INTERSPEECH 2011

Java Visual Speech Components for Rapid Application Development of
GUI based Speech Processing Applications

Stefan Steidl*?, Korbinian Riedhammer®, Tobias Bocklet?, Florian Honig?, and Elmar Noth?

nternational Computer Science Institute (ICSI) at Berkeley, CA, U.S. A.
2Department of Computer Science, University of Erlangen-Nuremberg, Germany

stefan.steidl@informatik.uni-erlangen.de

Abstract

In this paper, we describe a new Java framework for an easy and
efficient way of developing new GUI based speech processing
applications. Standard components are provided to display the
speech signal, the power plot, and the spectrogram. Further-
more, a component to create a new transcription and to display
and manipulate an existing transcription is provided, as well as
a component to display and manually correct external pitch val-
ues. These Swing components can be easily embedded into own
Java programs. They can be synchronized to display the same
region of the speech file. The object-oriented design provides
base classes for rapid development of own components.

Index Terms: Speech Processing Applications, Java, Graphical
User Interfaces (GUI), Rapid Application Development (RAD)

1. Introduction

Speech processing is a very large area of research and the num-
ber of tools that are used in this community is tremendously
high. Tools are needed to play back audio signals, to visualize
them, for spectral analysis, for transliteration and various an-
notations, for acoustic feature calculation, and many more pur-
poses. Some tools are needed for manual user interaction, some
for batch processing in order to apply the same processing steps
to a large number of files. There are some standard tools for cer-
tain applications, e. g., the cross-platform tools Wavesurfer' for
audio playback and analysis and Praaf®, which is widely used
for calculation of acoustic features. Both have graphical user
interfaces (GUI). A batch processing tool for acoustic features
extraction is openSMILE3 [1].

Often, standard tools are used if no specialized tools are
available. For transliteration, e. g., in principle a simple text ed-
itor and an audio playback tool are sufficient. Certainly, this is
not an efficient way of processing large amounts of (small) au-
dio files since each file has to be loaded separately. It would be
much more efficient to load a list of files and to be able to jump
from one file to the next one having the application take care
of loading and saving the required files. In general, these tools
provide a graphical user interface (GUI) that can be controlled
by the mouse. Mouse control is certainly a very intuitive way of
controlling an application, but it causes wrist strain much faster
than keyboard control, which in most cases is even faster than
mouse control.

* This work was supported by a fellowship within the postdoc pro-
gram of the German Academic Exchange Service (DAAD).
'http://sourceforge.net/projects/wavesurfer/
’http://www.fon.hum.uva.nl/praat/
3http://opensmile.sourceforge.net/

Copyright © 2011 ISCA

3257

Annotation of naturally occurring emotions for vocal emo-
tion recognition is one example where a lot of specialized GUI
based applications are needed. There are many ways how emo-
tions can be labeled. Emotions can be labeled with categorical
labels. A large list of possible categories exist. Which cate-
gories should be used depends on the emotional states that ac-
tually appear in a given scenario. Emotions can be labeled in
a dimensional space, too. Different numbers and types of di-
mensions have been proposed. Labels can be assigned to the
whole segment assuming that the emotion is constant within this
segment. Segments can be turns in a human-human or human-
machine dialog, utterances, chunks, or words (s. [2]). Segments
can be stored in separate audio files or an audio file can contain
more than one segment. If the emotional state changes within
one segment, these changes have to be tracked. It is obvious that
there is no tool that is suited for all of these annotation possibil-
ities. In most scenarios, specialized tools have to be designed.
However, developing own software requires programming skills
and — even more important — a considerable amount of time.

In this paper, we present a framework for rapid develop-
ment of own GUI based speech processing applications: the
Java Visual Speech Components. For this purpose, the proposed
framework provides Java classes for various tasks, e. g. loading
and displaying the speech signal, showing a spectrogram, etc.
Furthermore, its object-oriented design and the existence of ap-
propriate base classes allow for a rapid and easy development
of own visual components.

2. Java Speech Toolkit

The Java Visual Speech Components are part of the Java Visual
Speech Toolkit (JSTK) and use, for example, the JSTK classes
to read an audio file. The JSTK is a Java framework for au-
tomatic speech recognition. It provides classes for feature ex-
traction as well as a speech recognition system with classes for
training a speech recognizer. Currently, the development of the
ASR decoder is in progress. The Java Speech Toolkit includ-
ing the Java Visual Speech Components and the JSTK Tran-
scriber application described in this paper is available under the
GNU General Public License version 3. The project website is
http://code.google.com/p/jstk/.

3. Java Visual Speech Components

3.1. Object-oriented design

The design of the available Java Visual Speech Components
follows an object-oriented approach, where the base classes
VisualComponent and FileVisualizer contain all the
necessary attributes and methods that are in general needed by

28 —31 August 2011, Florence, Italy

all visual components. VisualComponent is derived di-
rectly from javax.swing.JComponent and has the fol-
lowing features:

e [t has the ability to display a coordinate system. The
range of values on the x and y axis can be customized as
well as the size of the borders and various color settings.

e The class offers double buffering to avoid flickering
when displaying information. Another buffer is used to
draw a horizontal and/or a vertical line at the position of
the mouse cursor. The size of the buffered images are
adjusted after resize events.

e Objects implementing the MouseMotionVisuali-
zationListener interface can be registered, which
are informed about movements of the mouse.

e Methods are provided to convert x and y coordinates into
pixel coordinates and vice versa.

Components that are derived from VisualComponent di-
rectly — for examples components to show the spectrum or the
autocorrelation function — display information of one frame (or
a small number of frames) independently of other components.

The class FileVisualizer is derived from Visual-
Component and is intended to display more information than
just one frame, for example whole audio files. The following
additional features are offered:

e The component supports the use of a JScrollBar in
order to control the visible region of the audio file.

e [t allows to zoom into and out of the signal.

e Components derived from FileVisualizer can
communicate with each other in order to synchronize the
visualization.

e Two ways of highlighting regions of the signal are pro-
vided: (1) The user can select a region by dragging the
mouse. (2) A region can be highlighted by calling the ap-
propriate method with a given start and end sample. The
latter way can be used, for example, to walk through a
transcription and to highlight the current word. Both fea-
tures can be used independently of each other and color
settings can be specified separately.

e Objects implementing the SignalSectionSelec—
tedListener interface can be registered and are then
informed if regions are selected by mouse dragging.

e Listeners can be registered to be able to react to
the selection of single sample values (Sample-
SelectedListener interface).

e The component can react differently to mouse actions.
Mouse clicks and mouse dragging can be used to zoom
into and out of the signal in the ZOOM_MODE, they can
be used to select regions in the SELECTION_MODE, or
they can be ignored in the NORMAL_MODE.

Figure 1 shows the class hierarchy of these two base classes
as well as the Java Visual Speech Components that are described
in the following section.

3.2. Available components

At the moment, the following Java Visual Speech Components
are available:

VisualizerSpeechSignal displays the waveform of the speech
signal.

3258

javax.swing
JComponent

VisualComponent

A

FileVisualizer

VisualizerSpeechSignal ‘ VisualizerSpectrum
!

VisualizerPowerPlot ‘
|

VisualizerPitchEstimator

VisualizerSpectrogram ‘

VisualizerPitch

I |
L]
‘ VisualizerAutocorrelation ‘
I |
L]
I |
[1

VisualizerTranscription

Figure 1: Class hierarchy of the available Java Visual Speech
Components

VisualizerPowerPlot displays the short-term root mean square
energy (RMS) in decibel.

VisualizerSpectrogram shows the spectrogram of the signal
on a gray scale or in pseudo-colors. Methods are pro-
vided to set the window function and the length of the
window as well as to adjust the parameters for bright-
ness and contrast.

VisualizerPitch is able to display external pitch values. Most
often, errors of pitch extraction algorithms are either
voiced/unvoiced errors or octave errors. The user can se-
lect pitch values using the mouse, which then can be set
to zero, to the double or to the half of their value. Values
between selected pitch values can also be interpolated
using a spline interpolation. New values, which can be
estimated with another component, can be assigned to
single pitch values, too. The component displays both
the original and the manually corrected pitch values.

VisualizerTransliteration is a component to create, to visu-
alize, and to manually change the transcription of the
speech signal as well as the segmentation, i.e. the start
and the end times of the words. The user can jump from
one word to the next or previous one and the current
word is highlighted in all synchronized components.

VisualizerSpectrum shows the spectrum for a single frame.
Again, the window function and the window length can
be controlled using method calls.

VisualizerAutocorrelation displays the autocorrelation func-
tion for a given frame.

VisualizerPitchEstimator shows the magnified speech signal
of the selected frame and, depending on the zoom factor
and the width of the component, its adjacent neighbor-
ing frames. The user can define pitch periods using the
mouse. The length of the periods is converted into their
frequency values, which are then averaged over all peri-
ods. This average value can be assigned to the selected
pitch value of the VisualizerPitch component.

3.3. Using available components

Listing 1 demonstrates how easily the existing Java Visual
Speech Components can be used. First, an instance of class
AudioFileReader is created in order to read the au-
dio file. The first argument of the constructor is the file
name, the second one is a boolean controlling whether a
BufferedInputStream is used for reading the file or not.
The AudioFileReader implements the AudioSource
interface allowing to access the audio samples in sequen-
tial order. However, the visual components require to ac-
cess the audio file in general more than once and in ran-
dom order. Hence, the audio data is buffered using an
instance of class BufferedAudioSource. Then, in-
stances of the two classes VisualizerSpeechSignal and
VisualizerSpectrogram are created. The buffered audio
source is passed to both constructors as well as a String name for
identification of the component, mainly used in the toString
method of both classes. The dimensions of the visual compo-
nents are set using the setPreferredSize method.

As in most cases only a part of the speech signal will
be displayed, a JScrollBar is used to control the visible re-
gion. The scrollbar is attached to only one of the two Java
Visual Speech Components. In order to synchronize the vi-
sualization of both components, each component is registered
as VisualizationListener of the other one. Finally, all
components are added to a Box which then can be added to a
JFrame, for example.

Listing 1: Instantiation of two Java Visual Speech Components

Box box = Box.createVerticalBox ();

AudioFileReader reader =
new AudioFileReader(”file .wav”,
BufferedAudioSource audiosource =
new BufferedAudioSource(reader);
VisualizerSpeechSignal signal =
new VisualizerSpeechSignal(”signal”,
audiosource);
VisualizerSpectrogram spectrogram =
new VisualizerSpectrogram (”spectrogram”,
audiosource);

true);

signal.setPreferredSize (
new Dimension(400,100));
signal .showCursorY = false;
signal .switchMode (
FileVisualizer .SELECTION_.MODE) ;
spectrogram . setPreferredSize (
new Dimension (400,158));

JScrollBar scrollbar = new JScrollBar (
JScrollBar .HORIZONTAL) ;
signal.setScrollbar(scrollbar);

signal.addVisualizationListener (spectrogram);
spectrogram.addVisualizationListener (signal);

add(signal);

add (Box.createVerticalStrut (10));
add (spectrogram);

add(scrollbar);

box.
box .
box .
box .

In order to synchronize n Java Visual Speech Com-
ponents, n(n — 1) connections have to be established.
To reduce this amount of connections, a Visualiza-—
tionInformer object can be used. Calling the set—
VisualizationInformer method establishes a bidirec-
tional connection between the visual component and the

VisualizationInformer object, which forwards all vi-
sualization update requests that it receives from one component
to all other registered components. Listing 2 shows how lines
26 and 27 in Listing 1 can be replaced.

Listing 2: Synchronizing Java Visual Speech Components

VisualizationInformer informer =

new VisualizationInformer ();
signal .setVisualizationInformer (informer);
spectrogram . setVisualizationInformer (informer);

S

3.4. Creating custom components

The presented framework should not only encourage program-
mers to write their own programs based on the existing Java
Visual Speech Components, but also to create their own vi-
sual components. Listing 3 demonstrates how easy new compo-
nents can be created by deriving them from the existing super
classes VisualComponent and FileVisualizer. The
class MyVisualizer in the given example inherits the abil-
ity to display a coordinate system. As customized in the con-
structor, values in the range from O to 100 are displayed on
the y axis. The component also inherits the ability to com-
municate with other existing Java Visual Speech Components.
It is a fully functional Java Visual Speech Component, only
the ability to display the intrinsic information is still missing.
For this purpose, the components inherits double buffering and
methods to convert samples and y values into pixel coordinates
and vice versa. In order to display information, the method
drawSignal has to be overridden. This method is always
called if a repaint event is triggered. If time consuming compu-
tations are required to display the information, these computa-
tions can be done in the method recalculate, which is only
called if resize event occurs.

Listing 3: Creating your own Java Visual Speech Components

1 import java.awt.Graphics;

> import de.fau.cs.jstk.io.BufferedAudioSource;
3 import de.fau.cs.jstk.vc.FileVisualizer;

4

s public class MyVisualizer

6 extends FileVisualizer {

7

8 public MyVisualizer (String name,

9 BufferedAudioSource audiosource) {
10 super (name, audiosource);

1 yMin = 0;

12 yMax = 100;

13 ytics = 25;

14

15

16 @Override

17 protected void recalculate () {

18 }

19

20 @Override

21 protected void drawSignal(Graphics g) {
2 }

23

2 @Override

25 public String toString () {

26 return "MyVisualizer.’” + name + 7 7;
27 }

8}

3259

]

JSTK Transcriber

BEIE)

File Navigation Sound Transciption View Help

o

Mont_01_096.wav.

geh

nach I ks |

(a) Main application window

Pitch estimator

zoom facor 37

448
‘ 2461

241.2

‘ Assign 244.0 Hz

(b) Pitch estimation window

Figure 2: JSTK Transcriber is a fully functional tool for transliteration and manual pitch correction demonstrating the functionality of

the available Java Visual Speech Components

4. Application JSTK Transcriber

The main purpose of this application is not to propose a
new transcription tool, but to demonstrate the usability of the
Java Visual Speech Components. However, the application is
fully functional and well-suited for manual processing of large
amounts of audio files. The user opens a transcription file, a text
file that contains one line for each audio file. Each line contains
the name of the audio file, followed by the transcription, which
is a sequence of triples containing the word, the number of the
first sample, and the number of the last sample of the word. As
the transcription can be empty, the user can start with a simple
list of audio file names.

Figure 2a shows the main window, which contains
the components VisualizerSpeechSignal, Visu-
alizerPowerPlot, VisualizerSpectrogram, Vi-
sualizerPitch, and VisualizerTranscription.
The tool is suited to create own transcriptions with a word seg-
mentation, or to display and manually correct a given translit-
eration obtained, e. g. by forced-alignment of the sequence of
uttered words. Furthermore, the tool allows to display and man-
ually correct external fundamental frequency values, which are
read (automatically) from separate files. Both the original and
manually corrected pitch values are shown. Thus, the tool can
be used to study errors of pitch extraction algorithms, laryngeal-
izations, regions where the fundamental frequency differs from
the perceived pitch, etc. The tool can also be used for com-
paring two different pitch extraction algorithms. The spectrum
and the autocorrelation function can be shown in separate win-
dows (not shown in Figure 2). The tool can be used in teaching
to study the effect of window type and window length on the
spectrum and the autocorrelation function.

Figure 2b shows how the user can manually define pitch

3260

periods by mouse dragging. The new pitch value estimated over
all manually defined pitch periods can be assigned to the current
pitch value. An older version of this tool has been used for
annotation of the FAU Aibo Emotion Corpus [3]. The word
segmentation and the pitch values have been manually corrected
[3, 4].

5. Conclusions

We proposed a new Java framework for rapid development of
GUI based speech processing applications. The set of available
visual components can be easily extended by writing own com-
ponents that are derived from the given super classes and that
inherit all the necessary functionality to communicate with al-
ready existing components. The application JSTK Transcriber
is a fully functional tool for transliteration and manual pitch
correction, which proves the functionality of the Java Visual
Speech Components.

6. References

Eyben, F. and Woéllmer, M. and Schuller, B., “openSMILE — The
Munich Versatile and Fast Open-Source Audio Feature Extrac-
tor”, Proc. ACM Multimedia 2010, pp. 1459-1462, 2010.

Batliner, A. and Seppi, D. and Steidl, S. and Schuller, B., Seg-
menting into adequate units for automatic recognition of emotion-
related episodes: a speech-based approach, Advances in Human-
Computer Interaction, 2010

(1]

(2]

[3] Steidl, S., “Automatic Classification of Emotion-Related User
States in Spontaneous Children’s Speech”, Logos Verlag, Berlin,

2009.

Steidl, S. and Batliner, A. and Noth, E. and Hornegger, J., Quan-
tification of Segmentation and FO Errors and Their Effect on Emo-
tion Recognition, Proc. TSD 2008, pp. 525-534, 2008.

(4]

