b64 t10;

reg b64 t11;

reg b64 t12;

reg b64 t13;

reg b64 t20;

reg b64 t21;

reg b64 t22;

reg b64 t23;

. . .

t10 = [workp + 4 * 8];

t11 = [workp + 5 * 8];

t12 = [workp + 6 * 8];

t13 = [workp + 7 * 8];

t20 = t10;

t21 = t11;

t22 = t12;

t23 = t13;

cf, t10 += [workp + 8 * 8];

cf, t11 += [workp + 9 * 8] + cf;

cf, t12 += [workp + 10 * 8] + cf;

cf, t13 += [workp + 11 * 8] + cf;

addt0 = 0;

addt1 = 38;

addt1 = addt0 if ! cf;
cf, t10 += addt1;

cf, t11 += addt0 + cf;

cf, t12 += addt0 + cf;

cf, t13 += addt0 + cf;

addt0 = addt1 if cf;

input workp
int64 addt0
int64 addt1
int64 t10
int64 t11
int64 t12
int64 t13
int64 t20
int64 t21
int64 t22
int64 t23
...
enter ladderstep
t10 = ∗(uint64 ∗)(workp + 32)
t11 = ∗(uint64 ∗)(workp + 40)
t12 = ∗(uint64 ∗)(workp + 48)
t13 = ∗(uint64 ∗)(workp + 56)
t20 = t10
t21 = t11
t22 = t12
t23 = t13
carry? t10 += ∗(uint64 ∗)(workp + 64)
carry? t11 += ∗(uint64 ∗)(workp + 72) + carry
carry? t12 += ∗(uint64 ∗)(workp + 80) + carry
carry? t13 += ∗(uint64 ∗)(workp + 88) + carry
addt0 = 0
addt1 = 38
addt1 = addt0 if !carry
carry? t10 += addt1
carry? t11 += addt0 + carry
carry? t12 += addt0 + carry
carry? t13 += addt0 + carry
addt0 = addt1 if carry

be used whenever important, e.g., for efficiency. In particular, and
similarly to qhasm, programmers may always use a Jasmin dialect
where there is a strict one-to-one mapping between Jasmin instruc-
tions and assembly instructions. This is visible in Figure 2, where
we show qhasm and corresponding Jasmin code side by side; these
are snippets of the implementation of the ladder-step algorithm in
Algorithm 2.

Finally, to ensure predictability, the programmer must also spec-
ify the storage for program variables (stack, register) and must han-
dle spilling explicitly. However, full register naming is not needed;
the programmer only needs to ensure that there exists a mapping
from register variables to machine registers (without spilling), but
the actual mapping is later found by the compiler. At the source
level, stack variables and register variables are interpreted simply
as variables; the storage modifier is only used as advice for register
allocation. In particular, at this level the memory is assumed to
be disjoint from stack storage. The compiler will later refine this
model and conciliate the fact that stack data must reside in memory
as well.

Verifiability. Formal verification of low-level code is extremely
hard, because of complex side-effects (e.g. shift instructions have
side-effects on flags), unstructured control-flow, and flat structure
(i.e. code is often created by copy-and-paste followed by variable
or register renaming). Jasmin includes several features that avoid
these issues and enable a streamlined formal verification workflow.

Jasmin ensures that side-effects are explicit from the program
code, by not treating flags specially in the input language; instead,
flags are simply boolean variables. This treatment of flags is illus-
trated in Figure 2, where the carry flag cf is declared as a boolean
variable. The programmer is expected to ensure that writing and
reading of these variables is consistent with the underlying ma-
chine instruction semantics, which is checked by the compiler using
an extended form of register allocation. Treating flags as boolean
variables allows all operators to be pure, and so state modifications
are all explicit, e.g., code of the form (x1, . . . ,xn ) := op (e1, . . . , ek )
only changes (function local) variables xi . This approach makes
verification of functional correctness and even side-channel secu-
rity significantly simpler, since it avoids the intricacies of dealing
with the side-effects associated with flags.3

Unlike qhasm, Jasmin supports function calls. The use of func-
tion calls is shown in Figure 3, where two functions are used for
computing a single ladder step and for performing a constant-time
swap. Function calls naturally lead to a style of programming that
favours modularity, and thus is more easily amenable to modular
verification. Functions are always inlined and must explicitly return
all changed values.4 The stack allocation procedure ensures that
inlining is “zero-cost”, so that the extra benefits of modular code
writing and analysis comes with no performance penalty.

Jasmin also supports high-level control-flow structures, instead
of jumps supported by qhasm. The use of control-flow structures
can be seen in Figure 3, where a while loop is used to iterate over
the bit representation of the scalar in constant-time. The choice
of using high-level structures over jumps usually has no impact
on the efficiency of the generated code; indeed, the translation
to assembly, which is achieved by unrolling or trivial mapping to
label-goto constructions, is simple enough to retain predictabil-
ity and our structures are sufficient to express the control-flow
typically found in cryptographic implementations. In contrast, it
considerably simplifies verification of functional correctness, safety
and side-channel security, and is critical to leverage off-the-shelf
verification frameworks, which are often focused on high-level
programs.

Jasmin also supports functional arrays for describing collections
of registers and stack variables. Figure 3 shows how arrays can be
used to refer to various registers/stack positions holding the data
as x[i] rather than hardwired variable names such as x1, x2, etc.
This notation leads to compact and intuitive code and simplifies
loop invariants and proofs of functional correctness. Arrays are
meant to be resolved at compile-time, and so they can only be
indexed by compile-time expressions. These can be used to describe
statically unrollable for loops and conditional expressions, which
permits replicating within the Jasmin language coding techniques
that are typically implemented using macros in C. For example,
one can write a for-loop ranging over the number of limbs for
representing an element of Fq , as in Figure 3 whereas a qhasm

3The exception are, of course, memory accesses, which are handled in the standard
way by treating memory as a large chunk of shared state that can be accessed in
an array-like form. However, memory access is often very simple in cryptographic
implementations (particularly those dealing with algebraic operations) and so this has
relatively low impact in the formal verification effort.
4This is expected to change in future versions of Jasmin.



Figure 3: Constant-time Montgomery Ladder in Jasmin

fn set_int(reg b64 v) −→ reg b64[4] {

reg b64[4] res;

inline int i;

res[0] = v;

for i = 1 to 3 { res[i] = 0; }

return res;

}

fnmladder(stack b64[4] xr, reg b64 sp) −→ stack b64[4], stack b64[4] {

reg bool cf;

reg b64 tmp1, tmp2, bit, swap, i, j;

stack b64 prevbit, is, js, s;

stack b64[4] x1, x2, z2, x3, z3;

inline int k;

x1 = xr;

x2 = set_int(1);

z2 = set_int(0);

z3 = set_int(1);

x3 = xr;

prevbit = 0;

j = 62;

i = 3;

while (i >=s 0) {
is = i; tmp1 = [sp + 8 * i]; s = tmp1;

while (j >=s 0) {
js = j; tmp2 = s;

bit = tmp2 >> j;

bit = bit & 1;

swap = prevbit;

swap ^= bit;

prevbit = bit;

x2, z2, x3, z3 = cswap(x2, z2, x3, z3, swap);

x2, z2, x3, z3 = ladderstep(x1, x2, z2, x3, z3);

j = js; j -= 1;

}

j = 63; i = is; i -= 1;

}

return x2, z2;

}

programmer would unroll such a loop by hand using error-prone
“copy-and-paste” (or write the code in C).

3.2 Language specification

This paragraph outlines the syntax of the Jasmin language. A formal
description using BNF notation is available as Appendix A.

Types. Jasmin features a simple type system, including types
bi and bi [n] for i-bit values and for n-dimensional arrays of i-bit
values, with i ∈ {1, 8, 16, 32, 64} and n ∈ N, and int for unbounded
integers. Unbounded integers are used only for compile-time ex-
pressions. The type b1 is used to represent booleans. The choice of
the type system ensures that Jasmin values match the machine in-
terpretation: types only distinguish between sizes, whereas signed
and unsigned interpretations are associated with the semantics
of operators. This is visible in the condition of the while loop in
Figure 3.

Storage types. Storage types are used by the compiler to fix how
values are stored in memory. Storage types are: store in stack stack,
store in register reg, resolve at compile-time inline. Integers are re-
solved at compile-time by default. Storage types are used in variable
and function declarations; see Figure 3. For instance, the declaration
reg bool cf introduces a boolean variable cf that will be stored in a

register. The type of mladder indicates that the function will read
and return from/to the stack two b64 arrays of size 4.

Expressions. Expressions are built from variables using constants,
operators, accessors for arrays and memory, casts from integers to
b64, and conditionals. Operators include integer constants, arith-
metic (+,−, ∗, /), comparison (<, >, ≤, ≥,=), and logical (∧,∨,¬)
operators and a rich set of generic and platform-specific assembly-
level operations: conditional move, signed/unsigned addition, add
with carry, exact/truncated multiplication, increment/decrement,
shifts, etc. Operators have a type which reflects their effect on flags;
e.g. the type of shift operators isb64×b64 → b64×b1×b1×b1×b1×b1,
where the five booleans in the return type correspond to the flags
modified by the instruction.5 Syntactic sugar is used to offer a sim-
plified syntax for common cases such as when only the carry flag
is used at the operator output. Memory accesses are of the form
[x + e], where x is variable of type b64 representing the pointer and
e is an expression of type b64 representing the offset. Array accesses
are of the form x[e], where x is a variable and e is an expression of
type b64. A simple type system is used to ensure that expressions
are well-typed.

Statements. Statements of the language are built from assign-
ments, function calls, conditionals, for and (some mild general-
ization of) while loops, and the usual sequencing of statement “;”.
Assignments are of one of the following form:d = e , ord1, . . . ,dk =
op (e1, . . . , eℓ ), where d , d1, . . . , dk are destinations and e, e1, . . . , eℓ
are expressions. A destination is either a variable x , an array desti-
nation x[e], a memory destination [x + e] or an underscore _ when
the result can be discarded. Note that operator calls can have multi-
ple destinations, according to their type. Function calls are also of
the form d1, . . . ,dk = f (e1, . . . , eℓ ), where the number and nature
of arguments and destinations is determined by the type of the func-
tion. The for loops have a body, a range of the form (e1..e2) and an
iteration flag indicating if the loop ranges over e1, e1 + 1, . . . , e2 or
e1, e1−1, . . . , e2. More interestingly, the syntax of thewhile loops is
of the form while c1 (e ) c2, where c1 is a statement that is executed
before testing the expression e , and c2 is the loop body. This ex-
tended syntax is useful to capture different control-flow structures,
including do-while and while-do loops. It also enables the use of
arbitrary programs to express the loop guards. Statements must be
well-typed; for instance, assigned expressions must match the type
of their destination and loop guards must be boolean.

Programs. Programs p are mappings from function names f
to function declarations p ( f ), comprising a command p ( f )c and
two lists of variables p ( f )param and p ( f )res describing, from the
callee point of view, the variables in which the arguments will be
stored and from which the return values will be fetched. Programs
must be well-typed, following a typing discipline similar to that of
statements.

Each function declaration is annotated with either export or in-
line (the default). Only the first ones are compiled down to assembly.
Calls to the second ones are meant to be fully inlined in the caller’s
body; in that sense, these functions are a zero-cost abstraction
provided to the programmer to structure the code.

5We currently do not model some infrequently used flags such as AF since they are
not used in our examples.



3.3 Semantics

The behavior of Jasmin programs is given by a big-step operational
semantics relating initial and final states. The semantics defines a
partial function: for every initial state, there is at most one final
state, reflecting that Jasmin programs have a deterministic behavior.
Determinism of Jasmin programs is essential for predictability, and
considerably simplifies the proof of correctness of the compiler, as
discussed in Section 5. The semantics is fully formalized in the Coq
proof assistant and is used as the basis for justifying the correctness
of the compiler and of the source-level analyses (formally using the
Coq proof assistant in the first case, and on paper in the second
case). The semantics is defined in the context of a program, which
is used to resolve function calls. To keep our notation readable, this
ambient program is only shown when defining the semantics of
function calls, which must resolve the called function.

Values. Booleans are interpreted by the set {0, 1,⊥}, where ⊥
is used to model the behavior of some operations, e.g. shifts, on
flags. Other types have the intended semantics. For instance, the
type bi is interpreted as {0, 1}i , and the type bi [n] is interpreted
as {0, 1}i [n], for i ∈ {8, 16, 32, 64}. The set of values is obtained by
taking the union of the interpretation of types.

States. States are pairs (m, ρ) consisting of a global memorym,
shared between all functions, which maps addresses to bi values,
and a local environment ρ, specific to each function, mapping vari-
ables to values.

The environment is a functional map which associates to a vari-
able (with a given type and identifier) a value (or an error). We use
the usual notations ·[·] for map access and ·[· := ·] for map update.

Memory. We use an axiomatic type for memories. This type is
equipped with operations for reading and writing, which take a size
i and an address of type b64, and read or store a bi value (possibly
returning errors). We use ·[·] for reading and ·[· ← ·] for writing:
m[e]i = v means that in memorym, reading a value of type bi from
address e successfully returns the value v ;m[e ← v]i =m′ means
that in memorym, writing the value v with type bi successfully
results in the memory m′. In both cases, the optional subscript
corresponds to the size of the value in memory (default is 64).

Which addresses can or cannot be used by a Jasmin program
is expressed through a predicate, validi (m,p), that states that in
memorym, pointer p can be safely used for accesses of size i . This
predicate is under-specified; it is supposed to capture various archi-
tectural and system-specific constraints such as alignment require-
ments. The memory thus enjoys the following laws, which express
the usual properties of memories:

• valid addresses can be read:

(∃v,m[p]i = v ) ⇐⇒ validi (m,p);

• valid addresses can be written:

(∃m′,m[p ← v]i =m′) ⇐⇒ validi (m,p);

• a written value can be read back:

m[p ← v]i =m′ =⇒ m′[p]i = v ;

• a memory write leaves the remainder of the memory un-
changed:

m[p ← v]i =m′ =⇒

disjoint(p, i,p′, i ′) =⇒ m′[p′]i′ =m[p′]i′

where disjoint expresses that two address ranges do not
overlap.

In addition to reading and writing, the Jasminmemory features a
restricted form of dynamic allocation to model the life span of local
variables: fresh memory is allocated on function entry, and released
on function exit. This is modeled by means of two operations:
alloc-stack(m,n) allocates a region of size n in memory m and
free-stack(m,n) frees the top-most region in memorym, of size n.
Such stack-allocated memory regions are handled through their
base pointer. This stack is specified through three intermediate
operators:

• top-stack(m) returns the base pointer of the top-most stack
region of memorym;

• caller(m,p) returns, if any, the previous region, in the stack,
of region starting at p in memorym;

• frame-size(m,p) returns the size of the memory region
starting at p, or nothing if it is not the base pointer of such
a region in memorym.

Writing to memory leaves these three properties unchanged;
allocating and freeing update these properties to maintain the stack
structure. The frame-size property enables us to implement alloca-
tion and freeing through addition and subtraction on a global stack
pointer, without explicitly building a linked-list of frames.

Finally, since the compiler needs to emit valid memory accesses,
the memory model features an operation is-align(n, i ) that tells
whether a pointer with offset n is correctly aligned for memory
access of size bi . The axiomatization of this operation mandates
that, for stack memory regions, deciding whether a pointer is valid
amounts to checking whether its relative offset (within this region)
is aligned and in bounds.

Expressions. The semantics of expressions is defined in the usual
way, and is parametrized by a state s = (m, ρ) as described above.
The evaluation of the expression e in the state s is noted JeK(s ), and
is defined in the usual way.

Even though we denote the evaluation of expressions as a func-
tion, their semantics is partial: ill-typed expressions never evaluate;
out-of-bounds array accesses are not defined, as well as invalid
memory accesses.

Destinations. We will use the s[· := ·] notation for storing values
in both the memory and environment, depending on the destina-
tion. Most of the rules are standard; the ones used for writing into
memory and arrays are described in Figure 4.

Statements. Formally, the semantics is captured by judgments of
the form c, s ⇓ s ′, stating that executing command c on initial state
s terminates in final state s ′. The rules, which are mostly standard,
to the exception of the rules for functional arrays and procedure
calls, are described in Figure 4. Sequences are defined in a standard
way, with skip the empty command.



Figure 4: Semantics of the Jasmin language

(m, ρ)[[x + e] := v] = (m[ρ[x] + JeK(m, ρ) ← v], ρ)
(m, ρ)[x[e] := v] = (m, ρ[x := ρ[x][JeK(m, ρ) := v])

d = e, s ⇓ s[d := JeK(s )]

op (Je1K(s ), . . . , JeℓK(s )) = (v ′1, . . . ,v
′
k )

d1, . . . ,dk = op (e1, . . . , eℓ ), s ⇓ s[dj := v ′j ]

skip, s ⇓ s

i, s ⇓ s1 c, s1 ⇓ s
′

i; c, s ⇓ s ′

c1, s ⇓ s
′ JeK(s ) = true

if (e ) then c1 else c2, s ⇓ s
′

c2, s ⇓ s
′ JeK(s ) = false

if (e ) then c1 else c2, s ⇓ s
′

c1, s1 ⇓ s2 JeK(s2) = true c2, s2 ⇓ s3 while c1 (e ) c2, s3 ⇓ s4

while c1 (e ) c2, s1 ⇓ s4

c1, s1 ⇓ s2 JeK(s2) = false

while c1 (e ) c2, s1 ⇓ s2

c, s ⇓
i ∈range(JeloK(s ),JehiK(s ))
for s ′

for(i = elo to ehi )c, s ⇓ s
′

c, s ⇓
i ∈[]
for s

s[i := w], c ⇓ s2 c, s2 ⇓
i ∈ws
for s ′

c, s ⇓i ∈w ::ws
for s ′

a, (m, ρ) ⇓ va f ,va ,m ⇓
p
call vr ,m

′

r = f (a), (m, ρ) ⇓ (m′, ρ[r := vr ])

p ( f )c , (m, ∅[p ( f )param := va]) ⇓ (m′, ρ ′)

f ,va ,m ⇓
p
call Jp ( f )resK(m′, ρ ′),m′

Loops use two blocks of instructions, allowing to handle both
do-while and while-do constructions at the same time: first the first
block is executed, then the condition is evaluated: if it’s false we
leave the loop, otherwise we execute the second block and then
repeat from the first block.

The semantics of for loops use another judgement ⇓for , where
c, s ⇓i ∈ℓfor s ′ describes the execution of the command c from the
state s to the state s ′ with the i integer variable taking all the values
in ℓ. If the list ℓ is the empty list [], then the resulting state is the
original state s . Otherwise, if the list ℓ has a headw and tailws , the
resulting state is the one after executing c in the state where the
valuew is assigned to the variable i , and then the rest of the values.

Also, the function calls use the judgement ⇓call which describes
the behavior of a function from the callee point of view: f ,va ,m ⇓

p
call

vr ,m
′ means that the function named f of the program p executed

from the memorym with arguments va returns values vr in the
memorym′. Note that as said earlier, the environment between the
caller and the callee are completely independent.

3.4 Memory safety and constant-time security

Two essential properties of Jasmin programs are memory safety
and constant-time security. In this paragraph, we introduce the
two notions. Later, we will argue that both notions are preserved

by compilation, and present automated methods for verifying that
Jasmin programs are memory safe and constant-time.

Memory safety. The Jasmin memory model is parameterized by
the notion of validity. It must capture the various architectural
constraints (e.g., alignment of pointers), and requirements from the
execution environment (some memory regions might be reserved
to the operating system, or to load the code text, which cannot be
overwritten by Jasmin programs). Also, the allocation routine that
is used to reserve memory for local variables on function entry
must return fresh, valid memory addresses (or fail).

A Jasmin command c is safe if its semantics is defined for every
initial state. Formally, ∀ s · ∃ s ′ · c, s ⇓ s ′. This notion is rather
strong; in particular, it entails that the program is well-typed, that it
terminates on all inputs, that array accesses are always in-bounds,
and that all memory accesses target valid memory.

This definition of safety being very strong, we assume that pro-
grams may be equipped with preconditions that restrict the set of
admissible initial states: enough free stack space, validity of input
pointers, etc.

Constant-time security. The semantics of Jasmin program can be
instrumented to produce a leakage trace that records the branches
that are taken and memory read/write operations performed during
execution. Judgments of the extended semantics are of the form

c, s ⇓ s ′, ℓ

where ℓ is the leakage trace. The extended semantics is used to
formalize constant-time programs: specifically, a Jasmin command
c is constant-time iff for every states s1, s2, s ′1, s

′
2 and leakage traces

ℓ1 and ℓ2, we have:
c, s1 ⇓ s ′1, ℓ1
c, s2 ⇓ s ′2, ℓ2
s1 ∼ s2



⇒ ℓ1 = ℓ2

where ∼ is an equivalence relation between states—as usual, ∼ is
defined from security annotations specifying where secrets are held
in the initial memory.

We stress that our notion of constant-time security is termination-
insensitive and does not impose any condition on the program
safety. However, it is well-known that naive error management
is a main source of attacks in cryptographic implementations. In
practice, we always check that programs are both safe and constant-
time.

4 SAFETY AND CONSTANT-TIME ANALYSES

This section describes how Jasmin source level analyses are de-
ployed on top of theDafny verification infrastructure. An annotated
Jasmin intermediate program is translated into two complementary
Dafny programs: the first encodes safety; the second, assuming
safety, encodes constant-time security policies as annotations.

4.1 Safety analysis

Dafny is a general-purpose verification language with support for
procedures, loops, arrays and native bitvector theories. Our func-
tional embedding of Jasmin into Dafny thus preserves the original
program structure and is almost one-to-one. Most noteworthy, Jas-
min functional arrays are encoded as fixed-size Dafny sequences,



Figure 5: Annotated Montgomery Ladder in Jasmin (left) andDafny translations for safety (middle) and constant-time (right).

...
j = 62; i = 3;
while (i >=s 0)
//@ decreases i;
//@ invariant i <=s 4;
//@ invariant j == 62 || j == 63;
//@ invariant i >=s 0 ==> valid(sp, 8 ∗ i, 8 ∗ i + 7);
//@ security invariant public(i);
{
is = i; tmp1 = [sp + 8∗i]; s = tmp1;
while (j >=s 0)
//@ decreases j;
//@ invariant j <=s 63;
{
...
j=js; j -= 1;

}
j = 63; i = is; i -= 1;
}
...

...
j := 62; i := 3;
while (i >=s 0)
decreases i; invariant (4 - i) >> 63 == 0;
invariant (j == 62) || (j == 63);
free invariant sp == old(sp);
invariant i >> 63 == 0 ==>

ValidRange(sp as int + 8 ∗ i as int, sp as int + 8 ∗ i as int + 7);
{
is = i;
assert Valid(sp as int + 8 ∗ i as int + 0); ...;
assert Valid(sp as int + 8 ∗ i as int + 7); ...;
while (j >> 63 == 0)
decreases j; invariant (63 - j) >> 63 == 0;
{ ...
j = js; j := j - 1;
}
j := 63; i = is; i := i - 1;

}
...

...
j := 62; i := 3;
while (i >=s 0)
free ...
invariant Public(sp);
invariant Public(i); invariant Public(i > 1);
{
assert Public(sp as int + 8 ∗ i as int + 0); ...;
assert Public(sp as int + 8 ∗ i as int + 7);
...
while (j >> 63 == 0)
free ...
invariant Public(j); invariant Public(j >> 63 == 0);
{
...
j = js; j := j - 1;

}
j := 63; i = is; i := i - 1;

}
...

and memory encoded as a global array of byte blocks; reads and
writes to memory are segmented into byte-wise operations, and
require memory regions to be valid, axiomatized in Dafny as two
ghost annotations Valid and ValidRange. Jasmin expressions and
instructions are defined using mathematical integer and bitvec-
tor arithmetic, as precluded by the Coq semantics. An annotated
snippet and its translation are shown in Figure 5.

The safety of the Jasmin program is therefore reduced to the
safety of the functional Dafny embedding. The Dafny verifier guar-
antees that a safe program terminates and is free of runtime errors
such as memory accesses, array indices or shift amounts out of
bounds or division by zero.

For simple straight-line Jasmin programs, including most of our
benchmarks, with no procedure calls, all loops unrolled and nomem-
ory operations, safety analysis can be performed fully automatically.
Nevertheless, formoremodular procedures, less well-behavedwhile
loops or memory operations, programmers can supply additional
annotations describing procedure contracts, loop invariants and
valid memory regions. They can also express intermediate func-
tional correctness properties seamlessly in the Jasmin annotation
language. Taking a glance at Figure 5, both loops need invariants
stating that the indices i and j decrease until zero within the loop
and that they stay within bounds. Moreover, the 64 bits addressed
by sp + 8*i need to constitute a valid memory region.

Under the hood, the Dafny verifier checks for correctness by
translating to Boogie intermediate code. The Boogie verifier then
generates verification conditions that are passed to the Z3 SMT
solver. Alternatively, we have implemented a specialized verifica-
tion condition generator for straight-line Jasmin procedures, in the
style of [19]. This is more effective (specifically yields smaller veri-
fication conditions) for proving certain correctness properties of
Jasmin programs, and targets specific SMT solvers such as Boolec-
tor that excels for bitvector arithmetic. We rely on theHaskell SBV6
library as a universal interface with SMT-Lib.

6https://hackage.haskell.org/package/sbv

4.2 Constant-time analysis

For constant-time analysis we instrument the generated Dafny pro-
gram with special Public annotations on control flow conditions,
memory accesses and array accesses, entailing that they do not
depend on secrets. (Jasmin conditional assignments are compiled to
constant-time instructions, so they do not require such safeguards.)
As for safety, programmers can express additional security proper-
ties in Jasmin as boolean assertions using the public predicate. In
the example from Figure 5, safety invariants are assumed to hold
(marked with free or assume in Dafny) and the [sp + 8*i] memory
read requires two security invariants stating that the values of sp
and i are public inside the outer loop; the former is inferred from
the procedure contract, and the second must be explicitly supplied
by the programmer.

The constant-time instrumentation departs from the functional
embedding described in the previous paragraph in the sense that we
explore the existing translation from Dafny to Boogie to propagate
constant-time security policies from Jasmin to Boogie programs.
The Boogie input language has a well-defined semantics and was
designed to be a convenient backend for verification tools. There,
procedures are defined as a sequence of basic blocks that start
with a label, contain straight-line statements with no if or while
statements, and may jump at the end. To verify constant-time, we
adapt a technique used by the ct-verif tool [4] which reduces the
constant-time security of a Boogie program to the safety of a prod-
uct program that emulates two simultaneous executions of the
original program. We implement a Boogie-to-Boogie transforma-
tion tailored to the translation of Jasmin programs that computes
the product of each procedure by essentially making shadow copies
of program variables and duplicating all statements inside basic
blocks to mention shadow variables instead, with two exceptions:

(1) procedure call statements are converted to single statements
calling the product procedure with twice as many inputs and
outputs, and

(2) assertions corresponding to constant-time security policy an-
notations are translated to relational assertions expressing first-
order logic formulas that relate original and shadowed variables,

https://hackage.haskell.org/package/sbv


by translating public(e) expressions to equality expressions
e == e.shadow.

Proving that the product program is safe ensures that the equalities
are always valid and suffices to conclude that the original program
is sound. The soundness of this technique, that has been formally
proven in Coq in [4], hinges on the assumption that program paths
are independent from program secrets, guaranteeing that the prod-
uct program always has as many paths as the original program and
can therefore be efficiently verified.

5 CERTIFIED COMPILER

This section first describes the architecture of the Jasmin compiler
and the various compilation passes. It then states and explains its
main correctness theorem and describes the proof methodology.
Finally we argue that the compilation preserves the constant-time
property of the programs it processes.

5.1 Compilation passes

The Jasmin compiler is formally verified. Therefore, it is mainly
written using the Coq programming language. However, some parts
are written in OCaml. The diagram shown on the left of Figure 1
summarizes its internal architecture.

The first passes parse the source program and enforce some
typing rules. Then, the constant expansion pass replaces parameters
by their values. Parameters are named constants whose values are
known at compile-time.

Inlining replaces the function calls that are labeled inline with
the body of the called function. In function calls, functions are des-
ignated by their name, thus statically determining which function is
called (i.e., there are no function pointers). Also, only functions that
are defined before a call-site can be inlined at this site. Therefore,
(mutually) recursive functions cannot be fully inlined and recur-
sive inlining always terminates. After inlining, the definitions of
functions that are neither called nor exported are removed.

The inlining pass also introduces (copy) assignments to model
communication (arguments and returned values) between the caller
and the inlined callee. Thus, a renaming pass, akin to register al-
location, tries to eliminates these assignments. This is particularly
relevant when arguments and returned values include arrays: no
copy should be introduced by the compiler. This means that the
use of arrays must be linear: when an array is given as argument to
a function, it can no longer be used by the caller, unless the callee
returns it. As at most one copy of each array is live at the same
time, no copy is ever needed.

The unrolling pass fully unrolls for-loops, whose bounds must
always be statically determined. Notice that in case of nested loops,
the actual value of some of these bounds may only be known after
constant propagation. Therefore, this pass iterates a sequence of
unrolling, constant propagation, and dead-code elimination until a
fixed point is reached (or some maximal number of iterations is
reached). Note that unrolling may insert new assignments in the
program to set the value of the loop counter on each iteration. These
assignments are labeled with a special internal inline tag. The next
pass, inline assignment allocation, eliminates these assignments by
a form of register allocation.

The next pass performs sharing of stack variables. This pass opti-
mizes the memory layout of local variables: variables that are never
alive at the same time can be allocated to overlapping stack re-
gions. This is a form of register allocation. The constant propagation
optimization is run again after this pass.

The register array expansion pass translates arrays (which in
Jasmin are meant to represent a collection of registers or contiguous
memory addresses) into register variables or stack variables. This
requires that all accesses to the arrays are done through statically
determined indices.

The lowering pass translates high-level Jasmin instructions into
low-level, architecture-dependent instructions. Because Jasmin fea-
tures both low-level and high-level instructions, lowering does not
require to switch between intermediate representations; however,
it is expected that all high-level instructions are removed after
this pass. This pass is also responsible for translating conditional
expressions into the flag-based conditional instructions that are
featured by the target architecture. This is examplified by the case
of the AddCarry instruction: it takes three arguments (two machine
integers and a carry) and returns two values (one machine integer
and a carry). It is a high-level instruction, and therefore represents
all additions of machine integers, with or without carry. The x64
architecture instruction set features, in particular, the operators
ADD and ADC to perform additions. Only the second form receives
an explicit carry as argument. Both return one machine integer
and affect many boolean flags. The lowering pass thus replaces
the generic AddCarry with the adequate ADD or ADC machine
instruction, depending on the expression that is given as the carry
argument.

The register allocation pass renames variables to match the names
of the architecture registers. This pass does not attempt to spill
any variable to memory; it checks that there exists a mapping from
program variables that are labeled with the register storage modifier
to architecture registers, and infers such a mapping. The compiler
fails if no suchmapping exists. Register allocation takes into account
the various architectural constraints: some instructions require
the output register to be the same as one of the arguments; some
instructions require that some operands are assigned to specific
registers. This last constraint includes the correct handling of flags.

The register allocation is performed by a simple, greedy algo-
rithm, derived from linear scan [32]. The resulting allocation is
flow-insensitive: within a given function, a variable is always al-
located to the same register. To compensate for this limitation, a
dedicated pass renames variables according to their liveness ranges,
using an SSA-like form. Once again, the constant propagation pass
is applied to eliminate instructions that have no effect.

The stack allocation pass puts all local (stack) variables into a
single memory region that is allocated on function entry and freed
on function exit. It also takes care of the remaining arrays: each
access to a stack array is thus translated as a corresponding memory
operation. At the end of this pass, all arrays have been removed
from the program.

The previous pass marks the end of the middle-end transform-
ing the structured intermediate representation of Jasmin. The lin-
earization pass, transforms the program into an unstructured list
of instructions with named labels and gotos. This representation



is then straightforwardly translated into assembly. The assembly
generation pass enforces the architectural constraints (two address
instructions, forced registers). In this respect, it acts as a validation
of the earlier register allocation pass. Finally, this assembly repre-
sentation can be pretty-printed into usual syntax to be used by an
off-the-shelf assembler or inlined into programs written in other
languages (e.g., C, Rust).

5.2 Compiler correctness

The main correctness theorem of the Jasmin compiler is stated
as follows. For each source program, if the compilation succeeds
and produces a target program, then every execution of the source
corresponds to an execution of the target. Here, execution means
terminating and without errors. Formally, we have the following
statement.

Theorem 5.1 (Jasmin compiler correctness).

∀ p p′, compile(p) = ok(p′) →

∀ f , f ∈ exports(p) →

∀ va m vr m
′, enough-stack-space( f ,p′,m) →

f ,va ,m ⇓
p
call vr ,m

′ → f ,va ,m ⇓
p′

call vr ,m
′

In this statement, exports(p) refers to the exported entry points
of program p: non-exported functions do not appear in the target
program; all calls to these functions have been inlined. Stack vari-
ables are allocated to the memory during the compilation: therefore,
the compiler only preserves the semantics from initial memories in
which there is enough free stack space to execute the compiled pro-
gram. This property is captured by the enough-stack-space(f ,p′,m)

predicate. Since target programs do not call functions, this predi-
cates only states that the stack variables of the function f in the
compiled program can be allocated in the initial memorym.

The conclusion of the theorem refers to the semantics of the
target assembly language (x64). It is formally defined in Coq, with
an accurate bit-level definition of all the instructions involved in
our benchmarks.

Notice that the memories and input and output values are the
same for both source and target levels: the semantics of all interme-
diate language share the same definitions of values and the same
memory model.

Since the target language (assembly) is deterministic, for safe
source programs, this theorem implies that every execution of the
target corresponds to an execution of the source.

This theorem also implies that safe source programs are compiled
to safe target programs, with the caveat that compiled programs
may consume more stack space than the source programs. More
precisely, given a source program that is safe under some precon-
dition, the compiled program, for any initial state satisfying the
precondition, will either run without run-time error, or fail by lack
of stack space.

5.3 Proof methodology

The Jasmin compiler is written in OCaml and in Coq. The Coq
part is formally verified, i.e., its correctness is stated and proved
once and for all. The OCaml part is two-fold. On the one hand,
the impure interface with the outer world (source code parsing,

assembly pretty printing) is trusted.7 On the other hand, some
compilation passes call an external oracle: this oracle is written in
OCaml but is not trusted; its result is validated on every run by a
Coq routine that is itself verified. This lightweight proof technique,
known as translation validation [29], is applied to many passes.

Moreover, all the validated passes only use two checkers: one
is dedicated to the stack-allocation pass; the other deals with the
register-allocation passes.

The checker for stack-allocation ensures that enough memory
is allocated for all the local variables and that each stack access
(including array accesses) is properly translated to the correspond-
ing memory access. Its soundness relies on the safety of the source
program: the fact that all array accesses are in bounds ensures that
all variables can be allocated to a single memory region.

The other validator checks that the two programs (before and
after the transformation) precisely have the same structure up
to some renaming. This validator is parameterized by the class
of renaming that is allowed, so that it can be used in multiple
passes: changes in variable names after unrolling, stack sharing
and register allocation, and transformation of array indexings into
variable accesses after register-array expansion.

The structure of the correctness proof follows the structure of the
compiler itself: each pass is proved correct and the main theorem
is a composition of these lemmas. The correctness of a compilation
pass is proved through a simulation relation, which is a relational
invariant of the simultaneous executions of the source and target
programs.

5.4 Constant-time preservation

In addition to functional behaviour and safety, the compiler pre-
serves constant-time security of programs. As for Jasmin programs,
one can define an instrumented semantics of assembly programs,
where leakage traces record the sequence of addresses accessed and
program point visited during execution. One then shows that the
compiler preserves constant-time: if a Jasmin program is safe and
constant-time, then the generated assembly program is constant-
time. Therefore, it is legitimate to prove that Jasmin programs are
constant-time, using the methodology and automated tool from
Section 4.

The proof of constant-time preservation for the compiler is de-
composed into proving that every individual pass preserves the
constant-time property. Moreover, the proof for each individual
pass has a similar structure.We use a stronger statement of semantic
preservation, in particular making explicit the simulation relation
for this pass, and consider how this pass transforms memory ac-
cesses and branches and argue that it does so in a constant-time
preserving fashion. This involves considering two executions of the
target program, and distinguishing between leakages that are in-
herited from a similarly leaky instruction of the source program (in
this case we use the hypothesis that the source program is constant-
time) or are constant memory accesses (in this case no information
is leaked). More formally, we rely on several crucial facts: first,
compilation does not introduce branching instructions. In particu-
lar, conditional moves are compiled into CMOV instructions, and

7The size of the trusted code base of Jasmin could be reduced; for instance, there are
techniques for validating parsers [25]. We leave this as further work.



therefore have no impact on the leakage trace. Second, it is always
correct to (unconditionally) remove leaks through memory accesses
and branches, as they are similarly removed from all traces. This is
used, e.g. to justify constant propagation and loop unrolling, which
may remove (constant) branches. Third, in some cases, compilation
may introduce leaky instructions. When arrays and local variables
are allocated to the stack, the accesses to these variables become
observable in the leakage trace; but said leakage cannot depend on
secrets.

Remark. We stress that preservation of the constant-time prop-
erty can be affected by aggressive compilers, which may use opti-
mizations to tabulate expensive functions and transform constant-
time computations into memory loads; or to introduce case anal-
ysis on (secret) values that are known to have a small range and
transform constant-time computations into branches. By design,
such optimizations are not supported by the Jasmin compiler. In
any case, one could argue that constant-time verification should
be performed at assembly-level, eliminating the need to impose
restrictions on the compiler. However, we argue that our current
approach provides a reasonable compromise, with the added benefit
to simplify interface with state-of-the-art verification technology.

As a final note, we observe that it would be desirable to prove
preservation of constant-time using the Coq proof assistant. We
leave this for future work.

5.5 Statistics

The compiler comprises about 25k lines of Coq files (not including
third-party libraries), which produces about 25k lines of extracted
OCaml. This certified code is complemented with 5k lines of trusted
hand-written OCaml, and a few thousands lines of untrusted hand-
written OCaml.

6 EVALUATION

We have evaluated the performance of compiled Jasmin programs
using supercop (System for Unified Performance Evaluation Re-
lated to Cryptographic Operations and Primitives), a toolkit for
measuring the performance of cryptographic software. In this work
we looked at version 20170105 of the toolkit and we selected a
representative set of implementations that have been hand-crafted
using the qhasm language. These implementations are given as as-
sembly programs, but they include the corresponding qhasm input
program as annotations. We developed an automatic translator that
starts from such assembly implementations, extracts the original
qhasm code, and then automatically generates functionally equiv-
alent Jasmin programs–for the overwhelming majority of qhasm
instructions the translation is one-to-one.

Benchmarking procedure. A supercop release contains all the ma-
chinery required to carry out performance evaluation on a specific
computer; any computer can be used as a representative for a par-
ticular architecture and collected data can be submitted to a central
repository of collected benchmarks. In our work we have focused
on execution time and we have adapted the evaluation scripts to
consider specific implementations of our interest and collect high-
precision clock-cycle counts. This means, in particular, that all of
the implementations produced by the Jasmin compiler needed to be

Table 1: Comparison of Jasmin-generated assembly and

qhasm-generated assembly. Numbers shown correspond to

supercop clock-cycle counts.

Implementation qhasm Jasmin Ratio

X25519-4limb-base 147 084 148 914 1.012
X25519-4limb 147 890 148 922 1.006
X25519-4limb-jasmin 143 982

X25519-5limb-base 148 354 147 200 0.992
X25519-5limb 148 572 147 090 0.990

ed25519-5limb-keypair 55 364 56 594 1.022
ed25519-5limb-sign 83 430 85 038 1.019
ed25519-5limb-open 182 520 188 180 1.031

salsa20 12 322 12 460 1.011
salsa20-xor 12 208 12 252 1.004

compliant with calling conventions imposed by gcc version 5.4.0.
The machine we used is equipped with an Intel Core i7-6500U pro-
cessor, clocked at 2.50 GHz, with 16 GB of RAM, running Ubuntu
version 16.04. Turbo boost was disabled in all measurements. To
collect clock-cycle measurements we configured supercop to use
gcc -O3. (The optimization level is irrelevant for assembly imple-
mentations, and it affects equally implementations that mix C code
with assembly implementations compiled from Jasmin or qhasm.)
Each implementation is executed 10 000 times and the median of
clock-cycle counts is taken as final result.

Benchmarking results. Table 1 displays results we collected by
first measuring the speed of the original assembly implementations
generated from qhasm programs, and then measuring the assem-
bly implementations compiled from the translated Jasmin code.
Concretely, we looked at two implementations of Curve25519, for
different representations of the underlying field, at the Ed25519
signature scheme [14], and at the salsa20 stream cipher. super-
cop testing procedures were used to ensure that both the original
implementation and the new implementation are functionally cor-
rect. Our results show that, for all implementations that we have
obtained using this procedure, the Jasmin toolchain essentially
preserves the performance of the original implementation.

High-efficiency Jasmin. To further demonstrate that high-level
programming in Jasmin is not opposite of high-efficiency, we have
manually optimized the Jasmin Montgomery ladder implementa-
tion depicted in Figure 3, by carefully reordering instructions, max-
imizing the use of registries, and directly using the #x86_MOV(0)

instruction for some variable assignments. A more detailed descrip-
tion of this optimized implementation is given in Appendix B. In
fact, our optimized X25519-4limb-jasmin implementation8 drops
below 144k clock-cycles and beats the equivalent qhasm implemen-
tation in supercop. We believe that the same optimizations could be
also performed in qhasm, but in a less modular and more expensive
way, and without a proof of semantics preservation.

8Benchmarked using the -nolea flag to disable load effective address instructions.



Benchmarking verification. All the benchmarked implementa-
tions were proved safe and constant-time at the source level using
the tool presented in Section 4, and hence are guaranteed to re-
tain these properties at the machine-level, as per the discussion
in Section 5. The vast majority of qhasm-translated programs are
written in a straight-line style and were automatically proven, given
a two-line top-level specification of valid memory regions (safety)
and public inputs (constant-time). Verification is more effective for
Jasmin-style code with high-level control flow structures, especially
loops, but may require suitable programmer-supplied annotations
typical of high-level functional correctness proofs. This is the case of
some salsa20 fragments containing loops that manipulate memory
regions, and our X25519-4limb-jasmin implementation (Figure 5).

7 RELATEDWORK

Verification of Curve25519. There have been several efforts to
reason formally about the functional correctness of Curve25519.

Chen et al. [19] prove functional correctness of a qhasm imple-
mentation of scalar multiplication. In their approach, functional
correctness is captured by a post-condition stating that the program
computes its intended result. Moreover, the verification process re-
quires the programmer to annotate the qhasm code with assertions
that establish relations between relevant intermediate values in the
code. For instance, applying their approach to modular multiplica-
tion requires the programmer to insert an assertion at the program
point where multiplication was completed, and insert subsequent
assertions referring to the intermediate value at various points in
the modular reduction step. Starting from a qhasm program with
sufficiently many annotations, their approach generates a set of
proof goals, which are automatically translated to the Boolector
SMT solver [30] that attempts to discharge them automatically.
When the SMT solver is not powerful enough to complete the proof
that these intermediate results suffice to imply the post-condition,
then the proof is completed in Coq. Intuitively, moving to Coq is
necessarywhenever there is a semantic gap—in this case due to com-
plex algebraic arguments—between the expressed post-condition
(e.g. x = y × x mod 2p) and the assertions that can be proved by
the SMT solver, which typically encode details of how the modular
reduction is carried out within the program (e.g., by first reducing
modulo 2256 and then adjusting the result). This approach has the
important benefit of reasoning directly over assembly code. How-
ever, it is labour-intensive, and delivers weak guarantees, since the
qhasm language has no formal semantics.

Zinzindohoué and co-workers [36] use an approach based on
refinement types for verifying functional correctness of an imple-
mentation of Curve25519 written in a stateful, verification-aware,
higher-order functional programming language from the ML family.
However, the assembly code is very inefficient. In a recent work,
Bhargavan and co-workers [16, 35] propose a different approach for
generating efficient and functionally verified C implementations;
however, the fastest implementations are obtained using an unveri-
fied compiler. In an independent work, Erbsen et al. [22] propose yet
another alternative approach for synthesizing functionally correct
and efficient implementations from high-level specifications written
in Coq. Finally, Bernstein and Schwabe [15] develop an automated
tool for proving functional correctness of a C implementation of

Curve25519. Starting from a sufficiently-annotated C implementa-
tion, the gfverif tool generates a set of algebraic equalities which are
sufficient to guarantee functional correctness and can be proved au-
tomatically using a symbolic computation tool. All these approaches
yield strong guarantees on the source programs, but the assembly
code is generated with untrusted tools, which is clearly undesirable
for high-assurance software. Most of these approaches also depart
significantly from current practices, and require programmers to
adopt non-conventional languages, which may be a serious obstacle
to adoption. In addition, none of these works consider side-channel
security of the assembly implementations—side-channel security
of C implementations is discussed in [16], but obviates the security
gap in modern compilers [21].

Other work. Our work is also closely related to Vale [17], which
leverages the Dafny verifier to provide a framework for prov-
ing functional correctness and side-channel resistance of high-
performance assembly code. The Vale language provides high-level
control-flow structures that simplify the writing and verification of
cryptographic routines. In contrast to Jasmin, the Vale compiler is
not verified: all verification is performed on the generated anno-
tated assembly.

Almeida et al. [2, 3] propose a general methodology for obtain-
ing strong guarantees for assembly-level implementations, through
proving simultaneously the three properties, using a C implemen-
tation of MEE-CBC as an illustrative case study. Their approach
relies on a combination of multiple tools, including EasyCrypt for
proving security of algorithmic descriptions, Frama-C for proving
functional equivalence between algorithmic descriptions and C
implementations, CompCert for proving functional equivalence
between C implementations and assembly code, and a formally
verified type system for constant-time for side-channel security.

Appel [5] leverages the Verified Software Toolchain [6] to prove
functional correctness of an assembly-level implementation of
SHA256 generated using the CompCert compiler [28]. In a related
effort, Beringer and co-workers [10] further leverage the Foun-
dational Cryptographic Framework [31] to prove, in addition to
functional correctness, cryptographic security of an assembly-level
implementation of HMAC. Recently, Ye and co-workers [34] have
extended this approach for proving correctness and cryptographic
security of the mbedTLS implementation of HMAC-DRGB.

Beyond these works on validating cryptographic implementa-
tions, there is a significant amount of work on building verified
compilers and formal models of assembly languages.

There has been a significant amount of work on analyzing side-
channel resistance of cryptographic implementations. Our work is
most closely related to static analyses for cryptographic constant-
time, including [8, 33], and specially to the product-based approach
of ct-verif [4]. However, ct-verif targets LLVM intermediate repre-
sentation, leaving open the question of carrying the results of the
analysis to assembly code, while we target code that is significantly
closer to assembly, and (informally) argue that the Jasmin compiler
preserves cryptographic constant-time.

8 CONCLUSION

Jasmin is a framework for building high-speed and high-assurance
cryptographic implementations using a programming language



that simultaneously guarantees control on the generated assem-
bly and verifiability of the source programs. We justify our design
with proofs that the Jasmin compiler preserves behavior, safety,
and constant-time security of source programs; the main correct-
ness result—semantics preservation—is formally verified in the Coq
proof assistant.

Our main pending task is proving functional correctness of Jas-
min programs. We are completing a foundational (i.e. formally
verified in Coq) infrastructure for proving correctness of Jasmin

programs, and intend to leverage prior work on certified tactics for
arithmetic to achieve higher automation. Another task is to build
a foundational infrastructure for proving functional equivalence
between two Jasmin implementations. We plan to use these tools
in combination for proving functional correctness of our Jasmin

implementation of Curve25519. Moreover, we intend to include
support for richer instruction sets, and for different architectures.
As a first step, we intend to add support for vector instructions that
are routinely used in cryptographic implementations.
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A JASMIN SYNTAX REFERENCE

This section presents the concrete syntax of Jasmin source pro-
grams using BNF notation. Terminals are typeset in capital letters
or literally when no confusion should arise, non-terminals are sur-
rounded by angle brackets. Optional parts are written within square
brackets. Repeated parts are suffixed by an asterisk ∗ (not to be
confused with the terminal asterisk *).

Some rules (not shown) enable to concisely express common
patterns as non-empty sequences of elements (X) separated by
commas (⟨tuple1⟩ X), etc.

Types. Jasmin types are boolean, mathematical integers, bit-
vectors of some predetermined sizes, or arrays of such bit-vectors.
The sizes of these arrays are given through arbitrary expression
which must reduce to positive integers at compile-time.

⟨ptype⟩ ::= T_BOOL | T_INT
| ⟨utype⟩ | ⟨utype⟩ ⟨brackets⟨pexpr⟩⟩

⟨utype⟩ ::= T_U8 | T_U16 | T_U32
| T_U64 | T_U128 | T_U256

Expressions. Jasmin expressions are made of variables, array ac-
cesses, literal constants (booleans or mathematical integers), mem-
ory accesses, prefix unary operators, infix binary operators, and
function and primitive calls.

Operators include usual arithmetic, boolean and bit-wise oper-
ations. When relevant, arithmetic operators come with a signed
variant (with an ‘s’ suffix), which interpret their arguments as
signed integer.

The prefixed type in memory accesses corresponds to the type
of the value to fetch; it defaults to b64. The pointer expression is
made of a base (variable) and an offset (expression).

⟨pexpr⟩ ::= ⟨var⟩
| ⟨var⟩ ⟨brackets⟨pexpr⟩⟩
| TRUE | FALSE | INT
| [⟨parens⟨ptype⟩⟩] ⟨brackets(⟨var⟩ + ⟨pexpr⟩)⟩
| ⟨peop1⟩ ⟨pexpr⟩
| ⟨pexpr⟩ ⟨peop2⟩ ⟨pexpr⟩
| ⟨parens⟨pexpr⟩⟩
| ⟨var⟩ ⟨parens_tuple⟨pexpr⟩⟩
| ⟨prim⟩ ⟨parens_tuple⟨pexpr⟩⟩

⟨ident⟩ ::= NID

⟨var⟩ ::= ⟨ident⟩

⟨prim⟩ ::= # ⟨ident⟩

⟨peop1⟩ ::= ! | -

⟨peop2⟩ ::= + | - | *
| && | PIPEPIPE
| & | PIPE | ^ | << | >> | >>s
| == | != | < | <= | > | >=
| <s | <=s | >s | >=s

Instructions. A Jasmin instruction is either an array initializa-
tion, a parallel assignment (maybe conditional), a function call, a
conditional branch, a for loop with explicit direction, or a while
loop.

The while loop is slightly non-standard as its body is split in two
parts: the first part is executed on every iteration before the con-
dition is evaluated; the second part is executed on every iteration
after the condition is evaluated (unless the condition evaluates to
false, in which case the execution of the loop terminates). This en-
ables to handle, with a single syntactic construct, usual while loops,
do-while loops, and while loops whose conditions are instructions
(the first part of the body) rather than simple expressions.

A sequence of instructions surrounded by braces makes a block.

⟨pinstr⟩ ::= ARRAYINIT ⟨parens⟨var⟩⟩ ;
| ⟨tuple1⟨plvalue⟩⟩ ⟨peqop⟩ ⟨pexpr⟩ [IF ⟨pexpr⟩] ;
| ⟨var⟩ ⟨parens_tuple⟨pexpr⟩⟩ ;
| IF ⟨pexpr⟩ ⟨pblock⟩
| IF ⟨pexpr⟩ ⟨pblock⟩ ELSE ⟨pblock⟩
| FOR ⟨var⟩ = ⟨pexpr⟩ TO ⟨pexpr⟩ ⟨pblock⟩
| FOR ⟨var⟩ = ⟨pexpr⟩ DOWNTO ⟨pexpr⟩ ⟨pblock⟩
| WHILE [⟨pblock⟩] ⟨parens⟨pexpr⟩⟩ [⟨pblock⟩]

⟨pblock⟩ ::= ⟨braces⟨pinstr⟩∗⟩

The assignment operators are either raw or compound with a
binary (arithmetic or bit-wise) operator.

⟨peqop⟩ ::= =
| += | -= | *=
| >>= | >>s= | <<=
| &= | ^= | PIPEEQ

https://doi.org/10.1007/978-3-662-46666-7_4
https://doi.org/10.1145/2892208.2892230
http://eprint.iacr.org/2017/536
https://doi.org/10.1109/CSF.2016.28


Left-values (destinations of assignments) are either an under-
score meaning that the value should be ignored (not assigned to
anything), a variable, an array cell, or a memory address.
⟨plvalue⟩ ::= UNDERSCORE

| ⟨var⟩
| ⟨var⟩ ⟨brackets⟨pexpr⟩⟩
| [⟨parens⟨ptype⟩⟩] ⟨brackets(⟨var⟩ + ⟨pexpr⟩)⟩

Functions. A function body is, surrounded by braces, a sequence
(maybe empty) of declarations of local variables, followed by a
sequence (maybe empty) of instructions, followed by an optional
return clause. Functions may return several values at once.
⟨pfunbody⟩ ::= LBRACE (⟨pvardecl⟩ ;)∗ ⟨pinstr⟩∗ [RETURN

⟨tuple⟨var⟩⟩ ;] RBRACE

⟨storage⟩ ::= REG | STACK | INLINE

⟨stor_type⟩ ::= ⟨storage⟩ ⟨ptype⟩

⟨pvardecl⟩ ::= ⟨stor_type⟩ ⟨var⟩

Global declarations. A Jasmin module is a sequence of global
declarations, each of them being the declaration of a function, of a
parameter (value known at compile time) or of a global (read-only)
variable.

⟨module⟩ ::= ⟨top⟩∗ EOF | error

⟨top⟩ ::= ⟨pfundef⟩ | ⟨pparam⟩ | ⟨pglobal⟩

⟨call_conv⟩ ::= EXPORT | INLINE

⟨pfundef⟩ ::= [⟨call_conv⟩] FN ⟨ident⟩
⟨parens_tuple(⟨stor_type⟩ ⟨var⟩)⟩ [->
⟨tuple⟨stor_type⟩⟩] ⟨pfunbody⟩

⟨pparam⟩ ::= PARAM ⟨ptype⟩ ⟨ident⟩ = ⟨pexpr⟩ ;

⟨pglobal⟩ ::= ⟨ident⟩ = ⟨pexpr⟩ ;

B JASMIN X25519-4LIMB IMPLEMENTATION

This section provides more detailed information regarding our
optimized X25519-4limb-jasmin implementation in Jasmin. Fig-
ure 6 shows the complete source code for the iterated_square and
mladder procedures – that exemplify the use of high-level control
flow structures in Jasmin – including the respective programmer
annotations needed for automatic verification. The remaining proce-
dures consist of simple straight-line code and only require top-level
procedure contract annotations. Our full X25519-4limb-jasmin im-
plementation comprises a total of 16 procedures and 798 lines of
code. These include 24 lines of programmer annotations split into
procedure contracts (13 lines) and loop invariants (11 lines).



Figure 6: Complete iterated_square andmladder procedures from our X25519-4limb-jasmin implementation.

fn iterated_square(stack b64[4] xa, stack b64 n) −→ stack b64[4]

//@ requires n >=s 3 && n <=s 98;

//@ security requires public(n);

{

reg b64[8] z; reg b64[4] r; reg b64[5] t;

reg b64 xa0, xa1, xa2, rax, rdx;

reg bool cf;

reg b64 n_r;

//@ cf = false;

while
//@ decreases n;

//@ invariant !cf == (n >=s 0);

//@ invariant n <=s 98;

{

xa0 = xa[0]; xa1 = xa[1]; xa2 = xa[2];

rax = xa1; rdx, rax = rax * xa0;

z[1] = rax; z[2] = rdx;

rax = xa2; rdx, rax = rax * xa1;

z[3] = rax; z[4] = rdx;

rax = xa[3]; rdx, rax = rax * xa2;

z[5] = rax; z[6] = rdx; z[7] = #x86_MOV(0);

rax = xa[2]; rdx, rax = rax * xa0;

cf, z[2] += rax; cf, z[3] += rdx + cf; _, z[4] += 0 + cf;

rax = xa[3]; rdx, rax = rax * xa1;

cf, z[4] += rax; cf, z[5] += rdx + cf; _, z[6] += 0 + cf;

rax = xa[3]; rdx, rax = rax * xa0;

cf, z[3] += rax;

cf, z[4] += rdx + cf; cf, z[5] += 0 + cf; cf, z[6] += 0 + cf; _, z[7] += 0 + cf;

cf, z[1] += z[1];

cf, z[2] += z[2] + cf; cf, z[3] += z[3] + cf; cf, z[4] += z[4] + cf;

cf, z[5] += z[5] + cf; cf, z[6] += z[6] + cf; cf, z[7] += z[7] + cf;

rax = xa0; rdx, rax = rax * xa0;

z[0] = rax; t[0] = rdx;

rax = xa1; rdx, rax = rax * xa1;

t[1] = rax; t[2] = rdx;

rax = xa[2]; rdx, rax = rax * xa[2];

t[3] = rax; t[4] = rdx;

cf, z[1] += t[0];

cf, z[2] += t[1] + cf; cf, z[3] += t[2] + cf; cf, z[4] += t[3] + cf;

cf, z[5] += t[4] + cf; cf, z[6] += 0 + cf; _, z[7] += 0 + cf;

rax = xa[3]; rdx, rax = rax * xa[3];

cf, z[6] += rax; _, z[7] += rdx + cf;

r = reduce(z);

xa = r;

n_r = n;

cf, n_r -= 1;

n = n_r;

} (! cf)

return xa;

}

fnmladder(stack b64[4] x2, stack b64[4] z2, stack b64[4] xr, reg b64 sp)

−→ stack b64[4], stack b64[4]

//@ requires valid(sp, 8 * 0, 8 * 4 - 1);

//@ security requires public(sp);

{

stack b64 s;

reg b64 tmp1, tmp2, bit, swap;

stack b64 prevbit;

stack b64[4] x1;

reg b64[4] x2r;

stack b64[4] x3, z3;

reg b64 i, j;

stack b64 is, js;

reg bool cf;

reg b64[4] buf;

buf = xr; x1 = buf; x3 = buf;

x2[0] = 1;

x2[1] = #x86_MOV(0);

x2[2] = #x86_MOV(0);

x2[3] = #x86_MOV(0);

z2[0] = #x86_MOV(0);

z2[1] = #x86_MOV(0);

z2[2] = #x86_MOV(0);

z2[3] = #x86_MOV(0);

z3[0] = 1;

z3[1] = #x86_MOV(0);

z3[2] = #x86_MOV(0);

z3[3] = #x86_MOV(0);

j = 62; i = 3; prevbit = #x86_MOV(0);

while
//@ decreases i;

//@ invariant i <=s 4;

//@ invariant j == 62 || j == 63;

//@ invariant (i >=s 0) ==> valid(sp, 8 * i, 8 * i + 7);

//@ security invariant public(i);

{

tmp1 = [sp + 8 * i];

is = i;

s = tmp1;

while
//@ decreases j;

//@ invariant j <=s 63;

{

tmp2 = s;

bit = tmp2 >> j;

js = j;

bit = bit & 1;

swap = prevbit;

swap ^= bit;

prevbit = bit;

x2r, z2, x3, z3 = cswap(x2, z2, x3, z3, swap);

x2r, z2, x3, z3 = ladderstep(x1, x2r, z2, x3, z3);

x2 = x2r;

j = js;

j -= 1;

} (j >=s 0)

j = 63;

i = is;

i -= 1;

} (i >=s 0)

return x2, z2;

}
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