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Resumo

Processadores multicore, capazes de executar concorrentemente múltiplas threads de processamento, são

cada vez mais comuns em servidores, computadores de secretária, computadores portáteis, e máquinas

ainda mais pequenas. Infelizmente, durante grande parte do tempo estas máquinas são subutilizadas, pois

muito do software actual não está preparado para aproveitar as suas capacidades de multiprocessamento.

Além disso, nestas novas máquinas a adição de mais cores de processamento não se traduz numa maior

performance na execução sequencial de código, levando a que aplicações sequenciais existentes não se

executem mais rapidamente em multicores.

Com este trabalho pretendo abordar este problema utilizando especulação ao ńıvel da thread, combi-

nada com uma memória transaccional em software, para automaticamente paralelizar programas sequen-

ciais.

Será apresentado o Java Speculative Parallel Executor (JaSPEx), um sistema que combina a modi-

ficação de aplicações para que se executem transaccionalmente sobre o controlo de uma memória transac-

cional em software (o processo de transactificação), com a execução paralela especulativa de uma aplicação,

numa Máquina Virtual Java não-modificada.

Tanto a transactificação como a execução especulativa são feitas automaticamente, sem serem necessárias

modificações à aplicação original ou intervenção do seu programador, para todas as aplicações existentes

que se executem na Máquina Virtual Java.

As dificuldades inerentes ao processo de transactificação de uma aplicação são também descritas, assim

como a relação entre a execução especulativa de um programa e a forma como é utilizada a memória

transaccional em software.

Apresento também resultados promissores para a minha aproximação, obtidos com uma implementação

preliminar do sistema JaSPEx.





Abstract

Multicore processors, capable of running multiple hardware threads concurrently, are becoming common

on servers, desktops, laptops, and even smaller systems. Unfortunately, most of the time these new

machines are underutilized, as most current software is not written to take advantage of their multipro-

cessing capabilities. Also, with these new machines, more cores do not translate into more sequential

performance, and existing sequential applications will not speed up by moving to a multicore.

This work proposes to tackle this problem with the use of thread-level speculation based on a software

transactional memory, to parallelize automatically sequential programs.

The Java Speculative Parallel Executor (JaSPEx) system is described, which combines the modifica-

tion of an application so that it can execute transactionally under the control of a software transactional

memory (the transactification process), with the speculative parallel execution of the application, on top

of an unmodified Java Virtual Machine.

Both the transactification and the speculative execution are done automatically, without needing any

changes to the original application or input from its programmer, for all existing sequential applications

that execute on the Java Virtual Machine.

I also address the difficulties inherent to the process of transactifying an existing program, and what is

the relationship between the speculative execution of a program and the software transactional memory

that it is using.

I present early benchmark results with a proof-of-concept implementation of the JaSPEx system, that

show promising results for the approach I propose.
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Chapter 1

Introduction

The transition to multicore architectures is ongoing. Chip designers are no longer racing to design the

fastest uniprocessor, instead turning to parallel architectures, with newer designs incorporating multiple

cores, capable of running many threads simultaneously.

The full power of these multicore chips is unlocked only when all cores are busy executing code. Yet,

most desktop applications fail to take advantage of these processors, having little, if any, parallelism.

The problem for legacy applications is that for years new, faster, uniprocessors brought “free” speedups

for all applications: just upgrade to the latest processor and your applications go faster, with no other

modifications needed; this does not apply with multicore processors.

Concurrent programming is, unfortunately, harder than sequential programming. Moreover, even

if newly developed applications are written with multicore architectures in mind, most of the already

developed code is still sequential and it is not feasible to rewrite it within a reasonable time frame.

So, the problem is that we cannot expect to get better performance on most legacy applications

just by upgrading to a multicore processor, and rewriting or adapting legacy applications poses many

problems. Thus, an enticing alternative is to parallelize applications automatically. In fact, there is

already significant research towards this goal.

For instance, parallelizing compilers [1, 2] try to automatically extract concurrency from a sequential

program description, while still maintaining program correctness. The problem is that they still fail to

parallelize many applications, because of data and interprocedural dependencies that are very hard to

analyze at compile-time in a fully static way.

This work explores a different approach — speculative parallelization. Rather than parallelizing only

code that is provably able to run in parallel, speculative parallelization uses a more aggressive approach

that parallelizes code that may have dependencies, and relies on the ability to roll back a speculative

execution when it detects that the parallelization could not have been done.

Unlike other approaches to automatic parallelization that rely on hardware-supported speculative

execution (e.g., [3, 4, 5]), the distinguishing feature of my proposal is the use of a software transactional

memory (STM) [6, 7] to back up the speculative execution. To the best of my knowledge, I am the first

to propose the use of an STM for speculative parallelization.
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I argue that using an STM for speculative execution has several advantages over hardware-supported

approaches. First, because STM-based executions are unbounded, I may extend the scope of possible

speculative parallelizations, thereby increasing the potential for extracting parallelism from sequential

applications. Second, I may apply these techniques to applications that run on hardware that does not

support speculative execution (including all of the current mainstream hardware). Finally, I may benefit

from much of the intense research being done in the area of transactional memory.

Yet, switching from hardware-supported speculation to an STM-based approach, introduces other

challenges, such as being able to transactify a program to run it speculatively. This work describes

JaSPEx — the Java Speculative Parallel Executor — a system that automatically parallelizes programs

for the Java Virtual Machine (JVM) using an STM-based speculative approach. JaSPEx rewrites the

bytecode as it is loaded by the JVM runtime, modifying it to run speculatively on top of an STM.

1.1 Thesis Statement

This dissertation’s thesis is that it is possible to build a speculative parallelization system for existing

sequential applications that run on the Java Virtual Machine platform, without needing any kind of

special support from the Virtual Machine, and transparently to the programmer, by rewriting application

bytecode and relying on the help of a software transactional memory.

The usage of a software transactional memory allows my approach to be applied to common main-

stream hardware. By also targeting an unmodified Virtual Machine platform, this approach becomes as

platform-independent as normal Java applications are: it can be applied on any JVM on any platform

that complies with Sun’s JVM specification.

By being automatic and transparent to the programmer, my approach can be applied to all applica-

tions, without requiring any changes to the application being executed.

To validate my thesis, I built the Java Speculative Parallel Executor system, a speculative execution

system that embodies the proposed approaches. In this dissertation I describe in depth the design and

implementation of the JaSPEx system, as well as the ideas I explored and limitations that had to be

overcome.

1.2 Notation

The modifications done by JaSPEx to applications are done via Java Virtual Machine bytecode rewriting.

But, because looking into these transformations at the bytecode level makes them harder to understand,

in this dissertation I shall only use bytecode in a small number of examples; for most examples, these

transformations will be presented as semantically equivalent changes at the Java programming language

level.

A Java method’s signature is composed of the name of the method, the types of its formal parameters

(if any), and a return type (which can be void). An example method signature for a method returning

the integer sum of two integer values is int sum(int val1, int val2). In this document, whenever parts

of a method signature are not relevant, they may be skipped, and I may refer to our example method as

2



sum, sum(), sum(int, int), int sum() or int sum(int, int), if it is clear from the context which method

is being described.

Whenever possible, generics [8] are used in the examples. Note, however, that Java’s implementation

of generics is mostly invisible and irrelevant to the Java Virtual Machine environment, as they are

implemented using type erasure.

1.3 Outline

The remainder of this dissertation is organized as follows:

• Related Work. Chapter 2 presents a review of relevant work related to this dissertation.

• Problem Statement and Solution Overview. Chapter 3 further describes the problem that I propose

to solve, and the requirements for the solution. An overview of the solution is then presented,

including the general design idea for speculative execution of method calls.

• Transactification of JVM Applications. Chapter 4 introduces the transformation of existing code

so that it may run with transactional semantics, a process that I call transactification. Strategies

for implementation of transactification of both fields and arrays are presented. Finally, the issue of

handling execution of non-transactional operations is also analyzed.

• Speculative Parallelization. Chapter 5 starts by introducing and discussing the design of the spec-

ulative execution model that is used by the JaSPEx framework, and some of the compromises

that had to be made to achieve positive results. It then describes how speculation is done: what

changes are made to programs so that they can run speculatively; when the framework generates

speculative execution tasks; how tasks are managed internally by the framework; and when can

transactions commit their modifications. Also examined are the issues of reusing worker threads,

and how JaSPEx interacts with the JVSTM. The chapter ends with a discussion of the overall

solution, and how it is shaped by the limitations imposed by the Java Virtual Machine.

• Experimental Results. Chapter 6 presents measurements of the overheads introduced by the trans-

actification process, and experimental results of applying speculative parallelization to a number of

applications.

• Conclusion. Chapter 7 summarizes the work described in this dissertation, the results achieved,

and what are its main contributions. It also describes future work possibilities to be explored, to

expand the ideas and approaches introduced by this dissertation and the JaSPEx system.
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Chapter 2

Related Work

The following sections introduce important research work related to this dissertation.

Parallelizing Compilers (Section 2.1) were the first approach to automatic parallelization. These

compilers try to automatically extract concurrency from a sequential program description, but their ap-

proach based on static analysis fails to work with many applications, because of data and interprocedural

dependencies.

A possible solution to the limitations presented by parallelizing compilers is the usage of speculative

parallelization, where the parallelization system does not have to prove that a parallelization is always

valid, because application code is run under a memory transaction that can be aborted and undone when

a memory access conflict is detected.

Support for memory transactions can be achieved through the use of Hardware Transactional Memory

(Section 2.2), Software Transactional Memory (Section 2.3) or through Hybrid Approaches (Section

2.4) that combine both. Each approach has its advantages and disadvantages: HTMs offer very small

overheads for transaction start and commit, but are limited by the features provided by the hardware,

that often limit transaction size and duration; STM designs offer big or even unbounded transaction size

and duration, and do not need any kind of special hardware support, but can impose big overheads;

and hybrid designs try to balance both approaches by allowing transactions to execute in HTM mode if

possible, falling back to STM mode otherwise.

Thread-Level Speculation (Section 2.5) systems combine speculative parallelization with hardware

support for transactions to try to parallelize applications at a very fine-grained level. A common approach

is to parallelize loops by executing each loop iteration inside its own transaction. Other approaches include

grouping application code into tasks that are run in parallel.

Parallel Programming Languages (Section 2.6) present an alternative approach to application devel-

opment, where application design is entirely thought out to support and encourage concurrent execution.

They also tackle issues that a speculative parallelization system has to resolve, like task scheduling and

atomic execution.

The Java Concurrent Programming (Section 2.7) and Transactional Java Execution (Section 2.8)

sections describe other approaches taken for concurrent programming inside the Java platform, some of

which share traits with how the system described in this dissertation is implemented, providing insights
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into the possibilities offered by the platform.

Finally, in Section 2.9, the Java Versioned Software Transactional Memory (JVSTM) — the STM

used by the JaSPEx system — is introduced and discussed.

2.1 Parallelizing Compilers

The Polaris compiler [1] is a prototype parallelizing compiler for Fortran that combines many techniques

to try and overcome the limitations of other parallelizing compilers. Interprocedural analysis is done

by inline expansion, where the compiler starts with a top-level program unit and repeatedly expands

subroutine and function calls. Induction variable substitution and reduction recognition are used to try

and break data dependencies between different iterations of loops, so that they may execute in parallel.

Symbolic dependence analysis is used to determine what statements or loops can be safely executed in

parallel. Scalar and array privatization identifies scalars and arrays that are used as temporary work

space by an iteration of a loop, and allocates local copies of them. Run-time analysis is also included,

where some loops that cannot be analyzed statically are augmented with a test at run-time to determine

if there are cross-iteration dependencies; during run-time execution, parallel versions of these loops write

into a temporary location, and if they pass the dependencies test, their result is stored in permanent

locations, otherwise a sequential version of the loop is reexecuted.

SUIF [2] is an infrastructure for experimental research on parallelizing and optimizing compiler tech-

nology, aiming to provide researchers with a modular and flexible platform on which to test new ideas.

It supports ANSI C and Fortran (via translation to C) front-ends, a loop-level parallelism and locality

optimizer, and an optimizing MIPS back-end. Parallelization is done in multiple passes: first, scalar

optimizations are applied to help expose parallelism, such as constant propagation, forward propagation,

induction variable detection, constant folding, and scalar privatization analysis; array dependence analy-

sis is then applied, and its results are used to transform loops. The current loop analyzer recognizes sum,

product, minimum and maximum reductions. Ongoing research projects based on this infrastructure

include global data and computation decomposition, array privatization, interprocedural parallelization

and efficient pointer analysis.

2.2 Hardware Transactional Memory

Transactional Memory [9] was initially proposed by Herlihy and Moss as a multiprocessor architecture

capable of making lock-free synchronization as efficient and easy to use as conventional techniques based

on mutual exclusion, while avoiding pitfalls like priority inversion, convoying, and deadlocks. The imple-

mentation was based on extensions to multiprocessor cache-coherence protocols, addition of some new

instructions to the processor, and a small transactional cache where transactional changes were kept prior

to committing. It was a direct generalization of Load-Linked/Store-Conditional, providing the same se-

mantics for multiple memory words, instead of being restricted to just one. But, it was not dynamic:

memory usage and the transactions had to be statically defined in advance.

Software transactional memories have since been proposed that overcome many of these problems, at

the cost of bigger overheads.
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2.3 Software Transactional Memory

Software transactional memory [6] was introduced as an alternative to hardware transactional memory

that could be implemented on top of Load-Linked/Store-Conditional of a single memory word, as provided

by most current hardware architectures. The authors recognized that although hardware transactional

memory was a very promising tool for implementation of non-blocking concurrent programs, applications

using it were not portable, and most architectures being introduced and planned at that time (and today

still) did not incorporate HTM into their designs. As it was the case with Herlihy’s original HTM, this

STM was limited to static transactions, where the data set is known in advance, providing only a k -word

compare-and-swap operation.

The Dynamic Software Transactional Memory (DSTM) [7] was the first unbounded STM, allowing it

to be used in the implementation of dynamically-sized data structures such as lists and trees. It allowed

transactions to detect if they would cause some other transaction to abort before doing so, therefore

allowing the decision of whether to proceed or to give the other transaction a chance to complete its work

first. Such decisions were made by pluggable contention managers.

The McRT-STM [10] is an STM implementation that is part of McRT, an experimental multicore

runtime. This STM supports advanced features such as nested transactions with partial aborts, object

based conflict detection for C/C++ applications, and contention managers. The authors also present an

analysis of STM design tradeoffs such as optimistic versus pessimistic concurrency, write buffering versus

undo logging, and cache line based versus object based conflict detection. Unlike many designs, the McRT-

STM does not provide non-blocking guarantees, because the authors argue that the implementation is

both simplified and more efficient this way. Memory changes are done in-place on writes; the location’s

original value is saved on an undo log, which is used in case the transaction aborts.

2.4 Hybrid Approaches

Hybrid Transactional Memory (HyTM) [11] is an approach to implementing a transactional memory in

software that can use best-effort hardware support to boost performance, but does not depend on it. As

such, it works on all computers, with or without hardware support for transactions. When hardware

support is available, transactions try to run with this support; if they reach hardware limitations they

abort and restart as software transactions. The system is implemented as a prototype compiler based

on the Sun Studio C/C++ Compiler and an STM library; the compiler produces code for executing

transactions using HTM or using the STM library. An important part of this work is reconciling con-

current hardware and software transactions, especially detection of conflicts between them. Additionally,

this hybrid approach allows for an incremental and transparent transition between pure software TM,

and hardware TM, allowing chip designers to gradually introduce transactional support in their chips,

without having to commit to an unbounded (dynamic) hardware solution from the start. The authors

also recognized the importance of the contention managers proposed by Herlihy et al. [7].

Rajwar, Herlihy and Lai [12] present the Virtual Transactional Memory (VTM) that, like the HyTM,

combines hardware and software approaches. The authors argue that like virtual memory shields the

programmer from platform-specific limits of physical memory, so must virtual transactional memory

shield programmers from HTM limitations such as transactional buffer sizes, scheduling quanta, and

page faults. But, unlike the HyTM, VTM also needs hardware machinery to handle the transition from
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working in the “hardware-only” mode (HTM) to the unbounded transaction mode.

2.5 Thread-Level Speculation

POSH [3] presents a Thread-Level Speculation (TLS) infrastructure on top of the GNU Compiler Collec-

tion (GCC) that targets a multiprocessor architecture with hardware support for speculative transactions.

The POSH framework is composed of a compiler and a profiler. The compiler has three main stages: task

selection, spawn hoisting, and task refinement. Task selection uses a variety of heuristics to identify dif-

ferent tasks, which can still have dependencies — the hardware ultimately guarantees correct execution;

spawn hoisting tries to place the transaction spawn instruction as early as possible, with some restrictions;

and in the task refinement phase the final set of tasks is selected. The profiler runs applications with

a training input set, and provides the compiler with a list of tasks that are beneficial for performance,

allowing the compiler to eliminate non-beneficial tasks. The authors argue that even when a speculative

execution aborts — when a task is squashed — it may still be beneficial for the program execution, as

when the task is restarted some of the values needed are already in cache, and so a squashed task also

works as a prefetching mechanism.

In [4] the authors present a reverse compilation framework that translates binary code to static

single assignment (SSA) form, from there performing optimizations and adding support for speculative

execution. Profiling is also used to identify important program areas, and to predict likely values, reducing

the number of speculative mis-predictions and their penalties. The reverse compilation approach allows

speculative parallelization of existing legacy applications, because no access to program source code is

needed, only to program binaries.

Bridges et al. [13] describe a framework that combines whole-program analysis and speculative ex-

ecution with extensions to the sequential programming model that further enable parallelization. The

suggested extensions allow the programmer to specify that multiple legal outcomes of the program exe-

cution are possible:

• The Y-branch extension is similar to a common if-then-else, but it allows the true path to be

taken regardless of the condition of the branch; the compiler is free to generate code to pursue this

path when it is profitable to do so (Figure 2.1).

• The Commutative extension informs the compiler that calls to a function (or group of functions) can

occur in any order; this is particularly useful for functions that have internal state — and as such

generate dependencies — but on which the order of the calls are not relevant to the application as

a whole, like the random function shown in Figure 2.2.

Jrpm [5], the Java runtime parallelizing machine is a Java virtual machine that does TLS on a

multiprocessor with hardware support. Buffer requirements and inter-thread dependencies are analyzed at

runtime to identify loops to parallelize. Once sufficient data is collected, the selected loops are dynamically

recompiled. As Jrpm works at the Java bytecode level, no changes need to be made to the source binaries

or code.

Oplinger et al. [14] investigated the problem of how to find and exploit speculative thread-level

parallelism. The authors found that it is inadequate to exploit only loop-level parallelism, as many

systems do, and that procedure calls provide important opportunities for parallelism, so they propose
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while (b = readByte()) {

profitable = compress(b, dictionary);

@YBranch(probability=.0001)

if (!profitable)

dictionary.restart();

}

Figure 2.1: Example use of a Y-Branch on a simplified dictionary-based compression algorithm. The
compiler is free to restart the dictionary, even if profitable is true, giving the compiler the ability to
break dependencies caused by the restart operation. The probability argument informs the compiler that
the dictionary should not be restarted until at least 10000 bytes are compressed.

private long seed;

@Commutative

protected synchronized int next(int bits) {

seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);

return (int) (seed >>> (48 - bits));

}

Figure 2.2: Implementation of the java.util.Random.next() method, which generates a pseudorandom
number based on a seed, annotated with the Commutative extension.

the use of speculative procedure execution, coupled with procedure return value prediction. The results

that they present were obtained by simulating the execution of applications on variations of an optimal

speculative thread-level parallelism (STP) machine; it is argued that this optimal machine can be used to

derive an upper bound on the performance achievable on any real machine of a similar design. Speculative

procedure execution is done by executing a called procedure in parallel with the code following the return

of the procedure. This approach is then applied recursively. As it is common that the return value of a

procedure is immediately used, this is where the proposed procedure return value prediction is applied.

This prediction works by keeping a cache of past values returned by a procedure, which are then used

to run speculatively the code following the procedure return immediately; in case of mis-speculation, the

speculative thread is aborted, and the code rerun with the real value.

2.6 Parallel Programming Languages

The Fortress [15, 16] programming language is designed to make parallel programming simple and painless.

In Fortress, a number of constructs are implicitly parallel. These include tuple expressions, also do blocks,

function calls, for loops, comprehensions, sums, and generated expressions. Implicitly parallel constructs

are automatically run in threads that are managed entirely by the compiler, runtime, and libraries of

the implementation. Threads can also be explicitly started using the spawn construct, but its use is

discouraged. Iteration is done by the use of generators that drive reducers. Atomic expressions allow

operations to be executed transactionally, where all other threads either observe that the computation

of the atomic block has completed, or that it has not yet begun; handling of conflicts is left to the

implementation. Additionally, functions that perform primitive input/output operations — that have
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Result solveProblem(Problem) {

if (problem size is small enough) {

solve problem

} else {

split problem into subproblems

execute subproblems in parallel (fork)

obtain results from all subproblems (join)

compose result from subresults

}

}

Figure 2.3: General pseudo-code form of a fork/join algorithm.

externally visible effects — must be explicitly declared with the io modifier, which cannot be used in

combination with the atomic modifier.

X10 [17] is an object-oriented Java-inspired language aimed at Non-Uniform Cluster Computing

(NUCC) systems, where multiple nodes containing multicore SMP chips with non-uniform memory hier-

archies are interconnected in horizontally scalable cluster configurations. It supports parallel program-

ming across multiple cores in a chip, and across multiple systems in a cluster. Each system represents

a place, and multiple activities (similar to threads/tasks) can be run in each place. The async keyword

is used to schedule execution of an activity on a local or remote place. Parallel iteration can be done

across multiple activities in a single place by use of foreach, and across multiple places using ateach.

Atomic blocks are also supported, but isolation only occurs under normal execution; if an atomic block

terminates abruptly (e.g. with an unhandled exception), transaction semantics are explicitly violated,

and it becomes the responsibility of the programmer to clean up any side-effects performed inside it.

Support for futures, conditional atomic blocks and partitioned multi-dimensional arrays is also included.

2.7 Java Concurrent Programming

FJTask [18] is a framework due for inclusion on the upcoming Java 7 that supports Fork/Join parallelism,

a style of parallel programming where problems are solved by recursively splitting them into subtasks,

which can then be executed in parallel, as shown in Figure 2.3. The framework uses a pool of worker

threads, which are reused for multiple tasks; tasks themselves are lightweight objects. A special queueing

and scheduling discipline is used to manage tasks and map them to the worker threads: each thread

maintains a double-ended queue of tasks, which are processed in LIFO order; when their own deque is

empty, threads try to obtain tasks by work-stealing [19] from other threads. The author argues that

standard thread frameworks are too heavy to support this style of programming, imposing unneeded

overheads and having too generic scheduling algorithms.

JCilk [20] is a Java-based language for parallel programming that provides call-return semantics for

multithreading, allowing a programming style very similar to fork/join. It extends Java with three new

keywords: cilk is used to declare methods that can be spawned to execute in parallel, spawn is used to

spawn a child method call, and sync acts as a barrier, waiting for all spawned computations to complete

before continuing. JCilk includes very detailed and strict semantics for exception handling, aborting

of side computations, and other interactions between threads that try to minimize the complexity of
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cilk int fib(int n) {

if (n <= 1) return n;

int x = spawn fib(n-1);

int y = spawn fib(n-2);

sync;

return x+y;

}

Figure 2.4: Recursive JCilk implementation of the Fibonacci function.

reasoning about them. An important detail is that if the JCilk keywords are elided from a program,

a syntactically correct serial Java application results. Figure 2.4 shows a JCilk implementation of the

Fibonacci function.

Welc et al. [21] introduce safe futures for Java, which are futures that work as semantically transparent

annotations on methods, designating opportunities for concurrency. Execution of a method can be

replaced with execution of a future, the safe future model guaranteeing that sequential execution semantics

are respected, and observed behaviour of serial and concurrent tasks are the same. The implementation

is based on the Jikes RVM [22] virtual machine, and includes features very similar to those provided by

STMs.

2.8 Transactional Java Execution

Carlstrom et al. [23] investigate the implications of using hardware transactional support to execute

existing parallel Java applications. The general approach proposed is the transformation of synchronized

blocks into atomic transactions. The authors argue that strong transactional atomicity semantics are a

natural replacement for the critical sections defined by synchronized. Also discussed are the problems

underlying calls to native machine code through the Java Native Interface (JNI), and of non-transactional

operations. The authors conclude that existing parallel Java applications can be run transactionally with

minimal changes, and that a continuous transactional system — one where each thread consists of a

sequence of transactions, and there is no execution outside of transactions — can deliver performance

equal to or better than the pessimistic lock-based implementation of the application.

In [24], the authors present the Atomos programming language, the first programming language with

implicit transactions, strong atomicity, and a scalable multiprocessor implementation. Atomos is derived

from Java, replacing Java synchronization and conditional waiting with transactional alternatives. The

current implementation is based on the Jikes RVM [22] Java virtual machine, and on the Transactional

Coherence and Consistency (TCC) hardware transactional memory model [25]. In Atomos, transactions

are defined by an atomic statement that conceptually replaces the use of synchronized statements. The

watch statement allows programmers to specify fine-grained watch sets, that are used with the retry

conditional waiting statement for transactional conflict-driven wakeup; this is similar to the approach

introduced by Harris et al. [26]. Also included are open-nested transactions [27], using the open statement,

which are nested transactions that can be committed and their results seen by other transactions, even

while the parent transaction is still active; this allows threads to communicate between transactions,

similar to volatile variables,1 while minimizing the risk of data dependency violations, by limiting

1In Java, declaring a variable volatile means that it will never be cached by the current thread; reads and
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violation rollbacks to the open-nested transaction. Transaction commit and abort handlers that run on

transaction commit or abort are supported, along with violation handlers that allow programs to recover

from data dependency violations without rolling back. Benchmarks were done on a PowerPC CMP

system simulator with support for the TCC HTM, and show a clear advantage of Atomos over Java for

the tested applications.

2.9 Java Versioned Software Transactional Memory

The Java Versioned Software Transactional Memory (JVSTM) [28, 29] is a pure Java software transac-

tional memory library that is used to provide transactional execution semantics for code that is being

speculatively executed by the JaSPEx framework.

The JVSTM introduces the concept of versioned boxes [30], which are containers that keep the history

of the values of an object, each of these corresponding to a change made to the box by a committed

transaction. This arrangement allows read-only transactions to never conflict with any other concurrent

transaction, favouring applications that have a high read/write transaction ratio.

The authors recognize that read-only and read-write transactions present different implementation

overheads, and the importance of distinguishing between them. Also proposed are speculative read-only

transactions in which the JVSTM speculatively assumes that a transaction is read-only when it starts, but

later the transaction is aborted and restarted as a read-write transaction if it tries to change a versioned

box; garbage collection of old history values that are not needed anymore, because all transactions that

could reach them have either committed or been permanently aborted; and consistency predicates, which

allow domain-based validation of transactions at commit-time.

Detection of conflicts caused by read-write transactions is done only at transaction commit time.

Nested transactions are supported, and follow the linear nesting model [27]. In this arrangement,

concurrency within a transaction is disallowed, and each top-level transaction can only have at most

one nested child transaction at any given time, although each nested child transaction can also have at

any given time at most one other nested child transaction. Child transactions are executed by the same

thread of their parents, which means that if a child transaction is executing, then its parents are not.

Additionally, sibling transactions cannot be executed simultaneously.

The JVSTM was also designed to work well with medium (using hundreds to thousands of java

objects) and long-running transactions (using thousands to millions of objects) [28].

2.9.1 Transactional Model

A transaction is a sequence of steps that is executed by a single thread. Transactions are atomic: their

effects are seen by other threads in the system as occurring in a single step, and no intermediate states

are visible.

A transaction ends with either a commit, in which case the effects done by the transaction become

visible to the rest of the system, all at the same time, or with an abort, in which case effects done during

the transaction are discarded, never becoming visible to the rest of the system.

writes to this variable will always be forced to go to main memory.
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Both of these behaviours are very important for speculative execution: the ability to execute a number

of instructions without their results becoming immediately visible allows reordering of code execution

without affecting the original application semantics; and the ability to discard results allows invalid

executions, where the parallelization done by the system did not follow the original application semantics,

to be discarded without impacting the rest of the system.

2.9.2 Versioning and Conflict Detection

Every transaction in the JVSTM has a version number that is assigned when the transaction is created,

which represents the version number of the latest read-write transaction that successfully committed.

When a value of a versioned box is read inside a transaction, the box returns not always its latest

value, but a value that has an equal or smaller version than the current transaction version. When a

value is written to a VBox inside a transaction, it is put on the transaction’s write-map, and is only

visible to other threads after the transaction is successfully committed.

Read-only transactions are always allowed to commit, because they do not change the application

state.

A read-write transaction is only allowed to commit if all of the versioned boxes that it read have

the same or a smaller version than the transaction’s, meaning that no other read-write transaction has

committed changes to those boxes while this transaction was executing. Only the successful commit of a

read-write transaction can cause the version to be incremented.

2.9.3 API

The JVSTM has a very simple API, and most applications need only to access two classes: jvstm.VBox<E>

and jvstm.Transaction.

The VBox class implements the versioned box concept. Figure 2.5 shows the relevant API for this

class. The get method returns the value of the VBox for the current transaction, and put modifies the

value of the VBox for the current transaction.

package jvstm;

public class VBox<E> {

public VBox() { ... }

public VBox(E initial) { ... }

public E get() { ... }

public void put(E newE) { ... }

}

Figure 2.5: Relevant jvstm.VBox<E> class API.

There are also specific VBox versions for each primitive Java type, which can be used to avoid the need

to box and unbox these types: VboxBoolean, VboxChar, VboxByte, VboxShort, VboxInt, VboxLong, VboxFloat

and VboxDouble.
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The Transaction class controls the start, commit and abort of transactions. Figure 2.6 shows the

relevant API for this class. The begin method starts a new transaction, and sets it as the current

transaction for this thread; if a transaction was already active, a nested transaction is created. The

current method returns the current transaction, if any. The commit method tries to commit the current

transaction; if this operation fails, a CommitTransaction is thrown. Finally, the abort method aborts the

current transaction.

package jvstm;

public abstract class Transaction {

public static Transaction begin() { ... }

public static Transaction current() { ... }

public static void commit() { ... }

public static void abort() { ... }

}

Figure 2.6: Relevant jvstm.Transaction class API.
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Chapter 3

Problem Statement and Solution

Overview

To make full use of a multicore processor, an application needs to split up its workload, and assign it to

be run by multiple processing cores concurrently. This model differs from the sequential programming

model, where an application only uses a single processing core at a time.

Most existing applications execute sequentially, so they cannot benefit from running on a multicore

processor. Writing a new application that works concurrently is hard, and retrofitting concurrency on

existing applications is even harder.

A possible solution to these problems is automatic parallelization. As I have introduced in the previous

chapter, parallelizing compilers were the first approach to automatic parallelization, but their static

analysis approach is unsuccessful for most applications. Thus, the idea of speculative parallelization was

born: the speculative parallelization system does not have to be sure that a parallelization is valid, and

can use heuristics to try and parallelize an application.

We may parallelize the execution of a Java method like the one shown in Figure 3.1 by executing the

calls to doA and doB in parallel, as exemplified in Figure 3.2. The problem is that these methods might

modify and access some shared state, and as such may not be able to run in parallel.

The key difference between earlier automatic parallelization approaches and speculative parallelization

is that instead of statically analyzing doA and doB to figure out if their parallel execution is safe, a

speculative parallelization system runs them anyway, and relies on having both the ability to detect when

the execution violates sequential execution semantics and the ability to reverse the changes done by a

speculative execution when such a violation occurs. Both of these abilities are provided by a transactional

memory. Yet, current speculative parallelization systems rely on the presence of hardware transactional

memory, which is not available on any of the current mainstream computer architectures.

Speculative parallelization may be applied at the source-code level, or at the application binary level.

It may also require the programmer to change the application, or work independently without needing

changes to the original application.

I argue that having a system that works both without access to the original application source code,

and that does not need input from the programmer(s) is a desirable property. This way, parallelization
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void method() {

doA();

doB();

}

Figure 3.1: Example method to be parallelized.
Ti
m
e

Figure 3.2: Sequential and parallel executions of method.

can be done independently from the creation of the original application.

Not all application code is parallelizable. Because a speculative parallelization system can only know

at runtime if it is being successful, and success rates may change with differing inputs to the application,

we are generally unable to know in advance if parallelization is going to be possible or even worth the

added overheads. Despite this uncertainty, there is research [14] that points to the existence of untapped

parallelism opportunities in most applications.

As the speedups achieved by speculative parallelization are application-specific and can even be input-

specific, besides being dependent on the techniques used, the system that I propose should be, above all,

a framework for research on speculative parallelization techniques. As such, this framework should be

modular and should facilitate the experimentation of various implementations of subsystems such as

execution task selection and task scheduling.

A fundamental requirement for such a system is that, even if a parallelization technique is unsuccessful,

the platform should always be able to run an application successfully, preserving the original sequential

application execution semantics. That is, the system should degrade gracefully, rather than not working

at all for some applications.

By developing such a framework, I hope to provide a basis for incremental research on speculative

parallelization, while still being able to run normal application code.

For this work, I have chosen to work on top of the Java Virtual Machine platform. The Java language

[31] and virtual machine [32] have the goal of providing a portable, object oriented, garbage collected,

high performance environment for applications to execute.

Java applications are typically compiled to a low-level standard bytecode representation that can
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be run on any Java Virtual Machine (JVM). This standard bytecode representation makes it simpler

to analyze and modify current applications; it also allows custom virtual machine implementations to

seamlessly integrate support for hardware and software transactions, while still preserving the original

sequential code semantics [33].

The Java memory model is also clearly defined [34], providing clear semantics for the legal behaviours

of parallel applications such as STM libraries. This way both the original java applications and their

speculative execution versions can be run on all architectures that feature a compliant virtual machine.

Unlike related work that modifies the Java Virtual Machine for speculative execution, I have chosen

to work on top of unmodified JVMs. By targeting an unmodified Virtual Machine platform, my approach

becomes as platform-independent as other applications that run on the JVM platform, and can be applied

on any JVM on any platform that complies with Sun’s JVM specification. This also allows my approach

to benefit from current research in Java Virtual Machine implementations [22, 35].

As the JVM platform does not offer any transactional support (hardware or software based), I used

the Java Versioned Software Transactional Memory (JVSTM) to support this work. Because the JVSTM

is a normal Java library, applications have to be modified to work with it, a process I call transactification

of an application.

Thus, to develop a speculative execution system that takes into account these problems, and tries to

solve them, I propose the following requirements for my work:

• Automatic and transparent to the programmer. The system developed should work automatically

and without the need of input from the programmer(s) of the application. It should not need access

to the application’s source code, also.

• Applicable to current execution environments. Parallelized applications should be able to run in

current execution environments, and should not need support for processor extensions that are

currently not available on mainstream computers.

• Correct execution of applications. Any sequential application that runs on the JVM platform should

be able to be correctly executed by the system. Even if the execution of the application does not

benefit from the speculative parallelization, original sequential execution semantics should always

be preserved.

• Modularity and support for incremental development. By extension of the previous requirement,

the system should allow incremental development and research into speculative parallelization tech-

niques, while still allowing applications to run correctly. Transactification and speculative execution

should be treated separately, and the components needed for speculative execution, such as task

selection and scheduling should be easily replaceable to facilitate experimentation of various imple-

mentations.

• Work on an unmodified Java Virtual Machine. The system should work with any compliant JVM

implementation, and should not need a special Virtual Machine implementation to work. This

allows it to be portable and to benefit from new JVM implementations.
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3.1 Proposed Solution Overview

JaSPEx automatically parallelizes applications that run on the Java Virtual Machine. Applications are

first modified to execute transactionally, under the control of a Software Transactional Memory; and then

further modified to add support for speculatively executing method calls in parallel with their callers.

All modifications to applications are done by rewriting their Java bytecode.

The JaSPEx system is organized into two big components that address two distinct and complemen-

tary aspects of my proposed solution.

• The Transactification (Chapter 4) part of the JaSPEx system takes care of adapting an existing

application to run under the control of the chosen Software Transactional Memory. It does transact-

ification of class and instance fields (Section 4.1); transactification of arrays is also covered (Section

4.2), although it is currently disabled, for reasons that will be explained later. Finally, it also

handles the identification of non-transactional operations (Section 4.3).

• The Speculative Parallelization (Chapter 5) part of the system further modifies the application for

speculative execution (Section 5.2), inserting entry points to allow the system to control the methods

executed and identifying tasks for speculative parallel execution. During application execution, it

controls the start, commit, and abort of speculative executions, as well as their scheduling (Section

5.3).

I decided to separate these two aspects, because they may be used independently. If the Java Vir-

tual Machine being used already supports transactional execution of applications, only the speculative

parallelization part of JaSPEx would be used. Transactification itself may be useful without specula-

tive parallelization, because nowadays applications that make use of a Software Transactional Memory

have to be manually transactified by the programmer; with the separation between transactification and

speculation, this job could be performed instead by the automatic transactification part of JaSPEx.

Modifications to the application are applied at class load-time, via Java bytecode rewriting, using a

Java class loader that transforms and prepares classes as they are requested by the application. Bytecode

rewriting is done using the ASM bytecode manipulation framework [36].
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Chapter 4

Transactification of JVM

Applications

Because the JVM runtime has no support for transactional execution of code, an application must first

be modified to run transactionally, so that the automatic parallelization system is able to detect when

a speculative execution violates sequential execution semantics, and is able to reverse the changes made

by a speculative execution when such a violation occurs.

To solve this problem, I propose the use of a software transactional memory [6, 7] to allow (parts

of) the program memory to act transactionally. Execution of different parts of the application is then

mapped to different transactions each executing on their own thread, and when there is a conflict between

two transactions we know that there may have been a violation of sequential execution semantics, and

abort the one that comes later in the original program execution.

Coming back to the example in Figure 3.1, we can parallelize execution of method by running doA and

doB in separate threads, each with a different transaction. If the STM system detects a conflict between

the speculative execution of doA and doB, we abort doB, and schedule it for reexecution, because the

original program order puts doA before doB; if no conflict is detected, the two methods are run in parallel,

and this should result in a speedup over the sequential version.

The software transactional memory currently used for JaSPEx is the Java Versioned Software Trans-

actional Memory (JVSTM) [30, 28], which was already described in Section 2.3. The JVSTM was chosen

for its features and due to my familiarity with it, but this approach can also be used with other STMs.

Because the JVSTM is a normal Java library, applications have to explicitly relinquish control of

accessible memory locations to it. On the JVM platform, an accessible memory location must either

contain a primitive type,1 a reference to an object, or a null reference. The only accessible memory

positions in the JVM are fields (class or instance), array positions, and local variables. Field and array

positions will have to be modified to hold jvstm.VBox instances, instead of simply the original values

or references. This process, which I call transactification, has to be applied to all classes of a target

application, so that it runs entirely under the control of the JVSTM. Modification of local variables is

1 In the JVM, the following types are considered primitive, and are handled separately from objects: boolean,
byte, char, short, int, float, long, and double. Of these, long and double have to be handled differently, as
they occupy two “slots” on the stack, instead of one, as is used by everything else, including objects. See also
http://java.sun.com/docs/books/jvms/second_edition/html/Concepts.doc.html#19511.
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currently not needed, for reasons explained in Section 5.1.

The rest of this chapter is organized as follows. Section 4.1 describes transactification of fields.

Transactification of arrays and the problems it poses are examined in Section 4.2. Finally, Section 4.3

will describe the issue of non-transactional operations, and how it can be resolved.

4.1 Transactification of Class and Instance Fields

The transactification of class and instance fields replaces all fields in a class with VBox instances, so

that accesses and modifications to them behave transactionally. Because the types of the fields change,

transactification of fields may be visible to the outside of the class, and so classes that access those fields

must be changed accordingly.

A class may be categorized according to the changes that transactification may cause either to that

class or to other classes:

• Contained IN. A class is considered Contained IN if all of its fields are private. Transactification

of this kind of class never necessitates changes to classes that use it.

• Contained OUT. A class is Contained OUT if it never accesses fields from an outside class. Trans-

actification of a class c1 that is used by a Contained OUT class c2 never causes changes to c2.

• Fully-Contained. If a class is both Contained IN and Contained OUT, it is Fully-Contained. Trans-

actification of a Fully-Contained class never causes changes to outside classes, and transactification

of outside classes never causes changes to a Fully-Contained class.

• Spilled. If a class fits none of the other categories, it is considered Spilled. Transactification of a

Spilled class may cause changes to outside classes, and transactification of outside classes may cause

changes to a Spilled class.

These distinctions are important if only partial transactification is applied, and especially if there is

interaction with unmodifiable classes. These issues shall be further discussed in Section 4.3.

The transactification process does the following:

• Replaces each original field field with type type of each class with a private VBox<type> named

$box field.

• Creates the get and put methods, $box field get and $box field put, which mediate accesses to the

corresponding VBox. These methods have the same access level as the original field.

• Adds VBox slot initializations to the class constructors.

• Replaces accesses to the original fields, either from the same class or from outside classes, with calls

to the $box field get and $box field put methods.

Figures 4.1 and 4.2 show the normal and transactional versions of a sample class, respectively.

Because a Java interface can have fields but it cannot have methods, and because all fields belonging

to an interface are always implicitly public static final, direct accesses to those fields are preserved.
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When a Java class implements an interface, it inherits its fields. To ease the transactification process,

get and put methods for the fields inherited from interfaces are also inserted into those classes.

public class A {

private String s;

public List<Integer> l;

public A(String s) {

this.s = s;

}

public String s() {

return s;

}

}

Figure 4.1: Original A class.

4.2 Transactification of Arrays

4.2.1 VBoxes on Arrays

Apart from fields, arrays also have to be transactified. In the JVM, arrays are always one-dimensional,

strongly typed, have a fixed size once created, and can either contain primitive types or object types.

Arrays themselves are objects, and are types on their own. For instance, int[] is an object type of

an array of primitive type int, int[][] is an object type of an array of objects of type int[]. Array

transactification poses a multitude of problems, some of which cannot be solved fully without support

from the JVM, as discussed in Section 4.2.5.

For an array to be transactional, all of the memory positions it contains must become transactional.

This means that an Object[] becomes a VBox<Object>[], an array with a VBox<Object> in each position.

Multidimensional arrays in Java are just arrays that contain other arrays (but they are always type-

safe), so an Object[][] is an array that contains in each position either an Object[] or null; likewise,

a transactional version uses a VBox<VBox<Object>[]>[] that contains a VBox<Object>[] instance in each

position (or null). An example of multidimensional array transactification is presented in Figures 4.3

and 4.4.

The alternative of implementing transactification of multidimensional arrays by changing an Ob-

ject[][] to become a VBox<Object>[][], a multidimensional array of VBoxes, does not work because

whereas each position (i, j) on the array would become transactional, modifications to the array struc-

ture would not behave transactionally, as shown in Figure 4.5.

Note that these modifications are independent of the transactification of fields, which still has to

be applied. A class containing a field arr of type Object[] has to be modified to hold a field of type

VBox<VBox<Object>[]>, that is, a box of objects with type VBox<Object>[], combining the transactification

of the field itself with the changed type of the transactified array.
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public class A {

private VBox<String> $box_s;

private VBox<List<Integer>> $box_l;

public A(String s) {

$box_s = new VBox<String>();

$box_l = new VBox<List<Integer>>();

$box_s_put(s);

}

public String s() {

return $box_s_get();

}

private String $box_s_get() {

return $box_s.get();

}

private void $box_s_put(String s) {

$box_s.put(s);

}

public List<Integer> $box_l_get() {

return $box_l.get();

}

public void $box_l_put(List<Integer> l) {

$box_l.put(l);

}

}

Figure 4.2: Transactified version of class A (Figure 4.1). Note that the field s was originally private, so
$box s get() and $box s put() are private; the field f was originally public but became private, as all
VBox fields are, and instead its accessor methods $box l get() and $box l put() are public.
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Object[][] array = ...; // Array creation

for (int i = 0; i < array.length; i++)

for (int j = 0; j < array[i].length; j++)

array[i][j] = new Integer(i+j); // Write into array position

Object[] otherArray = ...; // Unidimensional array creation

array[0] = otherArray; // Write into array position

Figure 4.3: Normal multidimensional array access and manipulation.

VBox<VBox<Object>[]>[] array = ...; // Array creation

for (int i = 0; i < array.length; i++)

for (int j = 0; j < array[i].length; j++)

(array[i].get()[j]).put(new Integer(i+j)); // Transactional modification

VBox<Object>[] otherArray = ...; // Unidimensional array creation

array[0].put(otherArray); // Transactional modification

Figure 4.4: Transactified version of the code presented in Figure 4.3, showing multidimensional array
access and manipulation. All changes made are transactional because only VBoxes are modified.

4.2.2 Array Creation

In the JVM, when an array is created (using the opcodes NEWARRAY, ANEWARRAY or MULTIANEWARRAY), all of

its positions are set to the default value of the array type. This operation is extremely fast and efficient

on most JVMs, having little overhead.

A transactified array must contain boxes for each array position. Deciding when these boxes are

created presents a tradeoff. Boxes can be created for each position at array creation time, adding a

lot of overhead to array creation — consider that for an Integer[1000] instead of just allocating and

zeroing a block of memory, a block of VBox[1000] must be allocated and zeroed, a thousand individual

VBox<Object>[][] array = ...; // Array creation

for (int i = 0; i < array.length; i++)

for (int j = 0; j < array[i].length; j++)

array[i][j].put(new Integer(i+j)); // Transactional modification

VBox<Object>[] otherArray = ...; // Unidimensional array creation

array[0] = otherArray; // Non-transactional modification

// Change is not done to a VBox, so access to the old array[0]

// value is lost and the operation cannot be undone

Figure 4.5: Incomplete transactified version of the code shown in Figure 4.3, done by substituting the
original multidimensional array with a multidimensional VBox array.
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// Original version

Object[][] array = new Object[3];

Object o = array[0];

// Allocation on array creation

VBox<Object>[] array = VBoxArray.initializeArray(new VBox<Object>[3]);

Object o = array[0].get();

// Lazy allocation

VBox<Object>[] array = new VBox<Object>[3];

Object o = (array[0] != null ? array[0] : VBoxArray.initialize(array, 0)).get();

Figure 4.6: Allocation of VBoxes at array creation time versus lazy VBox allocation.

VBox objects must be created, and their constructors run, and each VBox object reference needs to be

assigned to each array position. The alternative, where boxes are lazily allocated, adds no overhead to

array creation, but each and every access must check for a null value where a VBox is expected, and the

VBox must then be created and its reference put in the array, while taking care of possible parallel VBox

creation data races. Figure 4.6 exemplifies these two options.

The first solution was chosen for ease of implementation: each array creation bytecode is replaced

by a call to an initialization method that takes care of array creation and placing a VBox at each array

position.

4.2.3 Array Access

Array accesses also have to be changed. When reading from an array position, after doing the normal array

load to obtain the VBox from the VBox array, VBox.get() needs to called. For multidimensional arrays,

at each intermediate access a get() is called, so that an access to arr[1][2][3] must be transformed into

((arr[1].get())[2].get())[3].get().

For array writes, an array load must be used to obtain the VBox which is going to be written to, and

then put() is called for the write. For example, arr[0] = "Hello" becomes arr[0].put("Hello"). For mul-

tidimensional arrays, like for reads, get() must still be called for intermediate accesses, and put() is called

for the final write — arr[1][2][3] = "Hello" is replaced by ((arr[1].get())[2].get())[3].put("Hello").

4.2.4 Arrays as Method Arguments

Passing an array as an argument in a method call is a common operation. Unfortunately, unlike the

transactification of slots, in which a class of type A before transformation keeps its type A after the

transformation, transactified arrays are not of the same type of their non-transactified counterparts. A

method that accepted the type String[] cannot, without modification, accept the type VBox<String>[]

in its place instead. Additionally, a transactified array cannot be temporarily converted to a regular array

for method calls, and then converted back after the method returns, because the called method may save

references to the temporary converted array, and further changes to it would not be reflected on the real

array.

24



Thus, the only possible solution is changing method signatures of all methods receiving or returning

arrays. As an example, method m(String[]) becomes m(VBox<String>[]). This poses another problem,

related to the implementation of generics in Java, which are done using type erasure [8]. During compila-

tion, all generic type information is erased, and the previous example becomes m(VBox[]).2 Because this

information is removed, it is no longer possible to distinguish between two different versions of m, let’s

say m(String[]) and m(Byte[]), as after erasure both share the same signature, m(VBox[]).

There are various possible solutions to this problem. A solution that presents no overhead is renam-

ing the method, so that its name reflects the original argument types before transactification. Coming

back to the previous example of m, the transactified versions become m$$ java lang String(VBox[]) and

m$$ java lang Byte(VBox[]). This scheme almost fully solves the problem: constructors cannot be re-

named, and always have to be called <init>. For constructors, a low overhead alternative is re-adding

the original argument types to the argument list, after all the other arguments — <init>(A[]) becomes

<init>(VBox[],A[]), and all calls to the constructor are modified to pass null values for those extra

arguments.

4.2.5 Putting it All Together

In the previous section, we concluded that because a transactified array is not of the same type of a

non-transactified array, the only possible solution is changing method signatures of all methods receiving

or returning arrays.

And herein lies the real problem. It is not possible to change all method signatures of methods

receiving or returning arrays on the Sun JVM, because it reserves the java.* package namespace and

does not allow runtime loading of modified versions of classes within this package or any of its subpackages.

Because of this, array transactification is essentially unusable without either escape analysis to guar-

antee that an array is never going to be passed to an unmodifiable method, or some level of cooperation

from the JVM.

Array transactification is thus currently disabled in the JaSPEx prototype.

4.3 Non-Transactional Operations

As already mentioned in brief in the previous sections, not all things can be transactified. native methods,

which use the Java Native Interface [37] to interface with native code that runs outside the JVM, cannot

be analyzed or modified easily. I/O operations cannot generally be undone. Another source of problems

is the use of reflection, because it eludes the static transformation of accesses to fields. So, reflection has

to be forbidden, or else modified to be transactification and speculation aware.

Also, the Sun JVM reserves the java.* package namespace and does not allow runtime loading of

modified versions of classes within this package or any of its subpackages, which besides disallowing

array transactification as described in Section 4.2.5, makes calls to built-in Java classes non-transactional

operations, because side-effects potentially caused by them cannot be undone.

2Notice that all information between angle brackets has been removed.
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I refer to classes that either cannot be changed, such as those living in the java.* package namespace,

or should not be changed, such as the JVSTM libraries and the JaSPEx framework, as unmodifiable

classes.

Because not all things can be transactified, the parallelization system must be able to detect all of

these cases and make sure that such invocations are forbidden during speculative execution.

There are two main approaches to prevent the execution of nontransactional operations within a

speculative execution: (1) static identification of these operations, as discussed in Section 4.3.1; and (2)

dynamic, runtime prevention of their execution, as discussed in Section 4.3.2.

4.3.1 Static Identification of Non-Transactional Operations

Static identification consists of building a graph of possible method invocations, starting from the initial

entry point of an application, with the objective of identifying both native methods and methods that

may call native methods.

A method is considered as may invoke native if any of the methods it may call are also marked with

either native or may invoke native, or if it can be overridden by a method in a subclass that may invoke

native. Method override semantics have to be taken into account because of polymorphism — Figures 4.7

and 4.8 show an example where both A.method() and A.anotherMethod() are considered as may invoke

native because B.method() overrides A.method() and is native.

A less trivial to analyze example, that uses the java.util.ArrayList Java library class is shown in

Figure 4.9. In this example, no native calls are visible, but some of the ArrayList’s functionalities may

trigger the execution of native methods, as shown in Figure 4.10.

class A {

void method() { }

void anotherMethod() { method(); }

}

class B extends A {

native void method();

}

A o = new A();

o.anotherMethod();

A o = new B();

o.anotherMethod();

Figure 4.7: Example class B that extends A and overrides method() with a native version. If another-

Method() is invoked on a reference with type A, a native method may be called, because a B is also an A,
so A’s method() and anotherMethod() are considered may invoke native methods. (See also Figure 4.8)
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A

B

<init>

java.lang.Object

<init>

anotherMethod

method

method <init>

m1 Normal method

m2 Native method

m3 May call native method

Method may be overriden by
Method can call

Class Interface

Figure 4.8: Static identification graph for the classes presented in Figure 4.7. If anotherMethod() is
invoked on a reference with type A, a native method may be called, because a B is also an A, so A’s
method() and anotherMethod() are considered may invoke native methods.

class StaticIdExample {

private StaticIdExample() {

List<String> lst = new ArrayList<String>();

lst.add("Hello");

}

public static void main(String[] args) {

new StaticIdExample();

}

}

Figure 4.9: Example class that uses the java.util.ArrayList Java library class. (See also Figure 4.10)
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Figure 4.10: Static identification graph for the class presented in Figure 4.9. Most of the methods are considered may invoke native, even though there are
comparatively few native methods.
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Looking at the graph in Figure 4.10, we see that most methods are marked as may invoke native,

even though there are comparatively few native methods.

Figures 4.11 and 4.12 show the breakdown between native methods, may invoke native methods,

and normal methods for two large Java software applications: the NetBeans Java IDE,3 and Jython,4 a

Java implementation of Python. As we can see, using a static approach means that a big percentage of

methods are considered may invoke native, and as such, would not be able to run speculatively.

Native 2%

Can Call Native 63%

Normal 35%

Figure 4.11: Breakdown of method classifications for the NetBeans IDE (version 6.7).

Native 2%

Can Call Native 69%

Normal 29%

Figure 4.12: Breakdown of method classifications for the Jython interpreter (version 2.5).

Note that even if a method A may call a native method B, it does not mean that A calls B every time it

executes. So, as this approach is very conservative, and disallows speculative execution of many methods,

I opted for a dynamic, runtime approach, which is presented in the next section.

4.3.2 Runtime Prevention of Non-Transactional Operations

Because of the limitations of the static identification of non-transactional operations presented in the

previous section, the current JaSPEx prototype uses runtime prevention instead.

Runtime prevention works by identifying all non-transactional operations in the bytecode, and by

prepending a call to the speculation runtime before such operations. It is then up to the speculation

runtime to decide if the operation can proceed, and when the call returns, the non-transactional operation

may proceed; alternatively, the runtime may throw an exception, aborting the speculation and causing

the operation to never proceed. This mechanism allows the framework to prevent the execution of these

operations, or to take steps to ensure that they can safely proceed.

To support speculative execution, JaSPEx creates a speculative version of each method M, called

3See more information at http://www.netbeans.org/.
4See more information at http://www.jython.org/.
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public class NonTransExample {

public NonTransExample(String[] strings) {

System.out.println(strings[0]);

}

}

Figure 4.13: Example class to which we will apply the modifications needed for runtime prevention of
non-transactional operations. (See also Figures 4.15 and 4.16)

public class NonTransExample {

public NonTransExample(String[] strings) { ... } // Same as original

public NonTransExample(String[] strings, SpeculativeCtorMarker dummy) {

SpeculationControl.nonTransactionalActionAttempted();

System.out.println(strings[0]);

}

}

Figure 4.14: Example class after application of the modifications needed for runtime prevention of non-
transactional operations. (See also Figures 4.15 and 4.16)

M$speculative, except for constructors, which always have to be named <init>. In this latter case, an

alternative scheme is used: A new parameter of type SpeculativeCtorMarker is added at the end of

every speculative constructor. The speculative version of each method is a copy of the original method

with invocations to other methods replaced by calls to their $speculative versions, if possible — this

way, when doing speculation, the program always flows through $speculative methods, as expected.

The modifications needed for runtime prevention of non-transactional operations are then applied to the

$speculative version of a method.

Currently, the following operations are considered non-transactional:

• Invocation of a method on an unmodifiable class

• Accessing a field on an unmodifiable class

• Invocation of a native method

• Operations involving arrays, both creation and read/write accesses

When a bytecode corresponding to one of these operations is found in the classes being transactified, a

call to SpeculationControl.nonTransactionalActionAttempted() is inserted before it, as shown in Figures

4.13-4.16.

Additionally, if the original method was native, its $speculative counterpart consists of a call to

the JaSPEx runtime — SpeculationControl.nonTransactionalActionAttempted() — followed by a call

to the original version. Similarly, because a class may inherit methods from an unmodifiable class, the

framework needs to add $speculative versions of inherited methods that call the runtime and then the

original method on the superclass. Both of these modifications are needed because when a class c1 has
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ALOAD_0

INVOKESPECIAL java/lang/Object/<init>()V

GETSTATIC java/lang/System/out Ljava/io/PrintStream;

ALOAD_1

ICONST_0

AALOAD

INVOKEVIRTUAL java/io/PrintStream/println(Ljava/lang/String;)V

RETURN

Figure 4.15: JVM bytecode for the constructor method NonTransExample() shown in Figure 4.13, before
application of the modifications needed for runtime prevention of non-transactional operations.

ALOAD_0

INVOKESPECIAL java/lang/Object/<init>()V

INVOKESTATIC speculation/runtime/SpeculationControl/nonTransactionalActionAttempted()V

// Access to a field on an unmodifiable class (java/lang/System.out)

GETSTATIC java/lang/System/out Ljava/io/PrintStream;

ALOAD_1

ICONST_0

INVOKESTATIC speculation/runtime/SpeculationControl/nonTransactionalActionAttempted()V

// Array access (load position 0)

AALOAD

INVOKESTATIC speculation/runtime/SpeculationControl/nonTransactionalActionAttempted()V

// Invocation of a method on an unmodifiable class (java/io/PrintStream.println())

INVOKEVIRTUAL java/io/PrintStream/println(Ljava/lang/String;)V

RETURN

Figure 4.16: JVM bytecode for the constructor method NonTransExample() shown in Figure 4.13, after
application of the modifications needed for runtime prevention of non-transactional operations.

been transactified, all operations called on an object of type c1 must be transactional: the first case

protects against native methods in c1, and the second against methods inherited from unmodifiable

classes. Figures 4.17-4.20 show examples of these modifications being applied.
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public class NativeNonTransExample {

public native void doSomething();

}

Figure 4.17: Example class with a native method.

public class NativeNonTransExample {

public native void doSomething();

public void doSomething$speculative() {

SpeculationControl.nonTransactionalActionAttempted();

doSomething();

}

}

Figure 4.18: Transactified version of the class shown in Figure 4.17.

public class InheritedNonTransExample extends java.util.ArrayList {

public void newFeature() { ... }

}

Figure 4.19: Example class that extends an unmodifiable class (java.util.ArrayList).

public class InheritedNonTransExample extends java.util.ArrayList {

public void newFeature() { ... } // Same as original

public void newFeature$speculative() { ... } // $speculative version

// Overrides for methods inherited from ArrayList

public boolean containsAll$speculative(java.util.Collection c) {

SpeculationControl.nonTransactionalActionAttempted();

return super.containsAll(c);

}

public boolean removeAll$speculative(java.util.Collection c) { ... }

...

public java.lang.Object[] toArray$speculative(java.lang.Object[] o) { ... }

public void trimToSize$speculative() { ... }

}

Figure 4.20: Transactified version of the class shown in Figure 4.19. The $speculative versions of the
inherited methods invoke the JaSPEx framework before forwarding the method call to the superclass.
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Chapter 5

Speculative Parallelization

After all the changes described in the previous chapter, code can now execute transactionally, and the

JaSPEx framework has control over the execution of non-transactional operations. From here, we can

now delve into the speculative execution of code.

JaSPEx supports two modes of code execution: (1) transactified execution, where code is run trans-

actionally but no speculation occurs; and (2) a speculative execution mode, where code runs both trans-

actionally and speculatively. The first mode is useful to establish a baseline execution time that can be

compared to the second mode, speculative execution.

This chapter is organized as follows. Section 5.1 introduces the design chosen for speculative execution.

Section 5.2 describes the modifications done to an application so that it can execute speculatively. Section

5.3 describes the runtime behaviour of speculations: how they are spawned, how the framework handles

them internally, how they are executed and when they can commit their results. Finally, Section 5.4

finishes with a discussion of some of the issues faced by the current implementation.

5.1 Design

The idea of speculative code execution may be applied at different granularity levels, the smallest of which

is running a single instruction speculatively. As the JaSPEx system runs without help from the JVM

runtime, and it uses a a software transactional memory that imposes overheads on transaction spawning

and commit, it is unpractical to do such a small granularity speculation.

In the JVM (and in Java), code is divided into multiple methods. To execute parts of a method

speculatively, local variables would need to be transactified, imposing yet another overhead to code being

run by the speculation system; the framework would also need to be able to jump to the middle of a

method, starting execution from that point. As the JVM runtime does not allow jumping to the middle of

a method — methods are called and execute from start to end, with jumps occurring only intra-method

— a method would also need to be split up into multiple parts, to introduce the entry points needed for

speculative execution.

To try and strike a balance between imposed overheads and granularity of speculations that would

allow the system to successfully achieve speedups for applications, the JaSPEx framework does speculative
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method execution. The idea of speculative method execution is similar to the example originally presented

in Figures 3.1 and 3.2, and shown here again in Figures 5.1 and 5.2. When a method (the caller) is entered,

some of the methods that it calls (the callees) may be run speculatively. In the example shown, when

method starts, doA and doB are run speculatively.

void method() {

doA();

doB();

}

Figure 5.1: Example method to be parallelized. The method method is the caller, doA and doB are the
callees.

Ti
m
e

Figure 5.2: Sequential and parallel executions of method.

This strategy of spawning speculative executions when the caller is entered avoids both the need

for transactification of local variables and the need to split a method into smaller methods, so that the

speculation system has entry points to the middle of methods. Note that method invocations inside loops

are speculated at most once; further invocations are executed normally in the thread of the caller (but

may still spawn speculations of their own).

But why start the speculative execution of a called method at the beginning of the caller, and not

further down at the real invocation site of the callee method? To answer this question we again need to

take into account the limitations imposed by not having any support from the JVM. Consider the example

shown in Figure 5.3: The current design will queue doC for speculative execution at the beginning of

someMethod, resulting in the execution of doC being speculative, because it might run before or in parallel

with the Code Block 1, whereas originally it would be run after it.

If instead, we waited until we reach the invoke site for doC, doC would not be running speculatively,

and instead it would be Code Block 2 that would speculatively run before or in parallel with doC, instead

of after it. This means that we would again need to be able to revert changes made to local variables,

because local changes done by Code Block 2 might need to be undone, and also we would need to be

able to rerun only Code Block 2 instead of the whole method, so it would have to be replaced with a

do { ... } while (!speculationSuccessful); block.

Until now, the design being described ignores the issue of function parameters for methods that are
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void someMethod() {

{ ... } // Code Block 1

doC();

{ ... } // Code Block 2

}

Figure 5.3: Method which will spawn speculative executions.

speculatively executed. If doC receives some parameters as input, these need to be available, also, for a

speculative execution of doC. To solve this problem, there are two possible strategies. The first one is to

perform an analysis on someMethod, and try to determine statically how to obtain the parameters needed

for a speculative execution. The simplest example for this is shown in Figure 5.4, where doD receives a

constant value (2) as a parameter.

void anotherMethod() {

doD(2);

}

Figure 5.4: Example of simplest case for discovering the parameters of a method that will be speculatively
executed: in this case, doD always receives as a parameter the int 2.

The second possible strategy for identifying the parameters for a speculative execution is the usage

of value prediction, similar to the approaches proposed in [38, 14]. The idea is to speculate also on the

values of the parameters, and to later verify if they matched the real values obtained at the method

invocation site. Multiple schemes like last-value prediction (LVP) or stride-value prediction (SVP) might

then be used to obtain a possible value for the parameters.

Currently, JaSPEx relies only on the first strategy of static analysis to obtain the parameters for the

speculative executions. It supports speculation when constants and parameters of the caller are used (if

they are not written to before the function call), and all arithmetic, logic, or bitwise operations on these.

Figure 5.5 shows an example, based on Figure 2.2, where JaSPEx is able to determine the arguments for

the function call to setRandom.

void yetAnotherMethod(long seed, int bits) {

{ ... }

setRandom( ((seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)) >>> (48 - bits) );

{ ... }

}

Figure 5.5: This example, based on Figure 2.2, shows a complex case where JaSPEx is able to statically
determine the argument for the speculative execution of setRandom.

As a final example, consider a recursive implementation of the Fibonacci function shown in Figure 5.6.

At each call to fib, JaSPEx speculatively launches the execution of fib(n-1) and fib(n-2) and then

proceeds with the execution of the method: In the case where n ≤ 1, the speculative executions that
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public int fib(int n) {

if (n <= 1) return n;

return fib(n-1) + fib(n-2);

}

Figure 5.6: Recursive implementation of the Fibonacci function.

may be running are discarded; otherwise, their results are retrieved and the transactions that they are

running in are committed.

5.2 Transformations for Speculative Execution

As described in section 4.3.2, for each method in each transactified class, a version for speculative ex-

ecution (the $speculative version) is created. This version is fully transactional, containing all of the

changes mentioned in the previous chapter.

I shall now describe the final round of modifications needed for speculation. These allow the spec-

ulation system to know when it can spawn a speculative execution, and when the speculation results

should be applied or discarded. Before these changes are made, a copy of each $speculative method,

the $non speculative version, is created. The $speculative version can then receive the final round of

modifications. Having both versions of a method allows the JaSPEx framework to skip speculation on a

method, and just run a transactified version of it. This is useful, if for example, too many speculations

are active already.

Methods that will spawn speculations call the JaSPEx runtime when they are started, before they

terminate, and to get results from the speculative executions. When the caller method starts, it invokes

the framework method SpeculationControl.entryPointReached, passing as argument an entry-point id

that uniquely identifies the caller method. The call to entryPointReached returns either an instance of

SpeculationId, that identifies the current dynamic execution context uniquely, signalling that speculation

can proceed, or null, signalling that speculation should not proceed, and that the $non speculative

version of the method should be invoked.

If the speculation can proceed, a call to SpeculationControl.startSpeculation is done, passing as

arguments both the SpeculationId and an array of arrays with the arguments for each function call that

is to be executed speculatively within that method. For instance, in the fib example in Figure 5.6,

this.fib(n-1) and this.fib(n-2) will be speculatively executed.1 Thus, startSpeculation will receive

an array arr of type Object[2][], where arr[0] contains the arguments this and n-1, and arr[1] contains

this and n-2.

Before a method exits, it calls SpeculationControl.exitPointReached, to inform the runtime that the

method will terminate, and that speculative executions that may be queued or running for this method

should be discarded. The current form in which the call to exitPointReached is injected does not take

into account exceptions yet; if a thrown exception causes this method to never be called, the application

will continue to behave correctly, but pending speculative executions may be left in the system.

1Because fib is not a static function, each recursive call also implicitly includes as an argument the current
object instance, this.
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Method invocations for methods that are executed speculatively are replaced by calls to Speculation-

Control.getResult, which, given the current SpeculationId and an identifier that identifies the function

call, returns a Future object that represents the result of the speculative execution. Finally, to obtain the

result, get() is called on the Future; if the underlying method execution resulted in an exception being

thrown (an instance of java.lang.Throwable or any of its subclasses), that exception will be rethrown by

get(). Figure 5.7 shows the fib$speculative method with these modifications.

public int fib$speculative(int n) {

SpeculationId specId = SpeculationControl.entryPointReached(ENTRY_POINT_ID);

if (specId == null) {

return fib$non_speculative(n);

}

SpeculationControl.startSpeculation(specId, new Object[] { new Object[] { this, n-1 },

new Object[] { this, n-2 } });

if (n <= 1) {

SpeculationControl.exitPointReached(specId);

return n;

}

Future f0 = SpeculationControl.getResult(specId, INV_ID_0);

Future f1 = SpeculationControl.getResult(specId, INV_ID_1);

int temp = f0.get() + f1.get();

SpeculationControl.exitPointReached(specId);

return temp;

}

Figure 5.7: The final speculative version of the Fibonacci function. ENTRY POINT ID uniquely identifies the
fib method. The symbols INV ID * identify the method calls that they replace: In this case, INV ID 0
represents the call to fib(n-1), whereas INV ID 1 represents the call to fib(n-2).

5.3 Doing Speculation

As seen in the previous sections, calls to methods belonging to the framework class SpeculationControl

are added at various points of the speculative methods, allowing control of speculation start and end,

decision on how to proceed when nontransactional actions need to be executed, and fetching of results

from speculative executions. I shall now describe how the framework internally manages these operations.

5.3.1 Caller Method

When the caller method — the method for which we will speculatively execute the callees — starts, it

tries to obtain an instance of SpeculationId. This instance of SpeculationId, which uniquely identifies

each dynamic execution context where speculation is being done, is created by a call to SpeculationCon-

trol.entryPointReached.

Each SpeculationId points to an instance of a class called MethodSpeculationInfo, which contains, for

each method in the entire application for which we may start speculative execution, a list of the methods

that it invokes; this list is harvested during the transformation of a class for speculative execution, and is

converted to a list of java.lang.reflect.Method instances, which can be invoked using the JVM reflection

support.
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After the call to SpeculationControl.entryPointReached returns a SpeculationId, speculation can

start; SpeculationControl.startSpeculation is then called with the SpeculationId, and with the argu-

ments for the speculative executions. The startSpeculation method stores these arguments inside the

SpeculationId, and creates an empty ExecutionTask array, that will keep the individual speculative exe-

cution tasks — each task represents a speculative execution of a callee. For instance, in the fib example

in Figure 5.6, two tasks will be created to represent the executions of this.fib(n-1) and this.fib(n-2).

Finally, SpeculationControl hands over the SpeculationId to the Scheduler, which saves it in a queue

for further processing. At this point, execution of the caller method may proceed — remember that all

of these steps are injected at the beginning of the method. Figure 5.8 shows a sequence diagram of these

steps.

Caller Method SpeculationControl

entryPointReached

SpeculationId

startSpeculation

Scheduler

registerSpeculation

Figure 5.8: Sequence diagram showing the steps needed to queue a speculation for execution.

5.3.2 ExecutionTask Generation and Execution

When a SpeculationId is registered for execution on the Scheduler class, it is put in a queue. This queue

is processed by a thread, the speculationIdSplitThread, that splits the SpeculationId into multiple

ExecutionTask objects, one for each callee that is going to be speculatively executed. These tasks are

then submitted for execution by the Executor class.

The Executor class extends the java.util.concurrent.ThreadPoolExecutor class, and provides an

unbounded pool of threads to execute tasks. This class tries to reuse idle threads that have no tasks to

process, and if no threads are available, it spawns a new thread to execute the submitted task.

The ExecutionTask class encapsulates a speculative execution. It implements the java.util.concur-

rent.RunnableFuture interface, allowing it to act both as a Runnable object, which can be run by the

Executor, and as a Future, that the caller uses to obtain the value or exception returned from the

speculative execution.

Internally, an ExecutionTask keeps a state machine to control the different phases of speculation. The

current state can be changed by the worker thread that is running the task, the speculationIdSplitThread

when it wants to signal speculation abortions, and the caller thread, when it wants to obtain the value

38



from the task. The state machine mechanism also allows threads to wait for certain states to appear: for

example, a caller thread that wants to obtain the result of the speculative execution will need to wait

until the task is in the DONE state. Table 5.1 describes the possible states of the ExecutionTask state

machine, and Figure 5.9 shows the possible transitions between states. The ExecutionTask also keeps

two boolean flags, hasCommitToken and abortRequested, that as we will see are used by other threads to

communicate with the worker thread that is running the task.

A new task starts in the NEW state. When a worker thread picks up a task, it moves the task to the

RUNNING state, starts a new STM transaction, and uses reflection to invoke the target method. Because

the method executes within an STM transaction, none of its changes are visible to the outside until the

transaction commits. In the RUNNING state multiple things may happen: the method being speculatively

run returns or throws an exception; a non-transactional operation needs to be executed; or this speculation

triggered the spawning of other speculative tasks, and it needs to obtain values from them. For all of

these cases, the waitCurrentTransactionCommit method is called.

The waitCurrentTransactionCommit method first verifies if there is an STM transaction active for

the current thread. If there is no transaction, it means that this worker thread has already committed

its transaction, and is running in program order, as I will explain in the next section. If there is a

transaction, then it checks if it has the commit token that allows it to commit. This commit token is

set by the caller thread on a worker thread when the caller invokes get on the future representing the

task. If no token is found, it checks if there has been a request to cancel this task — if for example, its

result will not be needed — and aborts the transaction if such a request is found. If a task can neither

commit nor needs to abort, it goes into the WAIT state, where it waits for one of these conditions to

change. When another thread changes one of these conditions (hasCommitToken or abortRequested), it

changes the state to PARENT, to inform the worker thread that something changed, and it should execute

the steps in waitCurrentTransactionCommit again.

Inside waitCurrentTransactionCommit, when a worker thread possesses the commit token it tries to

commit its STM transaction. This operation may fail because the STM detects that the speculative

execution read a box that was written to in the meanwhile, and a RetrySpeculationException is thrown

to signal that this task should be reexecuted. If the transaction successfully commits, further calls to

waitCurrentTransactionCommit will simply return right away, and the execution will run until the method

being speculatively run returns, and its return value or thrown exception is saved. After this, the worker

thread moves the task to the DONE state, and goes on to execute another task; the only remaining step is

for the caller thread to collect the saved results of the execution, and to move the task to its final state,

CLOSED.

5.3.3 Transaction Commit and Original Program Order

As detailed in the previous section, an ExecutionTask needs the commit token before it can commit.

When a task commits, its results become visible to code executing outside a transaction, and to other

future transactions; its results stop being speculative and become definite.

To maintain the original serial execution semantics of an application, changes done by speculative

executions have to be made visible to the rest of the application in the same order that they would

originally be. This is where the idea for the commit token comes from: a commit token is only given to

a task at the point where it would be executed in the original program order, and, so, after committing,

a task keeps executing in the program order until it finishes.
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NEW New, unstarted task

RUNNING Task is executing

WAIT Task is waiting for the commit token, allowing it to commit its results so far,
or for an abort request

PARENT Either the commit token or an abort request has been handed out by the parent
thread

DONE Task has finished executing and is waiting for the caller to collect the results

CLOSED Task has finished executing and results have been collected

ABORT Task execution has been aborted

Table 5.1: Listing of the states in the ExecutionTask state machine.

waitCurrentTransactionCommit()
&& hasCommitToken == false
&& abortRequested == false

RetrySpeculationException thrown

WAIT

PARENT

RUNNING

NEW

run()
DONE

CLOSED

ABORT
Worker Thread notices
current state is PARENT

Another Thread sets
hasCommitToken
or abortRequested *

getResult() *
Speculative Execution returns
and transaction has been committed

waitCurrentTransactionCommit()
&& abortRequested == true

waitCurrentTransactionCommit()
&& hasCommitToken == true

Figure 5.9: ExecutionTask state machine. Transitions are caused by the worker thread that is running
the task, except for the ones marked with an *.
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The only way a thread that is executing in program order can get the results from a speculative

execution that it spawned is to “give” the callee ExecutionTask its commit token, and to wait until it

reaches the DONE state. This scheme mimics the original sequential method call semantics: the caller

invokes the callee, and waits for it to return; only one of them is executing at a given time.

This scheme results in only one thread executing in program order at any given time — other running

threads, if any, are executing code speculatively — and original program ordering semantics is always

respected.

5.3.4 Obtaining Results from a Speculation

After spawning a speculative execution, the caller method execution continues normally, until it reaches

the call site for a method that has been speculatively executed. To obtain the result from the speculative

execution, a call to SpeculationControl.getResult is made, that returns a Future object representing

the result of the speculative execution (which can be void). This Future object is just the ExecutionTask

object.

To obtain the result from the Future, get is called, which further calls the getResult method shown

in Figure 5.9. Inside this method, waitCurrentTransactionCommit may be called, if the current caller is

itself running speculatively; if not, the commit token is set on the task, and the caller waits until the task

reaches the DONE state.

Upon reaching the DONE state, the task is moved to the CLOSED state, and an ExecutionResult object

is retrieved, that wraps the final return value or exception for the callee. This object is then unwrapped:

if the callee returned void, no value is returned; if the callee returned a primitive type, its value is

unwrapped from its correspondent object type, and put on the caller’s stack; if the callee returned a plain

object, it is also put on the caller’s stack; and if the callee threw and exception, the exception is rethrown

inside the get method.

5.3.5 On Reusing Waiting Threads

I briefly mentioned in the description of the Executor class in Section 5.3.2, that “The Executor class (...)

provides an unbounded pool of threads to execute tasks”.

“Why an unbounded pool?” we may ask. This decision stems from the fact that each thread runs a

single task until completion. Imagine that a fixed-size pool is used, such that there is exactly one thread

for each one of n cpu cores, with n being the total number of cores in the system, which would be the

expected solution. Because there are a lot of non-transactional operations that may cause a speculative

execution to need to commit, and there can be only one thread running non-speculatively (in program

order) at any given time, it means that a lot of the time, just one of the n threads would be working.

Consider the example shown in Figure 5.10, and consider that the method yaMethod is run on a

machine where n = 4 and with a bounded pool of threads. In this case, four tasks could be generated,

each representing a call to startExpensiveCalculation, and a worker thread could be allocated to each

of these tasks. The problem is that because before starting the real calculation, a non-transactional

operation needs to be executed, only one of the threads would be doing work at any given time, because
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only one thread can be executing in program order, and the others would be stuck at the println

operation.

To get around this, JaSPEx also speculatively spawns tasks to execute doExpensiveCalculation while

their callers are doing their work — that in this case is just printing a simple string. The problem is

that if a bounded pool of threads is used, there would be no available worker threads to speculatively run

doExpensiveCalculation, because they were all stuck waiting for permission to execute println. So the

solution chosen is to allow an unbounded pool of threads, that in this case would cause four other threads

to be spawned, that would all be doing useful work while their parents were waiting for the commit token

that they needed. To avoid spawning too many threads, JaSPEx stops submitting tasks for speculative

execution when it observes that most threads in the thread pool are busy, and that the number of active

threads has grown over a configurable value.

But isn’t the entire point of the thread pool to reuse threads? Why doesn’t the speculative execution

system reuse threads that are just waiting, much like the OS switches the executing process on a cpu

core when it too is waiting for some event? Despite that being the best solution, especially if the JVM

does not use green threads,2 the answer is that it is very hard to give a new task to a thread and then

switch between the newer and older tasks that have been assigned to that thread.

One of the reasons it is not possible to reuse threads that are waiting can be shown with the example

in Figure 5.11. Consider that two threads are used. When the thread running in program order reaches

the beginning of yaMethod2, two tasks are created: one for running doExpensiveA and another for running

doExpensiveB.

As the system is using only two threads, there is only one worker thread, and it starts execution of

doExpensiveA; meanwhile, the thread running yaMethod2 runs Code Block 1, and reaches the call site for

doExpensiveA. If the worker thread is still not done with its work, we could set its commit token, and

instead of waiting for results, the thread that was running yaMethod2 could pick up the remaining task

for execution, in this case, the speculative execution of doExpensiveB.

2Green threads differ from native operating system threads in that they are entirely managed in user space,
and the switching is done by the JVM or by a library without the intervention of the operating system. It is
possible for multiple green threads to co-exist inside a single native thread, with of course only one of them being
active at a time.

public void yaMethod() {

startExpensiveCalculation(1);

startExpensiveCalculation(2);

startExpensiveCalculation(3);

startExpensiveCalculation(4);

}

public void startExpensiveCalculation(int i) {

System.out.println("Starting expensive calculation");

doExpensiveCalculation(i);

}

public int doExpensiveCalculation(int i) { ... }

Figure 5.10: Example to illustrate the problem of using a bounded thread pool.
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public void yaMethod2() {

{ ... } // Code Block 1

doExpensiveA();

{ ... } // Code Block 2

doExpensiveB();

}

public void doExpensiveA() { ... }

public void doExpensiveB() {

{ ... } // Expensive Calculation

System.out.println("Ending expensive calculation B");

}

Figure 5.11: Example to illustrate the problem of reusing waiting threads.

The problem is what needs to be done upon reaching the println method call at the end of the call

to doExpensiveB. At this point the second task does not have the commit token, and is still speculative,

because Code Block 2 inside yaMethod2 hasn’t yet been executed. So the system would have to jump

back to the point where the initial call to doExpensiveA occurred, retrieve the results from the speculative

execution, execute Code Block 2 until reaching the call site of doExpensiveB, jump back inside doExpen-

siveB, commit its results so far, and then continue with executing the println method call and finishing

execution of the task.

And here we reach the issue of the limitations imposed by the JVM again: the complete inability of an

application to manipulate or examine the stack of a JVM thread. Because there is no way to manipulate

the stack of the current thread in the JVM, the only solution to the need to switch between contexts as

in the example given is to run things inside different threads, and leave the switching up to the JVM or

the OS.

5.3.6 Using the JVSTM for Speculative Execution

As described before, the JVSTM is used to supply the transactional support for the JaSPEx framework.

Applications are modified to use VBox instances, making management of concurrent accesses, commit of

changes, and undo of changes made by an aborted transaction transparent.

Calling Transaction.begin() starts a transaction and associates it with the current thread, Trans-

action.abort() aborts the current transaction, and Transaction.commit() tries to commit the current

transaction — it can either return, indicating success, or throw a CommitException, indicating failure.

VBoxes are accessed with put() and get(), as we saw in section 2.9.

A VBox can be accessed and changed with or without an active transaction on the current thread.

If get is invoked outside a transaction, the JVSTM does the equivalent of starting a normal read-only

transaction, reading the value from the box, and committing the read-only transaction, which, due to

JVSTM’s design, always succeeds.3 If, instead, put is invoked outside a transaction, the JVSTM again

does the equivalent of starting a read-write transaction, writing the value to the box, and committing

3Originally, the JVSTM did exactly this. An optimized implementation of this operation later improved the
speed of this operation, while guaranteeing the same semantics.
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the transaction, which again cannot fail because a commit of a read-write transaction that does not read

anything always succeeds.4 This model means that a read or a write operation outside a transaction

always reads or writes the latest value of a VBox.

We have seen in section 2.9 that every transaction in the JVSTM has a version number. When a

value of a VBox is read inside a transaction, the VBox returns not always its latest value, but a value

that has an equal or smaller version than the current transaction version. When a value is written to a

VBox inside a transaction, it is put on the transaction’s write-map, and is visible to other threads only

after the transaction is committed.

The approach used by JaSPEx is for code that is running in program order (not speculatively) to

run outside a transaction, causing its changes to always be observed by transactions started after the

changes; code that is executing speculatively executes inside a transaction.

Unfortunately, JVSTM’s linear nesting model is too limited for it to be usable for speculative exe-

cution, because a nested transaction always has to execute in the same thread of the parent, and there

cannot be any concurrency between sibling transactions that share the same parent. This poses a problem

for speculations that are spawned by other speculations, because ideally they should have access to the

modifications that are done by their parent, even if they are not committed yet (because their commit

is dependent on their parent’s commit), but they need to be able to execute independently from and

concurrently with their parents, and it is also very common for a single parent to spawn multiple sibling

speculations.

Thus, JaSPEx starts only top-level transactions for all speculations, and there are no nesting rela-

tionships inside transactions, even if the speculations themselves have implicit parent/child relationships.

Still, note that the commit scheme used by ExecutionTask (Section 5.3.2) implicitly enforces these rela-

tionships. This means that there is no sharing between a parent speculation and its child: if the child

starts its own transaction before the parent commits its own, the child will not see any of the changes

made by his parent, and will abort if the parent writes to a value that the child reads. If the parent is

running in program order, this problem is alleviated, because its speculative children will see all of the

changes the parent made up until the time when their transaction started.

The JaSPEx framework uses an unmodified, upstream version of the JVSTM. The only change needed

to the original behaviour of the JVSTM is implemented as an extension that changes the semantics of a

read-only transaction. The default semantics of the read-only transaction define that a transaction that

only does reads always commits successfully, because it can be linearized at the time when it started.

The problem with this semantics is that it could happen that a method produces invalid results based on

a stale value that it read, and the transaction it executed in would still be able to commit, which would

result in a violation of the original program order.

As an example, consider Figure 5.12. Assume that the code at the bottom is being executed, and that

a speculation is spawned to execute startOperation. When the instance of TransactionSemanticsExample

is initialized, as no value is given to n, the JVM uses the default value for the int type, 0. Now, at the start

of the method startOperation, a speculative execution of doOperation is spawned. The problem is that

because a child will not be able to see the modifications that its parent made, when doOperation starts,

n will still be 0, and the AssertionError will be triggered. As the transaction containing doOperation

did not do any writes, it will happily commit its result when it receives the commit token, and the parent

will receive the AssertionError, causing a deviation from the sequential execution semantics.

4This operation, too, was optimized, by using a special lightweight read-write transaction.
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To solve this problem, JaSPEx changes the semantics of JVSTM’s read-only transactions to force

their linearization to occur at the point the commit is made, similarly to the way it that is done when

both reads and writes are done. In the presented example, this would cause the JVSTM to detect that

doOperation read an old version of n and cause the task to reexecute.

5.4 Discussion

In the design section (5.1) I already argued for some of the design compromises that I had to make to

do speculation on top of and unmodified plain Java Virtual Machine that offered no such support, but I

will now expand a bit more on some of these issues.

The Java Virtual Machine is a complex platform, designed for performance and portability. Its latest

versions also carry a considerable backward-compatibility luggage, in terms of obsolete library classes,

methods, and interfaces; and of features such as generics that are implemented in more limited ways so

as to not disturb older code. This all means that the VM and its behaviours are not easily extended,

and there is little meta-programming support, mainly limited to inspecting objects and classes, and to

invoking methods.

For all these reasons, designing a speculation system for Java is complex. Even small applications

normally exercise large amounts of features of the JVM platform, making it hard to partition these

features into subsets that can be incrementally dealt with, while still successfully and correctly allowing

speculative executions to run.

There are quite a lot of changes that are made before a class is ready for speculative execution. From

transactification and handling of non-transactional operations to spawning speculative executions, and

allowing speculation to be skipped for individual executions of a method, a class goes through many

public class TransactionSemanticsExample {

private int n;

public void startOperation(int arg) {

if (arg > 0) n = arg;

else n = 1;

doOperation();

}

private void doOperation() {

if (n <= 0) throw new AssertionError("This should never happen");

{ ... }

}

}

TransactionSemanticsExample e = new TransactionSemanticsExample();

e.startOperation(2);

Figure 5.12: Example to illustrate the problem with JVSTM’s original semantics for read-write transac-
tions, when used by the JaSPEx system to do speculative execution.

45



changes, most of them adding overheads to code execution.

The design of the speculation part of the system tries to balance some of these overheads with

the flexibility needed for successfully tapping parallelism in an application, by doing speculative method

execution at the beginning of caller methods. Unfortunately, there are inherent limitations in this scheme,

especially concerning the issue of dealing with the parameters needed for speculative executions. The use

of an unbounded thread pool is also a non-optimal solution, that had to be adopted because of another

limitation of the JVM.

The JVSTM, being a general-purpose software transactional memory, provides features that go unused

on a speculative execution system such as the support for speculative read-only transactions, and lacks

features that would help extract more performance on such a system, such as supporting a more advanced

nested transaction model.

All of these limitations point to future work opportunities for the JaSPEx framework that are discussed

in Section 7.2.
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Chapter 6

Experimental Results

In this chapter I will present experimental results obtained with the current development version of the

JaSPEx framework. I will start by presenting, in Section 6.1, measurements of the overheads incurred by

applications after applying both transactification and the modifications needed for speculative execution,

but without doing any speculation; then, in Section 6.2 I will present results that include speculative

executions.

All of the results were obtained on a dual-quadcore system with two Intel Nehalem-based Xeon E5520

processors, running Ubuntu Linux 9.04, and Java SE version 1.6.0 13. To simulate execution on a machine

with fewer processing cores, the extra cores were completely disabled by the operating system.1

6.1 Transactification

Before application code can be run speculatively, it must first be modified to run transactionally, so that

the JaSPEx system is able to detect conflicting speculative executions, and reverse the changes made

during them.

Transactification of an application imposes overheads to its execution. To measure those overheads, I

have benchmarked execution of multiple applications, comparing their original execution times to those

of their transactified counterparts.

The applications tested were:

• Java Grande Forum Benchmark Suite [39, 40] (version 2.0).2 This benchmark suite encompasses

multiple benchmarks, divided into three sections: low level operations (section 1), kernels (section

2), and large scale applications (section 3). Benchmarking was done with a subset of section 3

applications (MolDyn, a molecular dynamics simulation and MonteCarlo, a monte carlo simulation).

• Nativegraph. Nativegraph is a part of JaSPEx that is currently unused for transactification and

speculation, but that does static identification of non-transactional operations and outputs the

graphs shown in Figures 4.8 and 4.10.

1See Documentation/cpu-hotplug.txt on the Linux source tree.
2See also http://www.epcc.ed.ac.uk/research/java-grande/.
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Benchmark Original Runtime (s) Transactified Runtime (s)
JGrande MolDyn 2.06 24.82

JGrande MonteCarlo 3.16 37.47
Nativegraph 23.9 96.29

JScheme quicksort 1.42 22.22
JScheme fibonacci 1.56 51.79
JScheme ackermann 3.08 117.25

Table 6.1: Original runtime versus transactified runtime for the presented benchmarks.

JGrande MolDyn

JGrande MonteCarlo

Nativegraph

JScheme Quicksort

JScheme Fibonacci

JScheme Ackermann

0

0.1

0.2

0.3

0.4

0.5

Figure 6.1: Relative slowdown for each of the benchmarks presented in Table 6.1.

• JScheme (version 7.2).3 JScheme is an almost-compliant R4RS Scheme implementation that works

on top of the JVM platform. Testing was done with example Scheme implementations of the quick-

sort algorithm, a recursive implementation of the fibonacci function and the ackermann function.

Table 6.1 shows the original and transactified runtimes for the various benchmarks, and Figure 6.1

shows the relative slowdown for each of the benchmarks.

As we can see, the transactification process imposes quite big overheads for applications, in account

of all the extra method calls and indirections that are added.

6.2 Speculative Execution

I now present some preliminary results of the automatic parallelization performed by JaSPEx.

Figure 6.2 compares the transactified execution time of the Nativegraph application, with the execu-

tion times when speculative parallelization is used.

In Figures 6.3 and 6.4 I present the benchmark results of applying automatic parallelization to the

3See also http://jscheme.sourceforge.net/jscheme/main.html.
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Figure 6.2: Transactified and speculative execution times for the Nativegraph benchmark. Shown is the
runtime for the single-threaded transactified version, and the runtimes for speculative parallel execution
with an increasing number of processing cores. (See also section 6.1).

STMBench7 Benchmark [41, 42] benchmark.4 The STMBench7 is a benchmark for software transactional

memory implementations; its underlying data structure consists of a set of graphs and indexes similar to

many complex applications, e.g., CAD/CAM. Unlike most applications, this benchmark can already be

executed transactionally, so this benchmark allows me to test only the speculative parallelization part of

JaSPEx, and compare its execution times to those of a normal single-threaded run of the benchmark.

Figure 6.3 shows results with a read-dominated workload, while Figure 6.4 shows with a write-dominated

workload.

Finally, I present the results of executing a modified version of the recursive implementation of the

Fibonacci function originally shown in Figures 5.6 and 5.7. Because fib does very little computation at

each step, I have modified it to do speculative execution only up to a threshold, and from then on to

run the rest of the computation entirely without speculative execution on the same thread, as shown in

Figure 6.5. Note that the resulting application is still a normal, valid single-threaded Java application,

that can be executed without speculative parallelization or JaSPEx.

Figure 6.6 presents the time needed for calculating fib(50) using this version with 1 to 8 cores. The

single-core execution time shown is for a normal execution of fib, without the JaSPEx framework.

The results of this benchmark are interesting, because they show that with better scheduling decisions,

it is possible to successfully extract parallelism from a sequential program with the approach that I

propose; the threshold was only introduced to avoid the task overcreation that the framework scheduler

originally did.

4See also http://lpd.epfl.ch/site/research/tmeval.
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Figure 6.3: Original and speculative number of operations per second for the STMBench7 Benchmark,
with a read-dominated workload. Shown are the original operations/second for the benchmark running
in single-threaded mode, and the operations/second for speculative parallel execution with an increasing
number of processing cores.
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Figure 6.4: Original and speculative number of operations per second for the STMBench7 Benchmark,
with a write-dominated workload. Shown are the original operations/second for the benchmark running
in single-threaded mode, and the operations/second for speculative parallel execution with an increasing
number of processing cores.
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public long fib(long n) {

if (n < threshold) return fib_nospeculation(n);

return fib(n-1) + fib(n-2);

}

// This version of fib will not spawn speculative executions

public long fib_nospeculation(long n) {

if (n <= 1) return n;

return fib_nospeculation(n-1) + fib_nospeculation(n-2);

}

Figure 6.5: Modified version of fib. When the value of n that fib receives goes below the threshold,
execution jumps to the fib nospeculation method, for which no speculative execution is done.
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Figure 6.6: Time for calculating fib(50) using speculative parallelization, as the number of available
cores is increased. The single-core execution time shown is for a normal execution of fib, without the
JaSPEx framework.
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Chapter 7

Conclusion

In this dissertation, I proposed the use of an STM-based approach to thread-level speculation, so that

we may extract more parallelism from sequential programs, benefit from the results of the transactional

memory research community, and target current mainstream hardware.

I have incorporated my proposal into a running system, the Java Speculative Parallel Executor

(JaSPEx), that automatically parallelizes a program that was compiled to run in the Java Virtual Ma-

chine. To accomplish that, JaSPEx transforms the program, without the intervention of the programmer,

so that some parts of it may execute speculatively in parallel, while still respecting the original sequential

execution semantics.

JaSPEx was built and designed both as a framework on which future speculative execution research

can build upon, and as a working proof-of-concept implementation of such a system.

One of the challenges in speculative execution is the transactification of the program. In this work

I described some of the difficulties inherent to the transactification of a JVM program if there is no

support from the JVM runtime. Because of those difficulties, the transactification performed by JaSPEx

is currently limited.

I also described how JaSPEx modifies applications for speculative execution, how tasks are selected

and when speculation is introduced, how speculative executions are managed internally by the framework,

and what is the API used by a parallelized application.

In its current state, JaSPEx provides a working framework for speculative execution, including trans-

actification, but its current speculative execution techniques have proved effective only for a small number

of applications.

7.1 Main Contributions

The main goal for this work was the creation of a speculative parallelization system for existing sequential

applications that run on the Java Virtual Machine platform, without needing to modify the Virtual Ma-

chine. The parallelization system should also work automatically without any input from the application

programmer.
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A secondary goal was that the resulting system should also be a usable platform for future speculative

execution research.

The main contributions done by this work are the following:

• Transactification system for the JVM platform. I have analyzed the issues underlying the transac-

tification of an application — modifying it so that it can run transactionally under control of an

STM — on the JVM platform and developed techniques to solve some the presented problems. I

then implemented those techniques as part of the JaSPEx system.

• Identification of dependencies on non-transactional methods. I have investigated and described

two approaches to handling identification of non-transactional methods, and shown that static

identification is too conservative for real-world applications, causing most methods to be identified

as possibly dependent on native methods, and that a runtime approach can lead to more parallelism

being uncovered.

• Speculative execution on an unmodified JVM platform. To the best of my knowledge, I have devel-

oped the first fully-automatic speculative parallelization system that works on top of an unmodified

JVM platform, and that does not rely on any kind of transactional support provided by the hardware

to work.

• Speculative parallelization framework. I have developed a speculative parallelization framework that

may be used as the basis for future speculative execution research and development.

• Benchmarking results. I have performed preliminary benchmarking that show promising results for

the approach I proposed.

7.2 Future Research Directions

As I have shown in the previous sections, the JaSPEx system is hindered by the many limitations of the

Java Virtual Machine platform, and incurs into high overheads from the usage of a Software Transactional

Memory.

Starting with the latter, by integrating the Software Transactional Memory with the Java Virtual

Machine, less overheads would be incurred, and the STM could better collaborate with other sections of

the VM, especially garbage collection, to improve performance. The usage of STM could also be made

transparent for the user application by this integration, avoiding some of the work that currently has to

be done on transactification, and some of its limitations, such as array handling and reflection.

Transactification at the Virtual Machine level could also be expanded to allow transactification of the

Java base libraries, which would greatly reduce the set of methods that are considered non-transactional.

Integrating the JaSPEx system itself at the Virtual Machine level would further reduce overheads

and improve performance, because the VM has full control of what happens at all times, so speculation

could be done at a finer-grain level, without all of the overheads that are imposed by the hooks that are

currently needed to give JaSPEx a moderate level of control over code executed. This kind of integration

could also allow worker threads to be reused while they are waiting for the commit token, instead of

the current arrangement where the framework has to create new threads to be able to switch between

different execution contexts.
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Modifying the JVSTM model to support concurrency in nested transactions would also serve to

reduce the number of failed speculative executions by allowing parent speculations to share some of their

preliminary results with their child speculations.

Besides these issues, investigation and implementation of better parallelization techniques would also

benefit JaSPEx:

• Task scheduling. How to better map the different speculative tasks to the available processing

resources of a system.

• Task selection. How to divide an application into parts that are as independent as possible.

• Statistics gathering and profiling. Keep track of past speculative execution success rates and speedup

gains, and try to avoid possible but unprofitable executions.

• Value prediction. Employ value prediction techniques such as those proposed by [38, 14] whenever

results that are not yet available are needed to proceed with speculative execution, allowing JaSPEx

to uncover further parallelism in applications.

• Loop optimizations. Implement loop parallelization, unrolling, and other transformations. Tech-

niques for loop optimization have been the focus for most parallelizing compilers, with some suc-

cessful results, and it would be interesting to investigate if JaSPEx could mirror and improve their

success.

• Better static analysis. Add support for more advanced static analysis and optimization that can

generate better code and richer metadata to be used for speculation. As the usage of a dynamic

approach does not preclude the usage of a static one, JaSPEx could benefit from the existing

research on static compiler optimizations.
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[42] Dragojević, A., Guerraoui, R., Kapa lka, M.: Dividing transactional memories by zero. In: Proc. of

the 3rd ACM SIGPLAN Workshop on Transactional Computing, Salt Lake City, UT. (2008)

59

http://web.ist.utl.pt/~joao.cachopo/jvstm/
http://web.ist.utl.pt/~joao.cachopo/jvstm/

	Introduction
	Thesis Statement
	Notation
	Outline

	Related Work
	Parallelizing Compilers
	Hardware Transactional Memory
	Software Transactional Memory
	Hybrid Approaches
	Thread-Level Speculation
	Parallel Programming Languages
	Java Concurrent Programming
	Transactional Java Execution
	Java Versioned Software Transactional Memory
	Transactional Model
	Versioning and Conflict Detection
	API


	Problem Statement and Solution Overview
	Proposed Solution Overview

	Transactification of JVM Applications
	Transactification of Class and Instance Fields
	Transactification of Arrays
	VBoxes on Arrays
	Array Creation
	Array Access
	Arrays as Method Arguments
	Putting it All Together

	Non-Transactional Operations
	Static Identification of Non-Transactional Operations
	Runtime Prevention of Non-Transactional Operations


	Speculative Parallelization
	Design
	Transformations for Speculative Execution
	Doing Speculation
	Caller Method
	ExecutionTask Generation and Execution
	Transaction Commit and Original Program Order
	Obtaining Results from a Speculation
	On Reusing Waiting Threads
	Using the JVSTM for Speculative Execution

	Discussion

	Experimental Results
	Transactification
	Speculative Execution

	Conclusion
	Main Contributions
	Future Research Directions


