
Java Runtime Systems:
Characterization and Architectural Implications

Ramesh Radhakrishnan, Member, IEEE, N. Vijaykrishnan, Member, IEEE,

Lizy Kurian John, Senior Member, IEEE, Anand Sivasubramaniam, Member, IEEE,

Juan Rubio, Member, IEEE, and Jyotsna Sabarinathan

AbstractÐThe Java Virtual Machine (JVM) is the cornerstone of Java technology and its efficiency in executing the portable Java

bytecodes is crucial for the success of this technology. Interpretation, Just-In-Time (JIT) compilation, and hardware realization are well-

known solutions for a JVM and previous research has proposed optimizations for each of these techniques. However, each technique

has its pros and cons and may not be uniformly attractive for all hardware platforms. Instead, an understanding of the architectural

implications of JVM implementations with real applications can be crucial to the development of enabling technologies for efficient Java

runtime system development on a wide range of platforms. Toward this goal, this paper examines architectural issues from both the

hardware and JVM implementation perspectives. The paper starts by identifying the important execution characteristics of Java

applications from a bytecode perspective. It then explores the potential of a smart JIT compiler strategy that can dynamically interpret

or compile based on associated costs and investigates the CPU and cache architectural support that would benefit JVM

implementations. We also study the available parallelism during the different execution modes using applications from the SPECjvm98

benchmarks. At the bytecode level, it is observed that less than 45 out of the 256 bytecodes constitute 90 percent of the dynamic

bytecode stream. Method sizes fall into a trinodal distribution with peaks of 1, 9, and 26 bytecodes across all benchmarks. The

architectural issues explored in this study show that, when Java applications are executed with a JIT compiler, selective translation

using good heuristics can improve performance, but the saving is only 10-15 percent at best. The instruction and data cache

performance of Java applications are seen to be better than that of C/C++ applications except in the case of data cache performance in

the JIT mode. Write misses resulting from installation of JIT compiler output dominate the misses and deteriorate the data cache

performance in JIT mode. A study on the available parallelism shows that Java programs executed using JIT compilers have

parallelism comparable to C/C++ programs for small window sizes, but falls behind when the window size is increased. Java programs

executed using the interpreter have very little parallelism due to the stack nature of the JVM instruction set, which is dominant in the

interpreted execution mode. In addition, this work gives revealing insights and architectural proposals for designing an efficient Java

runtime system.

Index TermsÐ Java, Java bytecodes, CPU and cache architectures, ILP, performance evaluation, benchmarking.
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1 INTRODUCTION

THE Java Virtual Machine (JVM) [1] is the cornerstone of
Java technology, epitomizing the ªwrite-once run-any-

whereº promise. It is expected that this enabling technology
will make it a lot easier to develop portable software and
standardized interfaces that span a spectrum of hardware
platforms. The envisioned underlying platforms for this
technology include powerful (resource-rich) servers, net-
work-based and personal computers, together with
resource-constrained environments such as hand-held
devices, specialized hardware/embedded systems, and
even household appliances. If this technology is to succeed,

it is important that the JVM provide an efficient execution/
runtime environment across these diverse hardware plat-
forms. This paper examines different architectural issues,
from both the hardware and JVM implementation perspec-
tives, toward this goal.

Applications in Java are compiled into the bytecode

format to execute in the Java Virtual Machine (JVM). The

core of the JVM implementation is the execution engine that

executes the bytecodes. This can be implemented in four

different ways:

1. An interpreter is a software emulation of the virtual
machine. It uses a loop which fetches, decodes, and
executes the bytecodes until the program ends. Due
to the software emulation, the Java interpreter has an
additional overhead and executes more instructions
than just the bytecodes.

2. A Just-in-time (JIT) compiler is an execution model
which tries to speed up the execution of interpreted
programs. It compiles a Java method into native
instructions on the fly and caches the native
sequence. On future references to the same method,
the cached native method can be executed directly
without the need for interpretation. JIT compilers
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have been released by many vendors, like IBM [2],
Symantec [3], and Microsoft. Compiling during
program execution, however, inhibits aggressive
optimizations because compilation must only incur
a small overhead. Another disadvantage of JIT
compilers is the two to three times increase in the
object code, which becomes critical in memory
constrained embedded systems. There are many
ongoing projects in developing JIT compilers that
aim to achieve C++-like performance, such as
CACAO [4].

3. Off-line bytecode compilers can be classified into
two types: those that generate native code and those
that generate an intermediate language like C.
Harissa [5], TowerJ [6], and Toba [7] are compilers
that generate C code from bytecodes. The choice of C
as the target language permits the reuse of extensive
compilation technology available in different plat-
forms to generate the native code. In bytecode
compilers that generate native code directly, like
NET [8] and Marmot [9], portability becomes
extremely difficult. In general, only applications that
operate in a homogeneous environment and those
that undergo infrequent changes benefit from this
type of execution.

4. A Java processor is an execution model that
implements the JVM directly on silicon. It not only
avoids the overhead of translation of the bytecodes
to another processor's native language, but also
provides support for Java runtime features. It can be
optimized to deliver much better performance than a
general purpose processor for Java applications by
providing special support for stack processing,
multithreading, garbage collection, object addres-
sing, and symbolic resolution. Java processors can be
cost-effective to design and deploy in a wide range
of embedded applications, such as telephony and
web tops. The picoJava [10] processor from Sun
Microsystems is an example of a Java processor.

It is our belief that no one technique will be universally
preferred/accepted over all platforms in the immediate
future. Many previous studies [11], [12], [13], [10], [14] have
focused on enhancing each of the bytecode execution
techniques. On the other hand, a three-pronged attack at
optimizing the runtime system of all techniques would be
even more valuable. Many of the proposals for improve-
ments with one technique may be applicable to the others as
well. For instance, an improvement in the synchronization
mechanism could be useful for an interpreted or JIT mode
of execution. Proposals to improve the locality behavior of
Java execution could be useful in the design of Java
processors, as well as in the runtime environment on
general purpose processors. Finally, this three-pronged
strategy can also help us design environments that
efficiently and seamlessly combine the different techniques
wherever possible.

A first step toward this three-pronged approach is to
gain an understanding of the execution characteristics of
different Java runtime systems for real applications. Such a
study can help us evaluate the pros and cons of the different

runtime systems (helping us selectively use what works
best in a given environment), isolate architectural and
runtime bottlenecks in the execution to identify the scope
for potential improvement, and derive design enhance-
ments that can improve performance in a given setting. This
study embarks on this ambitious goal, specifically trying to
answer the following questions:

. Do the characteristics seen at the bytecode level
favor any particular runtime implementation? How
can we use the characteristics identified at the
bytecode level to implement more efficient runtime
implementations?

. Where does the time go in a JIT-based execution (i.e.,
in translation to native code or in executing the
translated code)? Can we use a hybrid JIT-inter-
preter technique that can do even better? If so, what
is the best we can hope to save from such a hybrid
technique?

. What are the execution characteristics when execut-
ing Java programs (using an interpreter or JIT
compiler) on general-purpose CPU (such as the
SPARC)? Are these different from those for tradi-
tional C/C++ programs? Based on such a study, can
we suggest architectural support in the CPU (either
general-purpose or a specialized Java processor) that
can enhance Java executions?

To our knowledge, there has been no prior effort that has
extensively studied all these issues in a unified framework
for Java programs. This paper sets out to answer some of
the above questions using applications drawn from the
SPECjvm98 [15] benchmarks, available JVM implementa-
tions such as JDK 1.1.6 [16] and Kaffe VM 0.9.2 [17], and
simulation/profiling tools on the Shade [18] environment.
All the experiments have been conducted on Sun Ultra-
SPARC machines running SunOS 5.6.

1.1 Related Work

Studies characterizing Java workloads and performance
analysis of Java applications are becoming increasingly
important and relevant as Java increases in popularity, both
as a language and software development platform. A
detailed characterization of the JVM workload for the
UltraSparc platform was done in [19] by Barisone et al. The
study included a bytecode profile of the SPECjvm98
benchmarks, characterizing the types of bytecodes present
and its frequency distribution. In this paper, we start with
such a study and extend it to characterize other metrics,
such as locality and method sizes, as they impact the
performance of the runtime environment very strongly.
Barisone et al. use the profile information collected from the
interpreter and JIT execution modes as an input to a
mathematical model of a RISC architecture to suggest
architectural support for Java workloads. Our study uses a
detailed superscalar processor simulator and also includes
studies on available parallelism to understand the support
required in current and future wide-issue processors.

Romer et al. [20] studied the performance of interpreters
and concluded that no special hardware support is needed
for increased performance. Hsieh et al. [21] studied the
cache and branch performance of interpreted Java code,
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C/C++ version of the Java code, and native code generated
by Caffine (a bytecode to native code compiler) [22]. They
attribute the inefficient use of the microarchitectural
resources by the interpreter as a significant performance
penalty and suggest that an offline bytecode to native code
translator is a more efficient Java execution model. Our
work differs from these studies in two important ways.
First, we include a JIT compiler in this study which is the
most commonly used execution model presently. Second,
the benchmarks used in our study are large real world
applications, while the above-mentioned study uses
microbenchmarks due to the unavailability of a Java
benchmark suite at the time of their study. We see that
the characteristics of the application used affects favor
different execution modes and, therefore, the choice of
benchmarks used is important.

Other studies have explored possibilities of improving
performance of the Java runtime system by understand-
ing the bottlenecks in the runtime environment and ways
to eliminate them. Some of these studies try to improve
the performance through better synchronization mechan-
isms [23], [24], [25], more efficient garbage collection
techniques [26], and understanding the memory referen-
cing behavior of Java applications [27], etc. Improving the
runtime system, tuning the architecture to better execute
Java workloads and better compiler/interpreter perfor-
mance are all equally important to achieve efficient
performance for Java applications.

The rest of this paper is organized as follows: The next
section gives details on the experimental platform. In
Section 3, the bytecode characteristics of the SPECjvm98
are presented. Section 4 examines the relative performance
of JIT and interpreter modes and explores the benefits of a
hybrid strategy. Section 5 investigates some of the questions
raised earlier with respect to the CPU and cache architec-
tures. Section 6 collates the implications and inferences that
can be drawn from this study. Finally, Section 7 summarizes
the contributions of this work and outlines directions for
future research.

2 EXPERIMENTAL PLATFORM

We use the SPECjvm98 benchmark suite to study the
architectural implications of a Java runtime environment.
The SPECjvm98 benchmark suite consists of seven Java
programs which represent different classes of Java applica-
tions. The benchmark programs can be run using three
different inputs, which are named s100, s10, and s1. These

problem sizes do not scale linearly, as the naming suggests.
We use the s1 input set to present the results in this paper
and the effects of larger data sets, s10 and s100, has also
been investigated. The increased method reuse with larger
data sets results in increased code locality, reduced time
spent in compilation as compared to execution, and other
such issues as can be expected. The benchmarks are run at
the command line prompt and do not include graphics,
AWT (graphical interfaces), or networking. A description of
the benchmarks is given in Table 1. All benchmarks except
mtrt are single-threaded. Java is used to build applications
that span a wide range, which includes applets at the lower
end to server-side applications on the high end. The
observations cited in this paper hold for those subsets of
applications which are similar to the SPECjvm98 bench-
marks when run with the dataset used in this study.

Two popular JVM implementations have been used in
this study: the Sun JDK 1.1.6 [16] and Kaffe VM 0.9.2 [17].
Both these JVM implementations support the JIT and
interpreted mode. Since the source code for the Kaffe VM
compiler was available, we could instrument it to obtain the
behavior of the translation routines for the JIT mode in
detail. Some of the data presented in Sections 4 and 5 are
obtained from the instrumented translate routines in Kaffee.
The results using Sun's JDK are presented for the other
sections and only differences, if any, from the KaffeVM
environment are mentioned. The use of two runtime
implementations also gives us more confidence in our
results, filtering out any noise due to the implementation
details.

To capture architectural interactions, we have obtained
traces using the Shade binary instrumentation tool [18]
while running the benchmarks under different execution
modes. Our cache simulations use the cachesim5 simulators
available in the Shade suite, while branch predictors have
been developed in-house. The instruction level parallelism
studies are performed utilizing a cycle-accurate superscalar
processor simulator This simulator can be configured to a
variety of out-of-order multiple issue configurations with
desired cache and branch predictors.

3 CHARACTERISTICS AT THE BYTECODE LEVEL

We characterize bytecode instruction mix, bytecode locality,
method locality, etc. in order to understand the benchmarks
at the bytecode level. The first characteristic we examine is
the bytecode instruction mix of the JVM, which is a stack-
oriented architecture. To simplify the discussion, we
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classify the instructions into different types based on their

inherent functionality, as shown in Table 2.
Table 3 shows the resulting instruction mix for the

SPECjvm98 benchmark suite. The total bytecode count

ranges from 2 million for db to approximately a billion for

compress. Most of the benchmarks show similar distribu-

tions for the different instruction types. Load instructions

outnumber the rest, accounting for 35.5 percent of the total

number of bytecodes executed on the average. Constant pool

and method call bytecodes come next with average frequen-

cies of 21 percent and 11 percent, respectively. From an

architectural point of view, this implies that transferring

data elements to and from the memory space allocated for

local variables and the Java stack dominate. Comparing this

with the benchmark 126.gcc from the SPEC CPU95 suite,

which has roughly 25 percent of memory access operations

when run on a SPARC V.9 architecture, it can be seen that

the JVM places greater stress on the memory system.

Consequently, we expect that techniques such as instruction

folding proposed in [28] for Java processors and instruction

combining proposed in [29] for JIT compilers can improve
the overall performance of Java applications.

The second characteristic we examine is the dynamic size
of a method.1 Invoking methods in Java is expensive as it
requires the setting up of an execution environment and a
new stack for each new method [1]. Fig. 1 shows the method
sizes for the different benchmarks. A trinodal distribution is
observed, where most of the methods are either 1, 9, or
26 bytecodes long. This seems to be a characteristic of the
runtime environment itself (and not of any particular
application) and can be attributed to a frequently used
library. However, the existence of single bytecode methods
indicates the presence of wrapper methods to implement
specific features of the Java language like private and
protected methods or interfaces. These methods consist of a
control transfer instruction which transfers control to an
appropriate routine.

Further analysis of the traces shows that a few unique
bytecodes constitute the bulk of the dynamic bytecode
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Classification of Bytecodes

TABLE 3
Dynamic Instruction Mix at the Bytecode Level

1. A java method is equivalent to a ªfunctionº or ªprocedureº in a
procedural language like C.



stream. In most benchmarks, fewer than 45 distinct
bytecodes constitute 90 percent of the executed bytecodes
and fewer than 33 bytecodes constitute 80 percent of the
executed bytecodes (Table 4). It is observed that memory
access and memory allocation-related bytecodes dominate
the bytecode stream of all the benchmarks. This also
suggests that if the instruction cache can hold the JVM
interpreter code corresponding to these bytecodes (i.e., all
the cases of the switch statement in the interpreter loop), the
cache performance will be better.

Table 5 presents the number of unique methods and the
frequency of calls to those methods. The number of
methods and the dynamic calls are obtained at runtime by
dynamically profiling the application. Hence, only methods
that execute at least once have been counted. Table 5 also
shows that the static size of the benchmarks remain
constant across the different data sets (since the number
of unique methods does not vary), although the dynamic
instruction count increases for the bigger data sets (due to
increased method calls). The number of unique calls has an
impact on the number of indirect call sites present in the
application. Looking at the three data sets, we see that there
is very little difference in the number of methods across
data sets.

Another bytecode characteristic we look at is the method
reuse factor for the different data sets. The method reuse
factor can be defined as the ratio of method calls to number of
methods visited at least once. It indicates the locality of
methods. The method reuse factor is presented in Table 6.
The performance benefits that can be obtained from using a
JIT compiler are directly proportional to the method reuse
factor since the cost of compilation is amortized over
multiple calls in JIT execution.

The higher number of method calls indicates that the
method reuse in the benchmarks for larger data sets would
be substantially more. This would then lead to better
performance for the JITs (as observed in the next section). In
Section 5, we show that the instruction count when the
benchmarks are executed using a JIT compiler is much
lower than when using an interpreter for the s100 data set.
Since there is higher method reuse in all benchmarks for the
larger data sets, using a JIT results in better performance
over an interpreter. The bytecode characteristics described
in this section help in understanding some of the issues
involved in the performance of the Java runtime system
(presented in the remainder of the paper).

4 WHEN OR WHETHER TO TRANSLATE

Dynamic compilation has been popularly used [11], [30] to
speed up Java executions. This approach avoids the costly
interpretation of JVM bytecodes while sidestepping the
issue of having to precompile all the routines that could
ever be referenced (from both the feasibility and perfor-
mance angles). Dynamic compilation techniques, however,
pay the penalty of having the compilation/translation to
native code falling in the critical path of program execution.
Since this cost is expected to be high, it needs to be amortized
over multiple executions of the translated code. Or else,
performance can become worse than when the code is just
interpreted. Knowing when to dynamically compile a
method (using a JIT), or whether to compile at all, is extremely
important for good performance. To our knowledge, there
has not been any previous study that has examined this
issue in depth in the context of Java programs, though there
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Fig. 1. Dynamic method size.

TABLE 4
Number of Distinct Bytecodes that Account for 80 Percent,

90 Percent, and 100 Percent of the Dynamic Instruction Stream

TABLE 5
Total Number of Method Calls (Dynamic) and Unique Methods for the Three Data Sets



have been previous studies [13], [31], [12], [4] examining
efficiency of the translation procedure and the translated
code. Most of the currently available execution environ-
ments, such as JDK 1.2 [16] and Kaffe [17], employ
limited heuristics to decide on when (or whether) to JIT.
They typically translate a method on its first invocation,
regardless of how long it takes to interpret/translate/
execute the method and how many times the method is
invoked. It is not clear if one could do better (with a
smarter heuristic) than what many of these environments
provide. We investigate these issues in this section using
five SPECjvm98 [15] benchmarks (together with a simple
HelloWorld program2) on the Kaffe environment.

Fig. 2 shows the results for the different benchmarks. All
execution times are normalized with respect to the execu-
tion time taken by the JIT mode on Kaffe. On top of the JIT
execution bar is given the ratio of the time taken by this
mode to the time taken for interpreting the program using
Kaffe VM. As expected (from the method reuse character-
istics for the various benchmarks), we find that translating
(JIT-ing) the invoked methods significantly outperforms
interpreting the JVM bytecodes for the SPECjvm98. The first
bar, which corresponds to execution time using the default
JIT, is further broken down into two components, the total
time taken to translate/compile the invoked methods and
the time taken to execute these translated (native code)
methods. The considered workloads span the spectrum,
from those in which the translation times dominate, such as
hello and db (because most of the methods are neither time
consuming nor invoked numerous times), to those in which
the native code execution dominates, such as compress and
jack (where the cost of translation is amortized over
numerous invocations).

The JIT mode in Kaffe compiles a method to native code
on its first invocation. We next investigate how well the
smartest heuristic can do so that we compile only those
methods that are time consuming (the translation/compila-
tion cost is outweighed by the execution time) and interpret
the remaining methods. This can tell us whether we should
strive to develop a more intelligent selective compilation
heuristic at all and, if so, what the performance benefit is
that we can expect. Let us say that a method i takes Ii time
to interpret, Ti time to translate, and Ei time to execute the
translated code. Then, there exists a crossover point
Ni � Ti=�Ii ÿ Ei�, where it would be better to translate the

method if the number of times a method is invoked ni > Ni

and interpret it otherwise. We assume that an oracle
supplies ni (the number of times a method is invoked)
and Ni (the ideal cut-off threshold for a method). If ni < Ni,
we interpret all invocations of the method, and otherwise
translate it on the very first invocation. The second bar in
Fig. 2 for each application shows the performance with this
oracle, which we shall call opt. It can be observed that there
is very little difference between the naive heuristic used by
Kaffe and opt for compress and jack since most of the time is
spent in the execution of the actual code anyway (very little
time in translation or interpretation). As the translation
component gets larger (applications like db, javac, or hello),
the opt model suggests that some of the less time-
consuming (or less frequently invoked) methods be inter-
preted to lower the execution time. This results in a
10-15 percent savings in execution time for these applica-
tions. It is to be noted that the exact savings would
definitely depend on the efficiency of the translation
routines, the translated code execution and interpretation.

The opt results give useful insights. Fig. 2 shows that, by
improving the heuristic that is employed to decide on
when/whether to JIT, one can at best hope to trim
10-15 percent in the execution time. It must be observed
that the 10-15 percent gains observed can vary with the
amount of method reuse and the degree of optimization
that is used. For example, we observed that the translation
time for the Kaffe JVM accounts for a smaller portion of
overall execution time with larger data sets (7.5 percent for
the s10 dataset (shown in Table 7) as opposed to the
32 percent for the s1 dataset). Hence, reducing the
translation overhead will be of lesser importance when
execution time dominates translation time. However, as
more aggressive optimizations are used, the translation
time can consume a significant portion of execution time for
even larger datasets. For instance, the base configuration of
the translator in IBM's Jalapeno VM [32] takes negligible
translation time when using the s100 data set for javac.
However, with more aggressive optimizations, about
30 percent of overall execution time is consumed in
translation to ensure that the resulting code is executed
much faster [32]. Thus, there exists a trade-off between
reducing the amount of time spent in optimizing the code
and the amount of time spent in actually executing the
optimized code.
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Fig. 2. Dynamic compilation: How well can we do?

2. While we do not make any major conclusions based on this simple
program, it serves to observe the behavior of the JVM implementation while
loading and resolving system classes during system initialization.

TABLE 6
Method Reuse Factor for the Different Data Sets



For the s1 dataset, we find that a substantial amount of

the execution time is spent in translation and/or execu-

tion of the translated code and there could be better

rewards from optimizing these components. This serves

as a motivation for the rest of this paper which examines

how these components exercise the hardware features

(the CPU and cache in particular) of the underlying

machine, towards proposing architectural support for

enhancing their performance.
While it is evident from the above discussion that most

methods benefit from JIT compilation, resource constraints

may force us to choose an interpreted JVM. Large memory

space required by JIT compilers has been considered to be

one of the issues limiting their usage in resource-con-

strained environments. For the SPECjvm98 benchmarks, we

observe from Table 8 that the memory size required by the

JIT compiler is 10-33 percent higher than that required for

the interpreter. It is to be noted that there is a more

pronounced increase for applications with smaller dynamic

memory usage [27], such as db. The memory overhead of JIT

can thus be more significant in smaller (embedded)

applications. Due to the different constraints imposed on

JVM implementations, it is rather difficult to preclude one

implementation style over the other. As a result, we include

both interpreters and JIT compilers in our architectural

studies, in the rest of this paper.

5 ARCHITECTURAL iSSUES

Understanding the underlying characteristics of Java

applications in their various modes of execution and in

comparison to code in other languages/paradigms is

extremely important to develop an efficient run-time

environment for Java. In order to answer some of the

questions raised earlier in Section 1, we have conducted

detailed studies on the instruction mix of SPECjvm98

programs in interpreter and JIT-compiled modes of execu-

tion. We also study the cache performance, branch predictor

performance, and the instruction level parallelism of these

programs at the native SPARC code level.

5.1 Instruction Mix

Table 9 shows the dynamic instruction count for the
SPECjvm98 benchmarks when run using the s1 data sets.
Table 9 shows the number of bytecodes that were executed,
as well the number of native instructions executed when the
benchmarks were interpreted or run using the JIT compiler.

Fig. 3 shows a summary of the results on the instruction
mix, computed cumulatively over all the SPECjvm98 pro-
grams. The individual application mixes exhibit a similar
trend and the results are included in [33]. Execution in the
Java paradigm, either using the interpreter or JIT compiler,
results in 15-20 percent control transfer instructions and 25-40
percent memory access instructions.3 Although memory
accesses are observed to be frequent in the instruction stream
in both modes, it is 5 percent more frequent in the interpreted
mode in comparison to the JIT compiler. In interpreted mode,
a large percentage of operations involve accessing the stack,
which translate to loads and stores in the native code.
Contrary to this, in the JIT compiler mode, many of these stack
operations are optimized to register operations, resulting in a
reduction in the frequency of memory operations in the
instruction mix. While this is to be expected, our experiments
quantify the percentage reduction.

Past studies have shown that Java applications (and
object oriented programs in general) contain indirect
branches with a higher frequency than SPECint programs
[35], [36]. Fig. 3 provides information on indirect branch
frequency (i.e., Jumps) for the interpreted and JIT execution
modes. Comparing the two execution modes, the inter-
preter mode has a higher percentage of indirect jumps
(primarily due to register indirect jumps used to implement
the switch statement in the interpreter), while the code in
the JIT compiler case has a higher percentage of branches
and calls. JIT compilers optimize virtual function calls by
inlining those calls, thereby lowering the number of indirect
jump instructions. A combination of a lower number of
switch statements that are executed and inlining of the
method calls results in more predictable behavior of
branches in the JIT mode, as illustrated in the next section.
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TABLE 7
Breakdown of Execution Time for the s10 Dataset

TABLE 8
Increase in Memory Usage of JIT Compiler Compared to Interpreter

3. This instruction mix is not significantly different from that of
traditional C and C++ programs such as those used in [34].



5.2 Branch Prediction

The predictability of branches in Java applications, along
with the suitability of traditional branch predictors, is
examined in this section. Virtual function calls that are
abundant in Java applications and indirect jumps that are
abundant in the interpreted mode of execution can
complicate the task of predicting the outcome of these
control instructions. Table 10 illustrates the branch mis-
prediction rates for four different branch prediction
schemes, including a simple 2-bit predictor [37], 1 level
Branch History table (BHT) [37], Gshare [38], and a two-
level predictor indexed by PC (described as GAp by Yeh
and Patt [39]). The one level predictor and GShare predictor
have 2K entries and the two level predictor has 256 rows of
eight counters each (3 bits of correlation). The Gshare
predictor uses 5 bits of global history. The Branch Target
Buffer (BTB) contains 1K entries. The branch predictors get
sophisticated as we go from left to right in Table 10. The
simple 2-bit predictor has been included only for validation
and consistency checking. As expected from trends in
previous research, among the predictors studied, Gshare or
GAp has the best performance for the different programs.
The major trend observed from our experiments is that the
branch prediction accuracy in interpreter mode is signifi-
cantly worse than that for the JIT compiler mode. This is a
direct implication of the control transfer instruction mix in
the interpreter and JIT compile modes. The interpreter
mode results in a high frequency of indirect control
transfers due to the switch statement for case-by-case
interpretation. The accuracy of prediction for the Gshare
scheme is only 65-87 percent in interpreter mode and
88-92 percent in the JIT compiler mode. Thus, it may be
concluded that branch predictor performance for Java
applications is significantly deteriorated by the indirect
branches abundant in the interpreter mode, whereas

execution with the JIT compiler results in performance
comparable to that of traditional programs. To summarize,
if Java applications are run using the JIT compiler, the
default branch predictor would deliver reasonable perfor-
mance, whereas if the interpreter mode is used, a predictor
well-tailored for indirect branches (such as [36], [40]) should
be used.

5.3 Locality and Cache Performance

In addition to examining the locality/cache behavior of Java
executions in the following discussion, we also examine
how the coexistence of the JVM and the application being
executed effects the locality behavior of the entire execution.
We perform a detailed study of the cache behavior, looking
at the entire execution in totality, as well as the translation
and execution parts (of the JIT mode) in isolation.

Table 11 illustrates the number of references and misses
for the L1 instruction and data cache in the interpreter and
JIT compiled modes. Both instruction and data caches are of
64K bytes size and have a block size of 32 bytes. The
instruction cache is 2-way set associative and the data cache
is 4-way set associative. Instruction cache performance in
interpreted mode is extremely good with hit-rates higher
than 99.9 percent in all benchmarks. The interpreter is a
switch statement with approximately 220 cases for decod-
ing each bytecode. The excellent instruction locality in
interpreted mode stems from the fact that the entire switch
statement or at least the most frequently used parts of it
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TABLE 9
Instruction Count at the Bytecode Level and for the Interpreted and JIT Compiled Execution Modes

Fig. 3. Instruction mix at the SPARC code level.

TABLE 10
Branch Misprediction Rates for Four Predictors



nicely fit into state-of-the-art cache sizes. Prior research
showed that 15 unique bytecodes, on the average, account
for 60-85 percent of the dynamic bytecodes [33]. It was also
observed that 22 to 48 distinct bytecodes constituted
90 percent of the dynamic bytecodes executed. These
factors result in a small working set for the interpreter.

The instruction cache performance in the JIT compiler
mode is inferior to instruction cache performance in the
interpreter mode. Dynamically compiled code for consecu-
tively called methods may not be located in contiguous
locations. Rather than bytecode locality, it is method
locality, method footprint, and working set properties of
the JIT compiler code that determine the instruction cache
performance for the execution of code generated in the JIT
mode. Compilers typically result in poor cache performance
(as exemplified by gcc in the SPEC suite [34]) and
compilation process is a major component of the JIT mode.
For applications like db, jess, and javac, which spend a
significant amount of time in the translation part (Fig. 2),
the I-cache misses are more dominant.

The data cache performance of Java applications is worse
than its instruction cache performance, as is the case for
normal C/C++ programs. However, data locality in the
interpreted mode is better than the locality in the case of the
JIT compiler. In the interpreter mode, each time a method is
executed, the bytecodes are accessed from the data cache
and decoded by the interpreter. The intended code is thus
treated as data by the interpreter, in addition to the actual
data accessed by the application, resulting in a lower miss
rate overall (code usually has better locality than data). The
benchmark data and benchmark bytecodes will be allocated
and accessed from the data cache. Two benchmarks,
compress and mpeg, exhibit significant method reuse and
yield excellent data cache hit ratios in the interpreter mode
because the footprint can be entirely captured in the cache.
In contrast, the JIT compiler translates the bytecodes fetched
from the data cache into native code before the first

execution of the method. Therefore, the subsequent invoca-
tions of the method do not access the data cache (they access
the I-cache) for bytecodes. This results in a drastic reduction
of total data cache references from interpreter mode to JIT
mode, as illustrated in Table 11. The number of data
references in the JIT compiler case is only 20-80 percent of
the reference count in the interpreter case. Of the total data
cache misses in the JIT mode, 50-90 percent of misses at
64K cache size are write misses (see Fig. 4). We later
demonstrate that the majority of these result from code
installation in the translate phase (Fig. 6).

Fig. 5 illustrates the average4 cache miss rates of
SPECjvm98 workloads in comparison to the SPECint
programs and several C++ programs. For both instruction
and data caches, the interpreter mode exhibits better hit
rates than C, C++, and the JIT mode of execution. The
behavior during execution with the JIT compiler is closer to
that of traditional C and C++ programs for the instruction
cache. In the case of data cache, the miss rates for the JIT
mode of execution are highest among the different work-
loads. It may be inferred that the behavior of Java
applications is predominantly dependent on the execution
mode rather than the object-oriented nature of the language,
i.e., the results depend more on whether they are run in
interpreter or JIT mode rather than on the fact that they are
object-oriented. This observation might have been influ-
enced by the fact that the SPECjvm98 benchmarks are not
very object-oriented.

One noticeable fact in Table 11 is that the absolute
number of misses (instruction and data) in the JIT compiler
mode is higher than the number of misses in the interpreter
mode, despite the reduction in total instruction count and
data cache reference count. There are two factors that can be
attributed to thisÐcode generation and installation of
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TABLE 11
Cache Performance for the SPECjvm98

This table shows the number of references, misses, and miss rate for the instruction and data cache. Despite the redundancy, the number of misses
and percent misses are both provided to glean the increase in absolute number of misses in the JIT compiler case compared to the interpreter,
despite the drastic reduction in the total number of references. Case size = 64K bytes, block size = 32 bytes, I-Cache is 2-way, and D-Cache is 4-way
set associative. M indicates million.

4. All averages presented are arithmetic means unless specified
otherwise.



translated code performed by the JIT compiler. Both these
operations can result in a significant number of misses,
which we show by studying the behavior of these
references in isolation.

We have further isolated the cache behavior during the
translation part and the rest of the JIT execution. The cache
behavior of the translate portion is illustrated in Fig. 6. The
translation related instruction cache misses contribute to
more than 30 percent (except jack and mtrt) of all the
instruction cache misses. The data cache misses of the
translate routines do not exhibit any general trends and are

dependent on the application. For mpeg, compress, and db
benchmarks, the data cache exhibits a better locality in the
code outside the translate routine. While compress benefits
from high spatial locality operating on sequential elements
of large files, db benefits from reuse of a small database to
perform repeated data base operations. For javac, it was
found that the code within and outside translate exhibit a
similar cache behavior (miss rates of 5.5 and 5.3 percent
inside and outside translate). This can be ascribed to javac
being a complier and the executed code performing the
same type of operations as the translate routine.

The data cache misses in the translate portion of the code
contribute to 40-80 percent of all data misses for many of the
benchmarks. Among these, the data write misses dominate
within the translate portion and contribute to 60 percent of
misses during translate (see the third bar for each bench-
mark in Fig. 6). Most of these write misses were observed to
occur during the generation and installation of the code.
Since the generated code for the method is written to
memory for the first time, it results in compulsory misses in
the D-Cache. One may expect similar compulsory misses
when the bytecodes are read during translation. However,
they are relatively less frequent than the write misses since
25 native (SPARC) instructions are generated per bytecode
on an average [41]. An optimization to lower the penalty of
write misses during code generation and installation is
discussed later in Section 6. The cache behavior during the
translation process for the s10 data size is given in Fig. 7.
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Fig. 4. Percentage of data misses that are writes. Cache used is direct

mapped with line size of 32 bytes.

Fig. 5. Miss rates for C, C++, and Java workloads for (a) instruction cache and (b) data cache. The miss rates for C and C++ are obtained from
studies by Calder et al.

Fig. 6. Cache misses within translate portion for the s1 dataset. Cache configuration used: 4-way set associative, 64K DCache with a line size of 32
bytes and 2-way set association, 64K ICache with a line size of 32 bytes. The first bar shows the I-Cache misses in translate relative to all I-Cache
misses, the second bar shown the D-Cache misses in translate relative to all D-Cache misses, and the third bar shows the D-Cache write misses in
translate relative to overall D-Cache misses in translate.



We observe that the write misses in translate still contribute

to a significant portion of the performance penalty.
We also studied the variation in the cache locality

behavior during the course of execution for different

benchmarks in the interpreter and JIT compiler modes.

The results for db can be observed in Fig. 8. The miss rates in

the interpreter mode show initial spikes due to the class

loading at the start of the actual execution. However, there

is a fairly consistent locality for the rest of the code. In

contrast, there are a significantly larger number of spikes in
the number of misses during execution in the JIT mode.
This can be attributed to the compilation part of the JIT
compiler which results in significant number of write
misses. A clustering of these spikes can be observed in the
JIT mode in Fig. 8. This is due to a group of methods that
get translated in rapid succession. Also, we observed that,
for the mpeg benchmark, the clustered spikes in the JIT
mode are restricted to the initial phase of algorithm as there
is significant reuse of the same methods.

5.4 Other Observations from Cache Studies

The cache performance of SPECjvm98 applications were
studied over a wide range of cache sizes, block sizes, and
associativity. Fig. 9 illustrates that increasing associativity
produces the expected effect of reducing misses and the
most pronounced reduction is when associativity is
increased from 1 to 2. Increasing the line size also produces
the usual effect of reducing cache misses in instruction
caches, however, data caches display a different behavior
(illustrated in Fig. 10). For interpreted code, in six out of the
seven benchmarks, a small data cache block size of 16 bytes
is seen to have the least miss rate for the data cache. On the
other hand, for execution with the JIT compiler, a block size
of 32 or 64 bytes is better than 16 bytes in a majority of the
cases. The increase in data cache miss rates when the line
size is increased during interpreted execution can be
explained using method locality and bytecode size informa-
tion. Prior research on method locality and size distribution
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Fig. 7. Cache misses within the translate portion for the s10 dataset.
Cache configuration used: 4-way set associative, 64K DCache with a
line size of 32 bytes and 2-way set association, 64K ICache with a line
size of 32 bytes. The first bar shows the I-Cache misses in translate
relative to all I-Cache misses, the second bar shows the D-Cache
misses in translate relative to all D-Cache misses, the third bar shows
the D-Cache write misses in translate relative to overall D-Cache misses
in translate.

Fig. 9. Effect of increasing the associativity of the (a) instruction cache and (b) data cache. Cache configuration used: 8K Cache with 32 byte line size

and associativity of 1, 2, 4, and 8.

Fig. 8. Miss rate variation in D-Cache for db during code execution in (a) Interpreter Mode and (b) JIT Compiler Mode. Cache configuration used: 4-

way set associative, 64K Cache with a line size of 32 bytes.



[41] showed that 45 percent of all dynamically invoked
methods were either one or nine bytecodes long. Since
average bytecode size has been shown to be 1.8 bytes [14],
45 percent of all methods can be expected to be less than
16 bytes long. Therefore, unless methods invoked in
succession are located contiguously, increasing line sizes
beyond 16 bytes (or 32 at the most) cannot capture further
useful future references, explaining the data cache behavior
of the interpreted code. The data cache in the JIT compiler
mode is affected by the size of the objects accessed by the
applications. While mean object sizes of individual objects
range from 16 to 23 bytes for the SPECjvm98 benchmarks,
the commonly used character arrays range between 26 and
42 bytes [27]. Thus, line sizes of either 32 or 64 bytes provide
the best locality for most of the benchmarks.

Layout of translated code installed by the JIT compiler
can have a large impact on miss behavior. We are not aware
of the details on the techniques used by Kaffe or JDK to
optimize code layout. Dynamically generated code layout
can thus be an interesting area for further research.

5.5 Limits of Available Parallelism

In order to understand the instruction level parallelism
issues involving the stack-oriented Java code, we investi-
gated the limits of available parallelism in Java workloads.
We also compared the ILP of the Java benchmarks to
SPEC95 applications and several C++ programs. We use
dynamic dependence analysis in order to compute the
limits of ILP as in previous parallelism investigations [42],
[43]. First, we construct a Dynamic Dependency Graph
(DDG), which is a partially ordered, directed, and acyclic
graph, representing the execution of a program for a
particular input. The executed operations comprise the
nodes of the graph and the dependencies realized during
the execution form the edges of the graph. The edges in the
DDG force a specific order on the execution of dependent
operationsÐforming the complete DDG into a weak
ordering of the programs required operations. A DDG
which contains only data dependencies and thus is not
constrained by any resource or control limitations is called a
dynamic data flow graph. It lacks the total order of
execution found in the serial stream; all that remains is
the weakest partial order that will successfully perform the
computations required by the algorithms used. If a machine
were constructed to optimally execute the DDG, its

performance would represent an upper bound on the

performance attainable for the program. In our study, first,

the critical path length, defined as the height of the

scheduled DDG (the absolute minimum number of steps

required to evaluate the operations in the scheduled DDG),

is determined. The available parallelism is computed by

dividing the total number of nodes by the critical path

length. Machine Level Parallelsim (MLP) is the maximum

number of nodes that can actually be scheduled in a cycle

given the constraints of the machine. It is analogous to the

number of functional units that can be used simultaneously.

However, we do not restrict the type of functional unit, i.e.,

they can all be adders or multipliers or a mix of different

units. To give an upper bound on the available parallelism,

an available MLP of infinity was considered, but MLP of 8,

16, 32, 64, and 128 were also studied for comparative

purposes (see Table 12). The latency of all operations is set

to be one cycle. Perfect memory disambiguation and perfect

branch prediction are assumed. We consider only true

dependencies (or RAW dependencies) while scheduling

instructions. Hence, this is the absolute limit of parallelism

that can potentially be exploited from that program, with

the best of renaming, etc. More details on these experiments

can be found in [44]. Table 12 shows that Java code exhibits

less ILP in comparison to all other workloads analyzed. The

average available parallelism (in terms of the harmonic

mean of the observations) of the four different suites of

programs for different window sizes is summarized in

Fig. 11.
With infinite MLP, the mean ILP is 125 for the SPECInt

benchmarks) and 175 for the C++ programs. The mean ILP

is 20 for the Java programs when interpreted and 40 when

invoked through the JIT compiler. The extremely low ILP of

the interpreted Java programs, even with no other control

or machine constraints, can be attributed to the stack-based

implementation of the Java Virtual Machine (JVM). The

stack nature of the JVM imposes a strict ordering on the

execution of the bytecodes. The JIT compiler optimizes

away most of these stack accesses and converts them to

register operations. Hence, we see a higher ILP for the same

benchmarks when executed using a JIT compiler.
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Fig. 10. Effect of changing line size on the (a) instruction cache and (b) data cache. Cache configuration used: 8K direct mapped cache with line

sizes of 16, 32, 64, and 128 bytes.



6 ARCHITECTURAL IMPLICATIONS

We have looked at a spectrum of architectural issues that
impact the performance of a JVM implementation, whether it
be an interpreter or a JIT compiler. In the following discussion,
we briefly summarize our observations, review what we have
learned from these examinations, and comment on enhance-
ments for the different runtime systems. More importantly,
we try to come up with a set of interesting issues that are,
perhaps, worth a closer look for future research.

Even though our profiling of the JVM implementations
for many of the SPECjvm98 benchmarks shows that there is
a substantial amount of time spent by the JIT compiler in
translation, it appears that one cannot hope to save much

with a better heuristic than compiling a method on its first
invocation (10-15 percent saving at best with an ideal
heuristic). Rather, the effort should be expended in trying to
find a way of tolerating/hiding the translation overhead.
We also found that one cannot discount interpretation in an
ad hoc manner since it may be more viable in a resource-
constrained (memory in particular) environment.

An examination of the architectural interactions of the
two runtime alternatives has given us useful insights. It has
been perceived that Java (object-oriented programs in
general) executions are likely to have substantial indirect
branches, which are rather difficult to optimize. While we
find this to be the case for the interpreter, the JIT compilers
seem sufficiently capable of performing optimizations to
reduce the frequency of such instructions. As a result,
conventional two-level branch predictors would suffice for
JIT mode of execution, while a predictor optimized for
indirect branches (such as [36]) would be needed for the
interpreted mode. The instruction level parallelism avail-
able in interpreted mode is seen to be lower than while
using a JIT compiler. The parallelism in the interpreted
mode is heavily influenced by the stack-oriented nature of
the JVM ISA. This affects the performance as one moves to
wider superscalar machines. We find that the interpreter
exhibits better locality for both instructions and data with
substantial reuse of a few bytecodes. The I-Cache locality
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Fig. 11. Average available parallelism of SPECInt, C++, and

SPECjvm98 for different Machine Level Parallelism (MLP).

TABLE 12
Available Instruction Level Parallelism of Different Benchmarks for MLP of 8, 16, 32, 64, 128, and the Unbounded Machine

SPECjvm98 benchmarks are invoked with an interpreter and a JIT compiler.



benefits from the interpreter repeatedly executing the native
instructions corresponding to these bytecodes and D-Cache
locality is also good since these bytecodes are treated as
data. In general, the architectural implications of a Java
runtime system are seen to be more dependent on the mode
of execution (interpreter or JIT) rather than the object-
oriented nature of Java programs.

Fig. 2 shows that a significant component of the execution
time is spent in the translation to native code, specifically for
applications like db, javac, and jess. A closer look at the miss
behavior of the memory references of this component in
Section 5 shows that this is mainly due to write misses,
particularly those that occur in code generation/installation.
Installing the code will require writing to the data cache and
thesearecountedasmissessince those locationshavenotbeen
accessed earlier (compulsory misses). These misses introduce
two kinds of overheads. First, the data has to be fetched from
memory into the D-Cache before they are written into (on a
write-allocate cache, which is more predominant). This is a
redundant operation since the memory is initialized for the
first time. Second, the newly written instructions will then be
moved (automatically on instruction fetch operations) from
the D-Cache to the I-Cache (not just causing an extra data
transfer, but also potentially double-caching). To avoid some
of these overheads, it would be useful to have a mechanism
wherein the code can be generated directly into the I-Cache.
This would require support from the I-Cache to accommodate
a write operation (if it does not already support it) and,
preferably, a write-back I-cache. It should also be noted that,
for good performance, one should be careful to locate the code
for translation itself such that it does not interfere/thrash with
the generated code in the I-cache. We are looking into the
possibility of reusing the recently translated code in sub-
sequent translations (so that translation can be speeded up). It
was also suggested earlier, in Section 5, that it may be a
worthwhile effort to look into issues of translated code
location (perhaps using associations) to improve locality
during subsequent executions.

Fig. 2 shows that there are applications, like compress and
jack, in which a significant portion of the time is spent in
executing the translated code. One possible way of
improving these applications is to generate highly opti-
mized code (spending a little more time to optimize code
will not degrade the performance). Another approach is to
speed up the execution of the generated code. This could
involve hardware and systems software support for
memory management, synchronization, and class resolu-
tion/loading. We are currently in the process of isolating
the time spent in these components and their interactions.

There is a common (and interesting) trait in the compress,
jack, and mpeg applications where the execution time
dominates and a significant portion of this time is spent
in certain specific functions. For instance, compress and mpeg
employ a standard set of functions to encode all the data.
The benchmark jack scans the data, looking for matching
patterns. If we are to optimize the execution of such
functions, then we can hope for much better performance.
We are currently trying to identify such commonly
employed functions (for at least certain application
domains) so that we can configure hardware cores using

reconfigurable hardware (such as Field Programmable Gate
Arrays) on-the-fly (similar to how JIT dynamically opts to
compile-and-execute rather than interpret).

7 CONCLUSIONS AND FUTURE WORK

The design of efficient JVM implementations on diverse
hardware platforms is critical to the success of Java
technology. An efficient JVM implementation involves
addressing issues in compilation technology, software
design, and hardware-software interaction. We began this
exercise with an exploration of Java workload characteriza-
tions at the bytecode level. Then, we investigated how well
a dynamic compiler can perform by using intelligent
heuristics at runtime. The scope for such improvement is
observed to be limited and stresses the need for investigat-
ing sophisticated compilation techniques and/or architec-
tural support features. This study has focused on
understanding the influence of hardware-software interac-
tions of the two most common JVM implementations
(interpreter and JIT-compiler) toward designing architec-
tural support for efficient execution of Java programs. The
major findings from our research are the following:

. At the bytecode level, 45 out of the 255 bytecodes
constitute 90 percent of the dynamic bytecode
stream. The excellent bytecode locality observed
for the SPECjvm98 applications and the distribution
seen for the method sizes help in explaining the
locality and cache performance observed for the JIT
compiled and interpreted applications.

. When Java applications are executed with a JIT
compiler, selective translation using good heuristics
can improve performance. However, even an oracle
can improve performance by only 10-15 percent for
the SPECjvm98 applications. Further improvement
necessitates improving the quality of the translated
code or architectural enhancements.

. The instruction and data cache performance of Java
applications are better compared to that of C/C++
applications, except in the case of data cache
performance in the JIT mode.

. Except when using smaller block sizes for data
caches or using branch predictors specially tailored
for indirect branches, we feel that optimizing caches
and branch predictors will not have a major impact
on performance of interpreted Java execution.

. Write misses resulting from installation of JIT
compiler output have a significant effect on the data
cache performance in JIT mode. Certain enhance-
ments, such as being able to write to the instruction
cache or using special buffers, could be useful
during dynamic code generation.

. The instruction level parallelism available in JIT
mode is seen to be higher than while using an
interpreter. JIT optimizations which convert stack
computations to register based operations expose
more parallelism which can be exploited by wide
superscalar machines.

The topics that seem to hold the most promise for further
investigation are new architectural mechanisms for hiding
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the cost of translation during JIT. Techniques for achieving
this may also be used in conjunction with dynamic
hardware compilation (one could visualize this as hardware

translation instead of compilation that is done by a
traditional JIT compiler) of Java bytecodes using reconfi-
gurable hardware. Another important direction which has
not been addressed in this paper is on providing architec-

tural support for compiler optimization, such as those
undertaken in [45]. For example, a counter could track the
number of hits associated with an entry in the branch target

buffer. When the counter saturates, it can trigger the
compiler to perform code inlining optimization that can
replace the indirect branch instruction with the code of the
invoked method. Of course, we may need some mechanism

to monitor the program behavior changes to undo any
optimizations that may become invalid later. It has also
been observed that it would be worthwhile to investigate

the translated code location issues toward improving the
locality during subsequent execution.

In this work, we were able to study the translation part of
the JVM in isolation. Further investigation is necessary to

identify the impact of the other parts of the JVM, such as the
garbage collector, class loader, class resolver, and object
allocator, on the overall performance and their architectural
impact. The key to an efficient Java virtual machine

implementation is the synergy between well-designed
software, an optimizing compiler, supportive architecture,
and efficient runtime libraries. This paper has looked at

only a small subset of issues with respect to supportive
architectural features for Java and there are several issues
that are ripe for future research.
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