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ABSTRACT
The Java Memory Model (JMM) provides a semantics of Java multi-
threading for any implementation platform. The JMM is defined in
a declarative fashion with an allowed program execution being de-
fined in terms of existence of “commit sequences” (roughly, the
order in which actions in the execution are committed). In this
work, we develop OpMM, an operational under-approximation of
the JMM. The immediate motivation of this work lies in integrating
a formal specification of the JMM with software model checkers.
We show how our operational memory model description can be
integrated into a Java Path Finder (JPF) style model checker for
Java programs.

1. INTRODUCTION
With increased push towards concurrent and parallel program-

ming, developing tools and techniques for reliable concurrent pro-
gramming is a must. Programmers tend to find parallel/concurrent
programming harder than sequential programming — owing to the
many possible program executions for any given program input.
Moreover, programming languages like Java and C# describe the
semantics of multi-threading via a language level Memory Model.
The language level memory model is somewhat synonymous to the
semantics of multi-threading in the concerned programming lan-
guage — it describes which writes can be visible to a program read
operation. As a simple example, one may consider the following
program fragment with shared variables A, B and local variables
r1,r2, all initially 0.

Thread 1 Thread 2
A = 1; r1 = B;
B = 1; r2 = A;

We would normally assume that at the end of the program we can-
not have r1 == 1 ∧ r2 == 0 since B is set after A in Thread
1. However, in order to allow underlying compiler/hardware opti-
mizations the language level memory model may allow re-ordering
of the writes in Thread 1, thereby making the result r1 == 1 ∧
r2 == 0 possible at the end of the program. Such intricacies in
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the memory model makes formal reasoning about programs partic-
ularly difficult.

The Java Memory Model [12] essentially describes all allowed
behaviors of a multi-threaded Java program on any implementa-
tion platform. The formal description of the Java Memory Model
is declarative — it describes a notion of execution (a partial order
of actions) and then defines what is an “allowed execution”. How-
ever, the test of whether an execution is allowed is not directly ex-
ecutable. The model defines an execution as an allowed execution
if there exists a commit sequence (sequence of sets of committing
actions in the execution) satisfying certain properties. However,
given an execution, even testing whether it is an allowed execu-
tion is non-trivial. It will require the construction of a sequence
of commit-sets. Unfortunately, no algorithm on how to construct
these commit sets is given in the Java Memory Model.

In this paper, we develop an operational approximation of the
Java Memory Model (JMM) and use it for automated software
validation via model checking. Our memory model is an under-
approximation of the JMM in terms of allowed executions. We
note that in (explicit-state) model checking we need to (a) traverse
program executions, and (b) on-the-fly evaluate whether these are
“allowed” executions. No efficient algorithm for construction and
traversal of allowed program executions from the JMM is known.
This is where our operational approximation fits in. We integrate
our operational characterization of the JMM with an on-the-fly soft-
ware model checker that checks for assertion violations. We call
our operational Memory Model as OpMM. Since OpMM is a strict
under-approximation of the JMM, an OpMM-aware model checker
can be used to find bugs in a given program, rather than verify it.

Note that although the JMM guarantees Sequential Consistency
(SC) for race-free programs [12], programs in general may have
races for high performance or other reasons. A memory model
aware model checker like ours is most suitable for validating pro-
grams which are not proven to be race-free.

2. BACKGROUND AND RELATED WORK
Memory models have been used in shared memory multiproces-

sors. Details of hardware memory models appear in [1, 5].
The interest in programming language memory models is rel-

atively new. Among the different programming languages, work
on the Java Memory model (JMM) has received the most atten-
tion. A formal description of the JMM has been presented in [7,
12] with inputs from researchers and developers alike. This model
is presented in a non-operational, declarative style. No procedure
for efficiently checking (say in polynomial time) whether a given
execution of a given program is an allowed behavior is known.

Program validation in a memory model aware fashion was first
studied in the context of hardware memory models. Park and Dill



[13] developed executable memory models for SPARC architec-
tures and used them to verify synchronization routines. Gopalakr-
ishnan et. al. [8] have used SAT solving to check whether an exe-
cution is allowed by a multi-processor memory model, in particular
the Intel Itanium memory model. In recent works, Burckhardt, Alur
and Martin [3] study bounded model checking of concurrent data
types under relaxed hardware memory models.

In our past work [10], we have developed a bytecode level in-
variant checker for C#, which proceeds in a memory model aware
fashion. This required us to formally specify the C# memory model
and integrate inside a bytecode level model checker. However, the
C# memory model is simpler than the JMM, and it can be specified
as a re-ordering table describing which pairs of operations can be
re-ordered. As we will describe now, the JMM specification is more
complex, and cannot be captured by a re-ordering table. Hence our
first task is to develop an operational version of the JMM, which
we then use for bytecode level model checking.

3. OVERVIEW OF OUR APPROACH
We now describe the JMM and OpMM models via several ex-

amples. As our first example, we present the following program
fragment, where r1 - r6 are locals, p, q are shared variables and
initially p == q and p.x == 0:

Thread 1: Thread 2:
r1 = p; r6 = p;
r2 = r1.x; r6.x = 3;
r3 = q;
r4 = r3.x;
r5 = r1.x;

Figure 1: Example 1
A compiler optimization might replace the last statement of Thread

1 by r5 = r2; as they are assigned same expression r1.x and
the value of the expression is not changed in Thread 1. But this op-
timization may lead to the behavior r2 == r5 == 0, r4 ==
3 after the execution, which is not allowed by Sequential Consis-
tency on the original program.

In order to support such optimizations, JMM allows this behav-
ior. In the resulting execution, the reads into r2 and r5 see the
write of the initial value and the read into r4 sees the write by
Thread 2. The commit sequence for validating this execution (as
required by JMM [12]) is the following. In the first step, we can
commit all actions except r4 = r3.x. As all non-committed
reads must see a write that happens-before it, the read into r4 sees
the initial write of value 0. In the next step, the read into r4 is com-
mitted, but it still gets the value 0 as the committing reads must see
a write which is committed earlier as well as happens-before the
read. In the next step, when the read is committed at least one step
earlier, it can see any write that has been committed before (but
not necessarily happens-before) — hence the read now can see the
write r6.x = 3 from Thread 2, resulting in the desired behavior.

As mentioned, validating an execution in JMM requires finding
a commit sequence according to the rules given in [12]. There is
no efficient algorithm for this purpose other than generating and
testing all possible commit sequences. The problem of generating
all legal executions of a given Java program is even more difficult.

Now we show how we can generate an execution in OpMM
that displays the desired behavior in the program of Figure 1. In
OpMM, actions are executed in a total-order consistent with the
program-order, but a non-volatile read can see any previous write
in that total order that is happens-before consistent (thus differing
from SC). To achieve this, a state in OpMM consists of different
views of the heap, one by each thread, instead of a single global
heap. Each location of the heap contains a set of values which a

read is allowed to see. In this example, in an execution where the
write to r6.x in Thread 2 is scheduled before the last two reads of
Thread 1, the heap location for r3.x and r1.x contains both the
values 0 and 3. Hence it is possible for r4 to read the value 3 and
r5 to read the value 0, and thus producing the desired behavior.

OpMM considers synchronizations while deciding the writes that
should not be seen by a later read (in order to maintain happens-
before consistency, as required by the JMM). Let us consider the
following example where r1 is a local and x, l are shared vari-
ables, x initialized to 0 and l is initially unlocked.

Thread 1: Thread 2:
lock l; lock l;
x = 1; x = 2;
r1 = x; unlock l;
unlock l;

Figure 2: Example 2
In any execution of this program, the only value r1 can get is

1, from the write in Thread 1. In any execution in OpMM, two
cases might happen: Thread 1 can execute entirely before Thread
2 or vice versa. No other interleaving is possible as OpMM obeys
mutual exclusion of lock operations. In the first case, the write x
= 1 masks the initial value of x (i.e., 0) as in the same thread,
a newer write masks the older one. Hence when the read r1 =
x is executed, only one value 1 can be seen. In the second case,
when Thread 1 locks the same monitor unlocked by Thread 2, their
views of the heap are synchronized. Consequently the write of 1 in
Thread 1 masks the write by Thread 2 as well as the initial value of
x, resulting in the desired behavior.

It should be noted that OpMM is a strict under-approximation
of JMM i.e. there are executions which are allowed by JMM but
not by OpMM. Let us consider the following example where all
variables are initialized to 0.

Thread 1: Thread 2:
r1 = x; r2 = y;
y = 1; x = 1;

Figure 3: Example 3
The behavior r1 == r2 == 1 after the execution is allowed

by JMM [12], but it is not allowed in OpMM. To allow this be-
havior, the read of x to see the write x = 1; and the read of y
needs to see the write y = 1;. There is no total-order consistent
with the program-order where both the writes occur before the cor-
responding reads. As a result, it becomes difficult to model such
behaviors operationally because it loses a clear notion of trace — a
sequence of actions that modify the states. Hence OpMM does not
model the entire JMM.

4. DESCRIPTION OF OPMM

4.1 Programs
The programming language we consider is an abstract version

of the Java bytecode. Local variables are of the form rn. The
shared variables can be accessed through (static or non-static) field
access of a reference type local variable. C, f , v denote any class,
field, volatile field, respectively. All statements are prefixed with a
thread id while describing the semantics (written as t : c). Threads,
classes, objects, monitors and volatiles have unique ids.

Statements. The statements we are considering are one of the
following forms: (1) Writing to shared variables: ri.f = rj,
(2) Reading from shared variables: ri = rj.f , (3) Writing to
volatile variables: ri.v = rj, (4) Reading from volatile vari-
ables: ri = rj.v, (5) Locking a monitor: lock ri, (6) Unlock-
ing a monitor: unlock ri, (7) Creating an object: ri = new



C, (8) Starting a thread: start ri, (9) Interrupting a thread,
(10) Determining whether a thread is interrupted, (11) Detecting
whether a thread is alive, (12) skip, (13) Assignment statements
involving only local variables, (14) Control statements, (15) Method
calls and returns, and (16) Throwing and catching of exceptions. In
this paper we concentrate on statements of type 1 - 11 as they are
relevant to the memory model. Other statements must follow the
intra-thread semantics as defined in [9].

Program. The program consists of one or more threads. Each
thread has one or more methods. There is one thread with main
method (referred as main thread hereafter). Other threads must
have a run method.

Structure of the Heap. The heap can be seen to be made of
object areas, each object area allocated to a particular object. As
Java is a strongly typed language, reference type local variables
point to one of these object areas or null. The object areas are
divided into cells, one cell for each field of the object allocated
in that object area. The cells do not contain a value, but a write-
list. A write-list can contain three types of elements: (i) write-item
(WI) which is a 〈value, tid〉 pair, (ii) a release-item (RI) which is
a 〈lock, tid〉 pair or a 〈volatile, tid〉 pair, and (iii) an acquire-item
(AI) which is again a 〈lock, tid〉 pair or a 〈volatile, tid〉 pair.

4.2 Structure of States and Transitions
Program State. The program state (denoted by Ω) consists of
one local state for each active thread, and a global state for moni-
tors and volatiles. Each local state Lt (t is the corresponding tid)
consists of the following parts:

• A stack of frames, one frame for each outstanding method
call in the thread (as mentioned in [11]), denoted by St. Each
frame, among other things (as specified in The Java Virtual
Machine Specification [11]), contain values of the local vari-
ables of the corresponding method. We denote the local vari-
able map of the top frame by σt.

• A view of the heap (denoted by Ht) which is a function from
cells to a write-list, as specified in Section 4.1.

The global state consists of monitor states and volatile states. The
monitor state is a mapping M from monitors to tuples of the form
〈tid , lockcount〉. When the lockcount is 0, the tid part also has a
value 0 (we assume that there is no thread with tid 0). The volatile
state V is a mapping from volatile ids to the value of the corre-
sponding volatile variable. It should be noted that our notion of
program state has no global heap, except for the values of volatiles
and monitors which are globally maintained. The state might con-
tain other information like thread status, class information for ob-
jects etc which are required by Java Virtual Machine [11]. As this
information is not directly related to the memory model, we do not
include it in our description here.

State Transitions. A program statement can cause state transi-
tions. If a statement c changes the program state from Ω to Ω′, we
write it as 〈c, Ω〉 → Ω′. We did not include program counter(pc) in
our description of states as that is not relevant for our work. Execu-
tion order of instructions is described informally in Section 4.3.1.

4.3 Operational Semantics
We present the operational semantics of OpMM which is a sound

but incomplete approximation of JMM. The semantics is given in
form of inference rules. The consequence of any of these rules is a
state transition by a statement. The premises are the conditions that
must be satisfied to enable the transition given as consequence.

4.3.1 Restrictions on Execution Order.
The execution should start at the mainmethod of the main thread.

At each step, only one statement is executed from the active threads,
if the statement is enabled according to the semantics as given in
Section 4.3.2, producing a total-order of actions. Statements from
a thread are executed in program order. Statements from threads
other than main can by executed only after they are started (using a
start statement). Executions in other threads should start at the
run method of the corresponding thread.

Algorithm 1 Mask&Read
Input: write-list wl, thread-id tid
Output: Set of write-items ws

/*Lock id, Vol id and Tid are the sets of lock ids, volatile ids
and thread ids*/
WriteSet: Set of write-items
ThSet: Tid→ {marked, unmarked, undef}
AcSet: (Lock id ∪ Vol id)→ {marked, unmarked, undef}

1: WriteSet ← ∅
2: ∀k ∈ Lock id ∪Vol id : AcSet(k)← undef
3: ∀t ∈ Tid : ThSet(t)← undef
4: ThSet(tid)← unmarked
5: for all element e in wl, starting from the newest do
6: if e is a write-item 〈v, t〉 then
7: if ThSet(t) = undef then
8: WriteSet←WriteSet ∪ {〈v, t〉}
9: else if ThSet(t) = unmarked then

10: WriteSet←WriteSet ∪ {〈v, t〉}
11: ThSet(t)← marked
12: else if ThSet(t) = marked then
13: skip
14: end if
15: else if e is an acquire-item 〈k, t〉 then
16: if AcSet(k) = marked or ThSet(t) = undef then
17: skip
18: else
19: AcSet(k)← ThSet(t)
20: end if
21: else if e is a release-item 〈k, t〉 then
22: if ThSet(t) = marked or AcSet(k) = undef then
23: skip
24: else
25: ThSet(t)← AcSet(k)
26: end if
27: end if
28: end for
29: ws←WriteSet
30: return ws

4.3.2 Semantics of Statements.
We now present the operational semantics rules of OpMM for the

different language constructs of Java. The following conventions
are used while describing the semantics for the sake of simplic-
ity: In the inference rules, k ranges over thread ids and h ranges
over cells in the universal quantifiers. Field access of an object re-
turns the corresponding cell. Ω[A → B] denotes a state same as
Ω but the component A has been changed to B. Ω[F |x : v] is a
shorthand expression representing a state which is equivalent to Ω
except F (x) has a new value v. Here we give a formal semantics



(Wr)

v = σt(rj) h = σt(ri).f Ω′ = Ω[∀k : Hk(h)→ Append(Hk(h), WI(〈v, t〉))]
〈t : ri.f = rj, Ω〉 → Ω′

(Rd)

〈v, t′〉 ∈Mask&Read(Ht(σt(rj).f, t))

〈t : ri = rj.f, Ω〉 → Ω[σt|ri : v]

(Ul)

M(σt(ri)) = 〈t, n〉
Ω′ = Ω[∀k, ∀h : Hk(h)→ Append(Hk(h), RI(〈σt(ri), t〉)); M → Unlock(σt(ri))]

〈t : unlock ri, Ω〉 → Ω′

(L-1)

M(σt(ri)) = 〈0, 0〉
Ω′ = Ω[∀k, ∀h : Hk(h)→ Append(Hk(h), AI(〈σt(ri), t〉)); M → Lock(σt(ri), t)]

〈t : lock ri, Ω〉 → Ω′

(L-2)

M(σt(ri)) = 〈t, n〉
Ω′ = Ω[∀k, ∀h : Hk(h)→ Append(Hk(h), AI(〈σt(ri), t〉)); M → Lock(σt(ri), t)]

〈t : lock ri, Ω〉 → Ω′

(V-Wr)

v = σt(rj) Ω′ = Ω[∀k, ∀h : Hk(h)→ Append(Hk(h), RI(〈σt(ri).v, t〉))]
〈t : ri.v = rj, Ω〉 → Ω′[V |σt(ri).v : v]

(V-Rd)

v = V (σt(rj).v) Ω′ = Ω[∀h : Ht(h)→ Append(Ht(h), AI(〈σt(rj).v, t〉))]
〈t : ri = rj.v, Ω〉 → Ω′[σt|ri : v]

Figure 4: OpMM rules for read/write, lock/unlock and volatile read/write statements

of the statements relevant to the memory model. Other statements
follow the intra-thread semantics in [9].

Write statement. A write statement appends the write to the
write-list for the corresponding cell of every local state. Rule (Wr)
in Figure 4 is the operational semantics rule for the write statement.
Here Append(l, i) appends the element i to the list l.

Read statement. A read statement updates the local variable
with a value from the set of write-items returned by the Mask&Read
function applied on the corresponding local write-list and the read-
ing thread-id. Rule (Rd) in Figure 4 is the operational semantics
rule for the read statement. Note that the Mask&Read function is
defined as an algorithm in Algorithm 1. The main function of the
algorithm is to prevent a read r from seeing a write w if there is
another write w′ such that w

hb→ w′ hb→ r where hb is the happens-
before relation as defined in [12]. Informally, it maintains two
functions: ThSet and AcSet maps the thread ids and synchroniza-
tion object ids (locks/ volatiles) respectively to undef, unmarked or
marked. Whenever a thread t is not synchronized with the input
thread, ThSet(t) = undef . Similarly when a volatile/monitor k is
not acquired by any thread t in ThSet (i.e. ThSet(t) 6= undef ), the
Mask&Read algorithm treats it as AcSet(k) = undef . Algorithm
1 initially puts the input thread id into ThSet as unmarked and tra-
verses the input write-list, starting from the newest item. When it
finds an acquire-item whose thread id belongs to ThSet, it puts the
lock/ volatile id into the AcSet with the same marking. Similarly,
when it sees a release-item whose lock/ volatile id belongs to Ac-
Set, it puts the thread id into the ThSet with the same marking. A

write is put into the write-set if the thread id is unmarked or undef
in ThSet. If the thread id is unmarked, it is marked after seeing the
write. If a thread id is already marked, the writes by that thread are
not put into write-set.

Unlock statement. An unlock statement can execute only when
the executing thread holds the lock. It appends the corresponding
release-item to all the write-lists. It also changes the monitor state.
Rule (Ul) in Figure 4 is the operational semantics rule for the un-
lock statement. Here Unlock(m) reduces the lockcount of M(m)
and if it reaches 0, changes the tid of M(m) to 0. Recall that M is
a mapping from monitors to the threads locking a monitor.

Lock statement. The lock statement can execute if the corre-
sponding monitor is not locked or locked by the same thread. It
appends the corresponding acquire-item to all the write-lists, and
changes the monitor state. Rules (L-1) and (L-2) in Figure 4 are
the rules for the lock statement. Here Lock(m, t) increments the
lockcount of M(m) and if was 0, changes the tid of M(m) to t.

Volatile write statement. Volatile writes directly update the
global state for volatiles. It also appends the corresponding release-
item to each write-list of each local state. Rule (V-Wr) in Figure 4
is the operational semantics rule for the volatile write statement.

Volatile read statement. Volatile reads read the value directly
from the global state of volatiles and update the local variable. It
also appends the corresponding acquire-item to each write-list of
each local state. Rule (V-Rd) in Figure 4 is the operational seman-
tics rule for volatile reads.



Object creation statement. The object creation statement ri
= new C creates a new object area, extending Hk for all threads
k. A unique id is assigned to it. The local map for ri is updated
to hold reference to the new object. After the object is created, the
constructor call can be treated as a normal method call.

Thread creation statement. When a thread t′ is spawned by
a thread t, the spawned thread inherits the object areas from the
spawning thread, i.e. Ht′ becomes equal to Ht. Moreover, all the
write-lists of the state are appended by a release-item 〈l, t〉 and an
acquire-item 〈l, t′〉, in that order, where l is a unique lock id that
does not occur in the execution.

Thread termination and interruption. When a thread t is
terminated, then after modification of the local state (such as thread
status), a release item 〈l, t〉 is appended to all the write-lists. When
an action from some other thread t′ detects that t has terminated,
an acquire-item 〈l, t′〉 is appended to all the write-lists, before any
other modification in the state by that action. l is a unique lock id
that does not occur in the execution. Similar steps are followed for
thread interruption.

5. EXPRESSIVE POWER OF THE MODEL
In this section, we show that the memory model semantics pro-

posed in Section 4.3 is an under-approximation of the Java Memory
Model in terms of allowed executions. We have also shown that
OpMM is strictly weaker than the hardware memory model TSO
— details appear in [6].

5.1 Traces and Occurs-Before Relation
A program trace allowed by the proposed semantics is an inter-

leaving of the actions c0, . . . cn such that

Ω0
c0→ Ω1 . . . Ωn

cn→ Ωn+1

where Ω0 is an initial state. The order of execution must obey the
restrictions given in Section 4.3.1 and each transition 〈cj , Ωj〉 →
Ωj+1 must be allowed by the semantics given in Section 4.3.2.

Given a trace t, we say ci
ob→ cj , if ci appears before cj in the

trace t. We call ob→ as the occurs-before relation.

5.2 Construction of an Execution from a Trace
Given a trace (as defined in Section 5.1), we first need to con-

struct an execution (according to the definition of execution given
in [12]) corresponding to it.

The execution is E = 〈P, A,
po→,

so→, W, V,
sw→,

hb→〉 where P is
the program, A is the set of actions in the trace, a

po→ b if they
belong to the same thread and a

ob→ b, a
so→ b if both of them are

synchronization actions and a
ob→ b, W (a) = b if a is a read ac-

tion and it reads a write by action b from its write-list, V (a) is the
value written by a write action a, the synchronizes-with relation
sw→ and the happens-before hb→ are as defined as in [12]. For exam-
ple, an unlock action on a monitor m synchronizes with all “subse-
quent” (as per the synchronization order relation so→) lock actions
on m that were performed on any thread. A write to a volatile vari-
able u synchronizes-with all ‘subsequent” (as per the synchroniza-
tion order relation so→) reads of u performed by any thread. The
happens-before relation is the transitive closure of program order
and synchronizes-with order, that is, hb→= (

po→ ∪ sw→)∗. It should
be noted that

po→ is a total order among the actions from the same
thread and so→ is a total order among synchronization actions, as re-
quired by JMM. If a trace allowed by OpMM leads to a state that

violates an assertion, the corresponding execution constructed from
the trace will also violate the assertion. As our notion of under-
approximation is based on allowed executions, it is enough to show
that the execution constructed from the trace is allowed by JMM.

5.3 Some Properties of OpMM
We now establish some key properties of the OpMM model,

which will be useful for establishing that OpMM is a strict under-
approximation of the JMM.

THEOREM 1. If a
hb→ b in the constructed execution, then a

ob→
b in the trace.

PROOF. As hb→= (
po→ ∪ sw→)∗, it is enough to show that po and

sw of the constructed execution are consistent with the ob relation
of the trace. If a

po→ b, then by construction of po edges (in Sec-
tion 5.2), a

ob→ b. Let a
sw→ b. Then either a

po→ b or a
so→ b or a

changes the thread status which is observed by b. As all of these
relations are consistent with ob, sw is also consistent with ob.

LEMMA 2. During the execution of Mask&Read algorithm (Al-
gorithm 1), for all tid t and sync id (lock id or volatile id) l, ThSet(t)
and AcSet(l) can change their values from undef to unmarked to
marked, but in no other order.

This can be proved by induction on the number of iterations of the
main loop of Alg. 1.

LEMMA 3. Let t′ : a
hb→ t : r where a is an action from thread

t′, r is a read action from thread t and the result of a is present
in the write-list for r in Ht. Then after a is encountered dur-
ing the execution of Mask&Read algorithm for r (Algorithm 1),
ThSet(t ′) 6= undef .

PROOF. We have t′ : a
hb→ t : r and hb→= (

po→ ∪ sw→)∗. We prove
by induction on number of po or sw edges between a and r.
Base case: If the number of edges is one, then t : a

po→ t : r (as
r cannot be target of an sw edge). ThSet(t) is set to unmarked
in line 4. By Lemma 2, it cannot change to undef later when we
encounter a.
Induction step: By induction hypothesis, if t̂ : â

hb→ r using n po
or sw edges, then after encountering â, ThSet (̂t) 6= undef . If
a

po→ â, then t′ = t̂, hence proved. Otherwise, if a
sw→ â, a is a

release-item and corresponding AcSet is not undef (as ThSet (̂t) 6=
undef while encountering â). Hence by lines 22 - 26, ThSet(t ′) 6=
undef after encountering a.

COROLLARY 4. If t′ : w
hb→ t : r, where w is a write action

to the same location as read r, then before w is encountered dur-
ing the execution of Mask&Read algorithm for r (Algorithm 1),
ThSet(t ′) 6= undef .

The proof follows from Lemma 3 and the fact that the last edge in
the happens-before path will always be po in case of a write.

LEMMA 5. If t1 : w1
hb→ t2 : w2

hb→ t : r, where w1 and w2 are
writes to the same location as read r then before w1 is encountered
during the execution of Mask&Read algorithm for r (Algorithm 1),
ThSet(t1 ) = marked .

PROOF. w2 will be encountered before w1. After w2 is encoun-
tered, by Lemma 4 and lines 9 - 13 of Algorithm 1, ThSet(t2 ) =
marked . Using Lemma 2, by induction on the number of po and
sw edges between w1 and w2, this Lemma can be proved.



THEOREM 6. If t1 : w1
hb→ t2 : w2

hb→ t : r, where w1 and w2

are writes to the same location as read r, then w1 /∈ ws (returned
by Mask&Read algorithm (Algorithm 1)) executed during process-
ing of r.

This follows directly from Lemma 5 and lines 12 - 13 of the Algo-
rithm 1.

5.4 Well-formedness of Executions
Using the above properties we can show that our executions are

well-formed as per the JMM [12]. Details of these arguments ap-
pear in [6]. The key to our argument is showing that any execution
obeys happens-before consistency. It can be shown by contradic-
tion. Two cases can happen:
(A) There is a r such that r

hb→W (r). In our model, if r
hb→W (r),

then we have r
ob→ W (r) in the trace (by Theorem 1). But this

means when r was executed, W (r) was not part of the write-list,
implying r cannot read W (r).

(B) There is a r such that W (r)
hb→ w

hb→ r. This is not possible by
Theorem 6.

5.5 Causality Requirements
Finally, we need to show that the executions generated by our

model meet the causality requirements given in JMM (see Section
4.5 of the JMM paper [12]). For this purpose, we need to find set
of actions to commit in each step and a validating execution for
each of them. We can simply follow the occurs-before order of
the actions of the thread. We commit the instructions in that order
and use the execution up to that point to validate it. It must be
noted that when we commit a read, in that step, the read sees a
write that happens before it (there is at least one such write due to
initialization), but in the next step we can change it to the write it
finally sees as that write has already been committed.

This completes the proof of the fact that OpMM is a strict under-
approximation of the JMM.

5.6 Disallowed Behavior
Note that OpMM is a strict under-approximation of JMM. This

naturally raises the following question: what kind of program be-
haviors are allowed by the JMM, but disallowed by OpMM? We
address this issue in the following.

A write-seen edge (denoted as ws) is an edge from a write action
w to a read action r such that W (r) = w. In some executions
allowed by JMM, the happens-before and write-seen edges form
a cycle. For example, in the example of Fig. 3, there is a cycle
r1 = x;

hb→ y = r1;
ws→ r2 = y;

hb→ x = r2;
ws→ r1 = x;.

As a1
hb→ a2 and a1

ws→ a2 both imply a1
ob→ a2 and ob is a

partial order, such cycles are not allowed in OpMM. As a result,
any execution containing such cycles are disallowed in OpMM.

6. EXPERIMENTS
We have integrated OpMM into a bytecode level model checker

for Java. This allows us to use OpMM for property checking of
Java programs. This clearly goes beyond conventional software
validation, which ignores the language level memory model, and
implicitly assume Sequential Consistency as the execution model.

Implementation issues. Our model checker is an explicit state
on-the-fly model checker in the style of the Java Path Finder (JPF)
[15]. It takes the bytecode representation of a program as input and
detects whether any assertion specified in the program can be vio-
lated under OpMM. As the state space of the input program can be

infinite, we do not guarantee termination in general, but a depth-
bound can be imposed on the depth-first search to force termina-
tion. While integrating OpMM to a model checker, we observe
that in OpMM the write-lists can grow unboundedly and thus, the
size of a state can also grow unboundedly. We developed a tech-
nique to prune the write-lists in many cases (but not all). We mod-
ify the Mask&Read algorithm (presented in Algorithm 1) to delete
the write-items if the corresponding ThSet value is marked when
the item is encountered during the traversal of the write-list. We
also delete the release-items and acquire-items if the correspond-
ing ThSet value is marked after processing of the items. The mod-
ified algorithm appears in [6], where we also prove that the modi-
fied algorithm returns the same results as Algorithm 1 (as a result
of which the proof that OpMM is a strict under-approximation of
JMM is unaffected).

Results. We present the results of running our tool on some sub-
ject programs in Table 1. For each subject program we check
one invariant assertion encoding the correctness of the program.
The subject program dcl is the original version of double-checked
locking [14]. This program fragment is used for efficient lazy in-
stantiation of a singleton class. Double-Checked Locking is a pro-
gram fragment for instantiation in which (a) only one instance is
generated, and (b) the instance is generated only on-demand. The
assertion checks whether the singleton object reference is correctly
constructed after lazy initialization. This assertion can be violated
under JMM [2]. Our tool successfully detects the bug.

The subject program dcl-vol is the version of double-checked
locking where the singleton object reference is declared volatile.
This version works correctly under JMM, and our tool validates that
it works correctly under OpMM. In other words, we check that the
singleton object is properly constructed before it is referenced. The
subject program singleton represents the same singleton pat-
tern as dcl, but here, instead of using double-checked locking, the
lock is taken every time the reference is requested. This version
works correctly under JMM and our tool validates it under OpMM.

Subject programs peterson and dekker are traditional al-
gorithms for establishing mutual exclusion. The assertion checks
whether mutual exclusion property of these programs can be vio-
lated. Both of them fail under JMM. Our tool detects the assertion
violations.

Program #bytecode #threads time #states
(sec) explored

dcl 70 2 0.22 87
dcl-vol 70 2 0.25 267
singleton 67 2 0.27 297
peterson 108 2 0.22 99
dekker 135 2 0.23 101

Table 1: Experimental Results

Table 1 shows the results of our experiments. All experiments
were done on a 1.6 GHz dual core machine with 1 GB main mem-
ory. The time reported is in seconds. In cases where the assertion is
violated, the first counterexample is reported. Otherwise, the entire
state space is exhausted.

Our checker is currently a prototype. In future, there exists scope
for (a) optimizing the checker’s implementation, and (b) reducing
the visited state space by methods like partial order reduction [4].
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