
Java Concurrency in Practice 

Brian Goetz 
with 

Tim Peierls 
Joshua Bloch 

Joseph Bowbeer 
David Holmes 
and Doug Lea 

r^Addison-Wesley T T 

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco 
New York • Toronto • Montreal • London • Munich • Paris • Madrid 

Capetown • Sydney • Tokyo • Singapore • Mexico City 



Contents 

Listings xii 

Preface xvii 

l Introduction l 
l . i A (very) brief history of concurrency l 
1.2 Benefits of threads 3 
1.3 Risks of threads 5 
1.4 Threads are everywhere 9 

1 Fundamentals 13 

2 Thread Safety 15 
2.1 What is thread safety? 17 
2.2 Atomicity 19 
2.3 Locking 23 
2.4 Guarding state with locks 27 
2.5 Liveness and performance 29 

3 Sharing Objects 33 
3.1 Visibility 33 
3.2 Publication and escape 39 
3.3 Thread confinement 42 
3.4 Immutability 46 
3.5 Safe publication 49 

4 Composing Objects 55 
4.1 Designing a thread-safe class 55 
4.2 Instance confinement 58 
4.3 Delegating thread safety 62 
4.4 Adding functionality to existing thread-safe classes 71 
4.5 Documenting synchronization policies 74 

IX 



x Contents 

5 Building Blocks 79 
5.1 Synchronized collections 79 
5.2 Concurrent collections 84 
5.3 Blocking queues and the producer-consumer pattern 87 
5.4 Blocking and interruptible methods 92 
5.5 Synchronizers 94 
5.6 Building an efficient, scalable result cache 101 

II Structuring Concurrent Applications 111 

6 Task Execution 113 
6.1 Executing tasks in threads 113 
6.2 The Executor framework 117 
6.3 Finding exploitable parallelism 123 

7 Cancellation and Shutdown 135 
7.1 Task cancellation 135 
7.2 Stopping a thread-based service 150 
7.3 Handling abnormal thread termination 161 
7.4 JVM shutdown 164 

8 Applying Thread Pools 167 
8.1 Implicit couplings between tasks and execution policies 167 
8.2 Sizing thread pools 170 
8.3 Configuring ThreadPool Executor 171 
8.4 Extending ThreadPool Executor 179 
8.5 Parallelizing recursive algorithms 181 

9 GUI Applications 189 
9.1 Why are GUIs single-threaded? 189 
9.2 Short-running GUI tasks 192 
9.3 Long-running GUI tasks 195 
9.4 Shared data models 198 
9.5 Other forms of single-threaded subsystems 202 

III Liveness, Performance, and Testing 203 

10 Avoiding Liveness Hazards 205 
10.1 Deadlock 205 
10.2 Avoiding and diagnosing deadlocks 215 
10.3 Other liveness hazards 218 

11 Performance and Scalability 221 
11.1 Thinking about performance 221 
11.2 Amdahl's law 225 
11.3 Costs introduced by threads 229 
11.4 Reducing lock contention 232 



Contents xi 

11.5 Example: Comparing Map performance 242 
11.6 Reducing context switch overhead 243 

12 Testing Concurrent Programs 247 
12.1 Testing for correctness 248 
12.2 Testing for performance 260 
12.3 Avoiding performance testing pitfalls 266 
12.4 Complementary testing approaches 270 

IV Advanced Topics 275 

13 Explicit Locks 277 
13.1 Lock and ReentrantLock 277 
13.2 Performance considerations 282 
13.3 Fairness 283 
13.4 Choosing between synchronized and ReentrantLock 285 
13.5 Read-write locks 286 

14 Building Custom Synchronizers 291 
14.1 Managing state dependence 291 
14.2 Using condition queues 298 
14.3 Explicit condition objects 306 
14.4 Anatomy of a synchronizer 308 
14.5 AbstractQueuedSynchronizer 311 
14.6 AQS in Java .u t i l .concurrent synchronizer classes 314 

15 Atomic Variables and Nonblocking Synchronization 319 
15.1 Disadvantages of locking 319 
15.2 Hardware support for concurrency 321 
15.3 Atomic variable classes 324 
15.4 Nonblocking algorithms 329 

16 The Java Memory Model 337 
16.1 What is a memory model, and why would I want one? 337 
16.2 Publication 344 
16.3 Initialization safety 349 

A Annotations for Concurrency 353 
Ал Class annotations 353 
A.2 Field and method annotations 353 

Bibliography 355 

Index 359 


