
Java-MOP: A Monitoring Oriented
Programming Environment for Java

Feng Chen and Grigore Roşu

Department of Computer Science,
University of Illinois at Urbana - Champaign, USA

{fengchen, grosu}@uiuc.edu

Abstract. A Java-based tool-supported software development and anal-
ysis framework is presented, where monitoring is a foundational princi-
ple. Expressive requirements specification formalisms can be included
into the framework via logic plug-ins, allowing one to refer not only to
the current state, but also to both past and future states.

1 Introduction
This paper presents a monitoring oriented programming (MOP) software devel-
opment and analysis environment for Java, named Java-MOP. Based on the
belief that specification and implementation should together form a system and
interact with each other by design, we proposed the MOP framework [2], aiming
at increasing the quality of software through monitoring of formal specifications
against running programs.

There are several software development approaches in the literature based on
the very basic idea of monitoring. Design by Contract (DBC) [10] related ap-
proaches, e.g., Jass [3] and JML [8], allows specifications to be associated with
classes as assertions and invariants, which are compiled into runtime checks. Run-
time verification (RV) [5] is an expanding area dedicated to provide more rigor
in testing, essentially as a complementary approach to model checking software
systems. There are several RV systems, including Java-MaC [7], Temporal
Rover and its follower DB Rover [4], JPaX [6] and its followers Eagle [1]
and JMPaX [12].

What distinguishes the MOP from these approaches is its ability to be ex-
tended with new logics and to support self-recovery at violation. Practice has
shown that there is no “silver bullet” logic to formally express any requirements.
Some can be best expressed using a certain logical formalism, for example tem-
poral logics, while others can be best expressed using other logics, like that of
JML, or domain-specific logics. On the other hand, programming languages are
intended to be universal. For these reasons, MOP provides the capability of
adding logics on top of a target programming language via logic plugins.

Monitoring can also provide a strong foundation for increasing the quality,
robustness, and confidence in the correctness of complex software systems. The
Simplex [13] architecture shows an example to smoothly upgrade control sys-

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 546–550, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Java-MOP: A MOP Environment for Java 547

tems based on monitoring. Therefore, MOP supports the user to define viola-
tion and/or validation handlers along with specifications, which can be highly
complicated recovery actions. These handlers will be automatically triggered at
runtime when the specification is violated or validated, in order to recover the
program from unsafe states.

2 Overview of Java-MOP

Java-MOP is a development tool for Java, supporing the MOP paradigm. It
provides both GUI and command-line interfaces for editing and processing spec-
ifications. Algorithms to synthesize optimized monitoring code for different log-
ics have been implemented in order to incorporate useful specification languages
into Java-MOP. Moreover, users are able to easily incorporate new formalisms
which can be used later in specifications via logic plugins. Java-MOP does not
only aim at specifying and monitoring system behaviors, but also gives users
the ability to recover from errors at runtime. Here we only briefly present major
features of Java-MOP. Interested readers can refer to our website [11] for the
distribution package and related documents.

Extensible Architecture. Java-MOP follows a distributed architecture in
design as shown in figure 1. This design facilitates extending the framework
with logic formalisms added to the system as new components, which we sim-
ply call logic plug-ins. These components are usually comprised of two modules,
namely a logic engine and a language shell. For example, the logic engine for
ERE and the Java shell for ERE form the logic plugin for extended regular
expressions. Logic engines translate formulae into efficient monitors, presented
in some abstract representation (pseudocode). Then language shells transform
abstract monitors into code for a specific language, e.g., Java. The output in-
terface of the logic pluign is standarized. This way, if a new logical formalism is
needed to specify the requirement of a certain application, then one can develop
a synthesis algorithm for the specific logic, wrap the algorithm as a logic plugin
for Java, and add the plugin into the Java-MOP. For some simple specification
languages, or for programming-language-specific formalisms, such as Jass, the
logic engine is unnecessary and the language shell only is sufficient to generate
the monitor.

The client part contains the Java annotation processors, which integrate the
monitoring code generated by the server into the system, according to configura-
tion attributes of the monitor. In addition, the client part is also in charge of in-
strumenting the code to generate events to be monitored. Currently, Java-MOP
is using AspectJ as the instrumentation mechanism. AspectJ aspects are pro-
duced for specifications to be monitored. AspectJ, however, also imposes some
limitation in our implementation. The integration made by AspectJ is static
while the monitoring is dynamic. This brings difficulties and inefficiencies when
monitoring dynamic entities. For example, for a class invariant, one may need
to monitor every update of anObject.aField instead of afield of any object
whose class is the same as anObject.



548 F. Chen and G. Roşu

Java Annotation
Processor

Graphic
Interface Interface

Text−Based

Client

Remote Call over Java−RMICommunication

Server

Logic Engine
for ERE for FTLTL

Java Shell
for FTLTL

Logic Engine Logic Engine
for PTLTL

for PTLTL
Java ShellJava Shell

for ERE

Message
Dispatcher

Java Shell
for JASS

Fig. 1. The Architecture of Java-MOP

Monitor Synthesis. Every logic plugin essentially encodes an algorithm
to synthesize monitoring code for a specific formalism. We have devised monitor
synthesis algorithms for future time and past time temporal logics, as well as for
extended regular expressions, JASS, and JML.

– JML and Jass. These DBC-based approaches follow the idea of including
specifications into the code and then pre-compiling them into runtime checks.
So we are able to smoothly include them in Java-MOP. The original syntax
of JML and JASS annotations has been slightly modified, to fit the uniform,
logic-independent syntactic conventions in Java-MOP.

– Temporal Logics. Temporal logics have proved to be indispensable and ex-
pressive formalisms in the field of formal specification and verification of sys-
tems [9]. Since MOP can be regarded at some extent as a complementary,
but still related, approach to formal verification, we provide logic plug-ins
to support past and future time variants of temporal logics.

– Extended Regular Expression. Regular expressions provide an elegant and
powerful specification language for monitoring requirements, because an ex-
ecution trace of a program is in fact a string of states. Extended regular
expressions (ERE) add complementation to regular expressions, which gives
one the power to express patterns on traces non-elementarily more com-
pactly. A logic plugin for ERE has been incorporated into Java-MOP.

Steering Behaviors of Monitors. Besides adding more rigor to
testing, MOP is especially intended to be a monitoring tool to assure correctness
during program execution. To support runtime recovery, MOP provides a the
capability to steer the execution of the program when requirements are violated
or validated.

Users can provide handlers for the violation or validation of monitored prop-
erties. These handlers can not only report errors or throw exceptions, but also
execute complicated actions, e.g., resetting states or rebooting the system. There-
fore, critical monitors can be automatically integrated into the final system to
correct the system at runtime.



Java-MOP: A MOP Environment for Java 549

MOP monitors can have different running scope. It can be a class invariant,
which is checked at every change of the class state. Or it can be a interface
constraint, which is checked when a client invokes the interface of the class.
Java-MOP also supports method pre-/post- conditions and checkpoint asser-
tions. Besides, users can also choose if the system needs to wait for the checking
result or not. The keywords synchronized and asynchronized are used for this
purpose. The motivation behind asynchronous monitors is that some properties
are not critical and the system does not have to react to the violation. In such
cases, asynchronous mode can avoid unnecessary waiting and reduce the run-
time overhead. Besides, some logics, e.g., context-free languages, may require the
generated monitor to wait until the next events to proceed.

3 Conclusion

This paper presents a development and analysis environment for Java, which
supports the MOP paradigm. Monitors will be generated from formal specifi-
cations and then used to verify the execution of the system. Users can define
self-recovery actions for the violation of specifications. More logic plugins for
useful specification languages will be added into Java-MOP in order to support
different domain requirements.

References

1. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Program monitoring with ltl
in eagle. In Workshop on Parallel and Distributed Systems: Testing and Debugging
(PADTAD’04) (Satellite workshop of IPDPS’04), Santa Fe, New Mexico, USA,
April 2004. IEEE digital library.

2. F. Chen, M. D’Amorim, and G. Roşu. A formal monitoring-based framework
for software development and analysis. In Proceedings of the 6th International
Conference on Formal Engineering Methods (ICFEM’04), volume to appear of
Lecture Notes in Computer Science. Springer-Verlag, 2004.

3. M. M. Detlef Bartetzko, Clemens Fischer and H. Wehrheim. Jass - java with as-
sertions. In Electronic Notes in Theoretical Computer Science, volume 55. Elsevier
Science Publishers, 2001.

4. D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. In Proc. of
CAV’03: Computer Aided Verification, volume 2725 of Lecture Notes in Computer
Science, pages 114–118, Boulder, Colorado, USA, 2003. Springer-Verlag.

5. K. Havelund and G. Roşu. Workshops on Runtime Verification (RV’01, RV’02,
RV’04), volume 55, 70(4), to appear of ENTCS. Elsevier, 2001, 2002, 2004.

6. K. Havelund and G. Roşu. An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design, 24(2):189–215, 2004.

7. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance Tool
for Java. In Proceedings of Runtime Verification (RV’01), volume 55 of Electronic
Notes in Theoretical Computer Science. Elsevier Science, 2001.

8. G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations
and tools supporting detailed design in Java. In OOPSLA 2000 Companion, pages
105–106, 2000.



550 F. Chen and G. Roşu

9. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, New York, 1995.

10. B. Meyer. Object-Oriented Software Construction, 2nd edition. Prentice Hall,
Upper Saddle River, New Jersey, 2000.

11. Mop website. http://fsl.cs.uiuc.edu/mop.
12. K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of multithreaded pro-

grams. In Proceedings of 4th joint European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering,
(ESEC/FSE’03). ACM, 2003.

13. L. Sha, R. Rajkumar, and M. Gagliardi. The simplex architecture: An approach
to build evolving industrial co mputing systems. In Proceedings of The ISSAT
Conference on Reliability, 1994.


	Introduction
	Overview of Java-MOP
	Conclusion

