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Remote experimentation

Abstract

is a new concept which enables remote

users to manipulate a controlled system from a distant location.
Major applications are distance learning, scientific benchmarks
conducted on common setups, and tele-maintenance. In automatic
control, remote experimentation requires flexible mechanisms to
implement particular control algorithms and to provide compre-
hensive information. These functionalities are mandatory in order
to control the dynamic behavior of the remote system and to su-
pervise the ongoing operations. An approach based on a real-time
interpreter running on the computer which controls the physical
system and a client/server architecture written in Java is proposed.
The client-side software, which enables the user to exchange in-
formation, is integrated within World-Wide Web pages and down-
loaded transparently from the server-side computer which runs the
controller.

1 Introduction

Distance learning has attracted the interest of many universities
around the world [7]. Amongst its advantages are: a broader choice
of studies even at places where the number of students does not
justify the physical presence of qualified teachers; no or fewer con-
straints on the time table when the courses are attended; and better
sharing of expensive laboratory equipment, For standard courses as
well as for distance learning modules, an effective pedagogical ap-
proach relies on three phases: first presenting the theoretical back-
ground with the help of examples, second testing the knowledge
with exercises, and third consolidating it with laboratory experi-
ments. This last phase is probably the most difficult to undertake

remotely due to the complexity of the practical operations involved
and the human interactions requested by students. However, this
challenge has been achieved, thanks to the approach proposed.

In automatic control with digital implementation, fortunately, the
operations that students have to carry out on the experiment could
be limited to the implementation of a control algorithm, to the mod-
ification of its parameters, and to the online retrieval of data. In
theory, these operations seem to present no insuperable difficulties.
However, in practice, care is required about how the different im-
plementation stages are handled to guarantee safety and efficiency
of the control solution.
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At the Institut d’automatique of the Swiss Federal Institute of Tech-
nology in Lausanne, most of the experimental setups are controlled
by Power Macintosh computers [2]. A real-time kernel with mod-
ules written in C controls (he experiments via ADIDA boards. The
user interface is implemented in LabVIEW (National Instruments).
This framework has been recently extended for usage across a net-
work [3]. Problems due to the network, with respect to the limited
bandwidth and the variable delay it introduces, are described in
[9]. Controllers have a fixed structure, and only their parameters
can be changed. This paper deals with the case where the complete
algorithm is specified by the remote user. The additional flexibility
results in new problems. Reference [1] describes a solution simi-
lar to the approach presented in this paper, where the student can
control an experiment over the Web and upload control programs
written in C. However, for security reasons, access is limited to
registered students. Here, this problem is overcome by the use
of an interpreter which provides a controlled environment where
the remote user does not have access to the tile system and other
sensitive resources. WlnCon, a commercial solution based on the
Realtime Workshop of MATLAB, compiles the code of Simulink
diagrams and sends it over the network to another computer which
controls the experiment [8]; however, limited to Whtdows 95 and
not integrated with the Web, it is not suited for a large distribution
of the client software.

The remainder of the paper is structured as follows. In Section 2, the
remote experimentation problem is introduced. The requirements
for an efficient environment are given in Section 3. The software
developed to support local experimentation for prototyping control
algorithms is presented in Section 4, and the issues specific to
remote operations are detailed in Section 5. Concluding remarks
and extensions which are being currently investigated are given in
Section 6.

2 Remote experimentation for algorithm prototyping

This section provides an overview of the remote experimentation
environment discussed in this paper. The experiment is located in
a laboratory, while the user conducts the experimentation from a
remote location; typically the computer room of a university, a dis-
tant laboratory, or home. The control algorithm runs on the local
computer which drives the experiment, so that the feedback loop (if
there is one) does not suffer from the delay that the network would
introduce. This computer also acts as a server to broadcast data
and cope with user requests. The supervision of the operation is
conducted remotely by means of a client software which commu-
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Figure 1: Remote experimentation using uploaded control algo-
rithms.

nicates through the network (Internet or a local area network) (see
Fig. l).

3 Requirements of remote experimentation

In order to complement or to replace effectively local experiments,
where the user can interact directly with the system and see it run-
ning, remote experimentation requires several additional features.
Otherwise, there is a large risk of having an impractical setup,
either because of too restricting limitations or an overwhelming
complexity. Below is a list of what is important to achieve a suc-
cessful remote experimentation setup. This list is designed to be as
exhaustive as possible to give a complete picture of where remote
experimentation for algorithm prototyping is heading.

● Ease of use: in remote experimentation for distance learn-
ing, not only the physical experiments are distant, but also
the support staff. Difficulties in making the system react
to user requests are much more discouraging when no sup-
port is immediately available. An effective collaborative
environment, while important, cannot replace a good user
interface.

● Flexible algorithm formulation: Even if a large set of con-
trollers can be reduced to a fixed structure (e.g. polyno-
mials or state-space representation for linear time-invariant
controllers), it is important to have the freedom that only
a programming language can provide. This enables non-
linear controllers, any kind of excitation and identification,
and any kind of integration algorithm if the controller is for-
mulated in continuous time. One of the purposes of remote
experimentation is to enable several research team access to
a single experiment; flexibility is also important to cater to
different approaches and different formulations.

s Online supervision of Ihe experiment: Once an experiment
has been started, the user must be able to supervise what
happens and to check that everything runs as expected. In
the case of long experiments, being able to detect quickly
whether something goes wrong is mandatory to avoid wast-
ing time producing worthless results or even to prevent dam-
age to the experiment. Despite the fact than some informa-
tion can only be acquired by a person sitting in front of the
experiment (such as odors of heated components and vibra-
tions), real-time data, audio and video feedback should be
broadcasted in order to provide to a remote user the feel-

ing of being present at the experiment location (this is why
remote experimentation is often refereed as telepresence).

● Downloading expen’mental data: In addition to the online
visualization of remote data, it is often useful to have the pos-
sibility to download them for batch processing or for playing
back the experiment off-line. This also enables better gen-
eration of graphical representations using other software.

● Server security: The security concerns valid for any kind
of server also apply to a server controlling an experiment.
These include preventing the remote user from disturbing
the good functioning of the server, from getting access to
private resources (information, processing time, storage, or
local network access), or from masquerading as someone
else. In addition, the process should be protected against any
actions that can either damage or destroy it, by a malicious
user or by accident. This latter point may be more difficult
to enforce, because too strict limitations could prevent the
user from bringing the system to its limits, which is often
required when validating a new control solution.

● Cross-plaform client-side software: Different computer ar-
chitectures and operating systems (OS) coexist amongst the
intended user community, and nothing indicates that this sit-
uation will change in the foreseeable future. Especially for
students, it is not possible to impose a reference computing
platform. Thus the client software should be available from
those most widely used (currently Windows, Mac OS, and
Linux).

● Easy installation of the client-side sof~are: The intended
users are often not computer experts, and the person re-
sponsible for the whole setup is by definition not physi-
cally present for troubleshooting. Therefore, the installa-
tion of the client software should be as simple as possible,
and should not assume the existence of third-party software
which is difficult to install. The use of software which can
be freely distributed is also a huge advantage for educational
applications.

● Easy access to a libraryof algorithms:The best way to as-
sess the capabilities of a system is to see what other people
have done. For remote prototyping, a single set of default
parameters is not sufficient. The more flexible the environ-
ment is, the more important it is to provide several examples.
In addition, for research purposes, access to what other peo-
ple have done facilitates comparisons and collaboration.

● Flexibility to improve the whole environment: Especially
when the environment is still under development, the com-
munication protocol shared by the server-side and client-
side software may evolve. This requires either compatibility
amongst different versions or a mechanism to upgrade the
client software transparently.

● Client security; The client might not trust the source from
which he obtains the client-side software. An electronic
signature system can certify that the software is written by
someone trusted, or the client can run in a controlled envi-
ronment where it has no access to the resource and private
data of the client computer.

Successful setups may still omit one or several of the above require-
ments. For instance, the remote control of an inverted pendulum
or an electrical drive, currently used at the Institut d’automatique,
lacks some flexibility, but it focuses more on ease of use and quality
of feedback.



4 Real-time interpreter

At the lnstitut d’automatique, fulfilling many of the points out-
lined in Section 3 has been achieved in two phases. During the
first, the part of the problem not related to the use of the network
has been addressed. It was found quickly that the flexibility of
the approach could be used to solve many requirements for re-
mote experimentation. This section describes the software used
by students during their laboratory experiments to apply quickly
to real systems algorithms which they develop and simulate with
MATLAB and Simulink [4]. The second phase, which extends the
software environment to remote operation, is detailed in Section 5.

4,1 Reasons for new software
MATLAB and Simulink are widely used in the engineering world
in automatic control, and also at the Institut d’automatique for
research and education. However, they are not well suited for
real-time experimentation because they are closely integrated with
the OS of the computer which they run on and cannot be called
from an interrupt routine. The solution used here is to rewrite
the algorithms in C, where most calls to the OS (such as mem-
ory allocation, file access, and the graphical user interface) can be
avoided easily. Unfortunately, experience shows that the learning
curve is steep and prevents the students from writing new real-
time routines during their laboratory projects. Preexisting con-
trollers (such as proportional-integral-derivative (PID) controllers,
Smith predictors, and adaptive pole-placement-based controllers)
have been used for many years; implemented in C and interfaced
with LabVIEW (a software package from National Instruments for
graphical interfaces and control of external devices with its own
graphical language), they are invaluable tools for learning the basic
concepts of automatic control. Nevertheless, they do not replace
the actual coding of an algorithm. Thus an interpreter which im-
plements a large subset of the MATLAB syntax has been written
with [he primary purpose to be run in real-time. Using the same
syntax as MATLAB permits to write, debug, and simulate the pro-
gram in the MATLAB/Simulink environment, and does not require
learning of a new language.

A separate program, called RT, has been developed for the Macin-
tosh. It permits the real-time execution of MATLAB-like scripts
and the communication with inputioutput (1/0) boards. Support
for real-time operations is provided by the Extended Time Man-
ager, the part of the Mac OS which handles periodic execution and
timing. Sampling times in the order of 1ms can be achieved eas-
ily, which is fast enough for many laboratory experiments. The
Extended Time Manager has existed since 1991 with no signifi-
cant usage changes, and it should still be present in the next major
Mac OS update in 1999. Relying on the services of the OS has the
important advantage of reducing the changes when a new I/O board
is used. Concerning the 1/0, a simple plug-in module scheme has
been designed. Each board requires a plug-in, written as a shared
library (dynamic link library or DLL in the jargon of other 0Ss),
which implements four functions for initialization, reading, writ-
ing, and termination. Modules for GW Instruments MacADIOS
and National Instruments PCI 1200 boards have been written.

4.2 Algorithm formulation
In Simulink, the systems to be simulated are built from simpler
elements such as adders, transfer functions, and elementary non-
linear functions. More complex blocks can be created by enclosing
simple blocks in subsystems, or by writing a function in the MAT-

t = rt time % get current time in sec.
rt “wait (delay) % wait based on the prev. call
y . rt’read(chan) % read the value of sensors

rt’write(chan,u) % set the value of actuators

Listing I: Functions forreal-timeandi nput/output.

LAB language. Such functions, called s-~urrctkms, implements
general state-space model. Their arguments andcalling sequence
are imposed by Simulink, so that the number of states, initial state
vector, new state or state derivative, and output can be obtained
during the simulation. The s-function syntax is a natural choice for
RT. In this way, provided a model of the system to be controlled
is available, the whole controlled system can be easily simulated
before thecontroller isnmby RTwiththe real system. Currently
the s-functions supported by RT are restricted to discrete-time.

However, s-functions, though powerful, are complicated andnon-
intuitive to write for beginners, because they are called at different
times with requests fordifferent kinds of information. In addition,
s-functions are cumbersome for applications where the same com-
putation isnotcarried outateach sampling time. Forinstance, an
experiment might begin with aphaseof open-loop identification,
where the system input is a pseudo-random binary signal and the
output is collected for later processing; a phase of identification,
where the measurements are batch-processed to give the parame-
ters of the system; a phase of controller synthesis; and a phase of
closed-loop experimentation, for checking the performances of the
controller. Thecontent of thestate of thewhole experiment would
change for each phase; putting it in the single state vector of the
s-function would become over complicated. A modular approach
is impractical because it is difficult to split the phases into separate
functions.

For cases where a Simulink simulation is not required and a faster
and simpler development is desirable, RT also accepts sequential
programs where the state vector is replaced with named variables.
Four functions have been added to the interpreter for real-time oper-
ationsand input-output with thesystem (see Listing 1). Compare
the code of a proportional-integral (PI) controller implemented as
an s-function (Listing 2) and as a sequential function (Listing 3).

In MATLAB, the result ofan expression is displayed when the
statement where it appears has no final semicolon. This makes
debugging easier; by removing a few semicolons, both the progress
of the execution and where the results do not correspond to what
they should can be seen. The real-time interpreter also implements
this feature. Real-time output isstored inaninterrttediate buffer,
and the user-interface part of RT periodically dumps it to an output
window.

4.3 Integrationwithothersoftware
RTisastand-aloneapplicationandhasthe userinterfaceneces-
saryto loadfunctions,displaytextualoutput,andchoosewhich
I/Omoduleto use. Itcanalso decontrolledfromMATLABor
SimulinkwithAppleEvents,theinter-applicationcommunication
systemoftheMacintosh.Commandswerewrittentopermitinstal-
lationofs-functions,startandstoppingofthereal-timeoperation,
changingparameters,andretrievaloftheex~timentaldata.Aset
of.simulinkblocksenablesthereal-timedisplayofmeasurements
in scopes.
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function [sys,xO] = contrPI (t,x,u,flag)

kp = 1; % controller parameters
Ti = 10;
r = 5+2*s.ign(sln(0,5*t)) ; % reference signal
Ts = 0.1; % sampling period

switch flag % flag tells what
case O % structure

Sys = [0,1,1,1,0,1];

Xo = o; %
case 2 %

sys = x + r - u; %

case 3 %

sys = kp * (r - u+
case 4 %

sys = t + Ts;
otherwise %

Sys = [];
end

initial state
next state
new state

tO do

control signal
Ts*x/Ti):
next sampling time

ignore other requests

function contrPI’seq

kp = 1; %
Ti = 10;
length = 10; %
Ts = 0.1; %
sum = o; %

while rt’time < length
y = rt’read(l); %

controller parameters

experimentation length
sampling period
sum of past errors

% main loop
read syst.output ADC#l

r = 5+2*sign(sin(0. 5*rt’ time)); % ref. signal
e =y - r; %
sum = sum + e; %
u=kp’ (e + Ts * sum
rt”write(l,u); %
rt’wait(Ts) ; %

%
end

error
sum of past errors
/ Ti); % control signal
write syst.input DAC#l
wait for next sample
1 iter. is exactly Ts

Listing 3: Discrete-time PI controller implemented as a sequential
function.

Listing 2: Discrete-time PI controller implemented as an s-
function.

5 Remote experimentation

The real-time interpreter described in the previous section can be
easily extended for remote experimentation, because it is already
based on a client-server architecture. The parts missing are what
is specific to the network and to the clients: the communication
protocol, the management of multiple potential users, security, and
ease of installation.
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5.1 Client-server architecture
In order to implement the client and the communication part of
the server, the Java system [10] was chosen. Java (at least in its
current implementation under non-real-time 0Ss) is not well suited
for real-time operation, because it is often still slower than pure C, it
uses a garbage collector which slows down the execution at random
time, and it cannot be interfaced with the real-time architecture of
the underlying OS. In addition for the project described in this
paper, the interpreter already exists in C and a port to Java would
be difficult and time-consuming to establish. For these reasons, the
real-time system and the interpreter are written as a shared library
loaded by the Java application which implements communication
with the client. The client itself is a Java applet, i.e. a program
which runs inside a Web page (see Fig. 2).

This approach fulfills many of the requirements outlined in Sec-
tion 3. Indeed, the server is protected against poorly designed or
malicious real-time programs because the interpreter prevents ac-
cess to the functions of the OS. Since Java is available on many
0Ss, client software is cross-platform, and could not be easier to
install since it is downloaded and run automatically when the user
selects the correct link in the Web browser. The code is typically
much smaller than for a complete application; the current imple-
mentation is less than 16kbytes. A library of different algorithms
can be made available with a set of pages, each of them containing
the client applet with a preloaded program. Each time a page is
displayed, the browser checks whether a version of the applet more
recent than the content of its cache exists on the serve~ thus the

l?igure 2: Architecture forremote real-time experimentation.

communication protocol between the server and the client can be
improved or even replaced without any problems. F]nally, the ap-
plet itself runs in a controlled environment (the Java system) where
it cannot do any damage to the client computer.

Writing the server application in Java has the additional benefit
of simplifying the networking code. Contrary to Unix, Mac OS
only supports non-preemptive multitasking, and asynchronous I/O
functions must be used to avoid blocking the whole system. Java
follows the Unix model where blocking functions (such as those
which listen for a new connection) make the central processing unit
(CPU) available for other tasks. Using the Macintosh, this means
that most of the dirty code is hidden in the Java implementation.
Note that Java is still an immature technology which is evolving
quickly, and its stability is suboptimal. Improvements can be ex-
pected over the next few years.

5.2 Communication protocol
The remaining requirements for a successful remote experimenta-
tion setup depend on the way the server and client are designed.
Currently the client establishes aTCP (Transmission Control Proto-
col) connection (reliable and based on a bidirectional stream) with
the server, which is not necessarily located on the same computer as
the server used to deliver Web documents. Both the client and the
server send packets to each other for various requests. A watchdog
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Figure 3: Client running as a Java applet in a Web browser. Mea-
sured data are displayed as a graphic in a separate win-
dow.

runs on the server, so that if the client crashes, a timeout stops the
experiment and closes the connection permitting another client to
connect.

Experimental data can be displayed in two ways. First, textual
output is sent to the client and displayed while the real-time program
is executing. On the server, data generated in real-time are buffered,
fetched by the Java server, and sent in packets to the client. The
second way to observe the experimental data is with the help of
graphics, built either incrementally when new data are available or
in batch with a single plot command (see Fig. 3). Incremental
graphics are useful to supervise the functioning of the setup; batch
plots are better suited to analyzing final results such as an identified
nonparametric model, the Fourier transform of signals, or frequency
responses resulting from a phase of identification.

6 Conclusions

In this paper, the requirements of a remote experimentation en-
vironment designed to carry out algorithm prototyping have been
reviewed. RT, software developed at the Institut d’automatique,
has been described. It is based on an interpreter which uses a syn-
tax similar to that of MATLAB and which runs in real-time on the
Macintosh. This locaI software solution has served as a base to
implement an environment for remote experimentation. The com-
munication solution is based on a client-server architecture written
in Java. The client is an applet running in a Web browser. The user
can write code, upload it and make it run by the real-time inter-
preter, and obtain results as textual data, real-time sliding signals
in a scope, or batch graphics.

RT has been used since 1997 by both teachers and students at the
Institut d’automatique. Feedback from the students is excellent; it
shows the usefulness of a simple environment to quickly implement
algorithms and get a better feeling of how to apply theory to real-
world systems.

The current implementation of remote experimentation based on the
real-time interpreter and Java is still a proof-of-concept which lacks
some of the features required for public use; amongst them, access
control to prevent unauthorized use and permit potential users to
book time in advance; and the video and audio feedback, which
could be provided separately but would be better integrated into
the Web browser. The approach presented here will complement
other software tools which implement fixed-structure controllers
for standard algorithms.

Instead of putting the client in a Webbrowser, it can be included with
an interactive computer-aided design software such as SysQuake
[5, 6]. This will permit obtaining a model based on remote exper-
imentation, remotely updating the controller, and complementing
simulations with experimental data.
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