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ABSTRACT 

The deployment of Java as a concurrent programming language has 
created a critical need for high-performance, concurrent, and incre- 

mental multiprocessor garbage collection. We present the Recycler, 
a fully concurrent pure reference counting garbage collector that we 

have implemented in the Jalapefio Java virtual machine running on 

shared memory multiprocessors. 

While a variety ofmultiprocessor collectors have been proposed 

and some have been implemented, experimental data is limited and 

there is little quantitative basis for comparison between different al- 

gorithms. We present measurements of the Recycler and compare 

it against a non-concurrent but parallel load-balancing mark-and- 
sweep collector (that we also implemented in Jalapefio), and eval- 

uate the classical tradeoff between response time and throughput. 

When processor or memory resources are limited, the Recycler 
runs at about 90% of the speed of  the mark-and-sweep collector. 

However, with an extra processor to run collection and with a mod- 

erate amount of memory headroom, the Recycler is able to operate 

without ever blocking the mutators and achieves a maximum mea- 

sured mutator delay of only 2.6 milliseconds for our benchmarks. 
End-to-end execution time is usually within 5%. 

1. INTRODUCTION 
In this paper we present a new multiprocessor garbage collector 

that achieves maximum measured pause times of 2.6 milliseconds 

over a set of eleven benchmark programs that perform significant 
amounts of memory allocation. 

Our collector, the Recycler, is novel in a number of respects: 

• In normal operation, the mutators are only very loosely syn- 

chronized with the collector, allowing very low pause times; 

• It is a pure concurrent reference counting collector; no global 
tracing is performed to collect cyclic garbage; and 

• Cyclic garbage is collected using a new concurrent cycle de- 
tection algorithm that traces cycles locally. 
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In addition, we have implemented a non-concurrent ("stop-the- 

world") parallel load-balancing mark-and-sweep collector, and in 

this paper we provide comparative measurements of  two very dif- 

ferent approaches to multiprocessor garbage collection, for the first 

time quantitatively illustrating the possible tradeoffs. 

The Recycler uses a new concurrent reference counting algo- 

rithm which is similar to that of Deutsch and Bobrow [ 13] but main- 

tains the invariant that objects whose reference count drops to zero 

can be collected, and therefore avoids the need for ancillary tables. 

The concurrent cycle collector is the first fully concurrent algo- 

rithm for the detection and collection of cyclic garbage in a ref- 

erence counted system. It is based on a new synchronous algo- 

rithm derived from the cyclic reference counting algorithm of Lins 

[23]. Our algorithm reduces asymptotic complexity from O(n 2) to 
O(n), and also significantly reduces the constant factors. 

When the system runs too low on memory, or when mutators 

exhaust their trace buffer space, the Recycler forces the mutators to 

wait until it has freed memory to satisfy their allocation requests or 
processed some trace buffers. 

The Recycler is implemented in Jalapefio [1], a new Java virtual 

machine and compiler being developed at the IBM T.J. Watson Re- 

search Center. The entire system, including the collector itself, is 

written in Java (extended with unsafe primitives for manipulating 
raw memory). 

In concurrently published work, we provide detailed pseudo- 

code for the cycle collection algorithm and a proof of  correctness 

based on an abstract graph induced by the stream of  increment and 

decrement operations [5]. This paper concentrates on describing 
the system as a whole, and on the comparative measurements. 

The rest of this paper is organized as follows: Section 2 presents 

our algorithm for concurrent reference counting. Section 3 presents 

the synchronous algorithm for collecting cyclic garbage; Section 4 
extends this algorithm to handle concurrent mutators. Section 5 

describes the implementation, and Section 6 describes the paral- 

lel mark-and-sweep collector. Section 7 presents measurements of 

the running system and a comparison between the two garbage col- 
lectors. Section 8 describes related work and is followed by our 
conclusions. 

2. REFERENCE COUNTING COLLECTOR 
In this section we describe the reference-counting garbage col- 

lection algorithm, for the time being ignoring the disposition of 

cyclic garbage which will not be detected. Our collector shares 
some characteristics with the Deutsch-Bobrow algorithm and its 
descendants [l 3, 29, 12], as discussed in Section 8. 

The Recycler is a producer-consumer system: the mutators pro- 
duce operations on reference counts, which arc placed into buffers 

and periodically turned over to the collector, which runs on its own 
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CPU1 

inc dec 

CPU2 

inc dec 

CPU3 
(colLector) 

inc dec 

Figure 1: The Concurrent Reference Counting Collector. Ar- 
rows represent the execution of the CPUs; bubbles are inter- 
ruptions by the collector. Increment and decrement operations 
are accumulated by each CPU into a buffer. At the end of epoch 
8, the collector, running on CPU 3, will process all increments 
through epoch 8 and all decrements through epoch 7. 

processor. The collector is single-threaded, and is the only thread 

in the system which is allowed to modify the reference count fields 

of objects. 

The operation of the collector is shown in Figure 1. During muta- 

tor operation, updates to the stacks are not reference-counted. Only 

heap updates are reference-counted, and those operations are de- 

ferred with a write barrier by storing the addresses of objects whose 

counts must be adjusted into mutation buffers, which contain in- 
crements or decrements. Objects are allocated with a reference 

count of 1, and a corresponding decrement operation is immedi- 

ately written into the mutation buffer; in this manner, temporary 

objects never stored into the heap are collected quickly. 

Time is divided into epochs, which are separated by collections 

which comprise each processor briefly running its collector thread. 

Epoch boundaries are staggered; the only restriction being that all 

processors must participate in one collection before the next col- 

lection can begin. 
Periodically, some event will trigger a collection cycle: either 

because a certain amount of memory has been allocated, or because 

a mutation buffer is full, or because a timer has expired. In normal 

operation, none of these triggers will cause the mutator to block; 

however, they will schedule the collector thread to run on the first 

processor. 
On the first processor when the collector thread wakes up it scans 

the stacks of its local threads, and places the addresses of objects 

in the stack into a stack buffer. It then increments its local epoch 

number, allocates a new mutation buffer, and schedules the collec- 

tor thread on the next processor to run. Finally, it dispatches to the 

thread that was interrupted by collection. 

The collector thread performs these same operations for each 

processor until it reaches the last processor. The last processor ac- 

tually performs the work of collection. 
The last processor scans the stacks of its local threads into a stack 

buffer. Then it processes increments: the reference count of each 

object addressed in the stack buffer for the current epoch computed 

by each processor is incremented. Then the mutation buffer for 
each processor for the current epoch is scanned, and the increment 
operations it contains are performed. 

To avoid race conditions that might cause the collector to pro- 

cess a decrement before the corresponding increment has been pro- 

cessed, not only must we process the increment operations first, 

but we must process the decrement operations one epoch behind. 

So the last processor scans the stack buffers of the previous epoch, 

and decrements the reference counts of objects that they address, 

and then processes the mutation buffers of the previous epoch, per- 
forming the decrement operations. 

During the decrement phase, any object whose reference count 

drops to 0 is immediately freed, and the reference counts of objects 

it points to are recursively decremented. 

Finally, the stack and mutation buffers of the previous epoch are 

returned to the buffer pool, and the epoch number is incremented. 

The collection has finished and all processors have joined the new 

epoch, and now any processor can trigger the next collection phase. 

2.1 Optimization of Stack Scanning 
A problem with the algorithm as we have described it is that the 

stack of each thread is scanned for each epoch, even if the thread 

has been idle. As a result, the pause times will increase with the 

number of total threads in the system, and the collector will use- 

lessly perform complementary increment and decrement operations 

in every collection on the objects referenced from the stacks of idle 
threads. 

We now describe a refinement of the algorithm which eliminates 

this inefficiency; the refined algorithm is the one we have actually 
implemented. 

Instead of a per-processor stack buffer, there are stack buffers 

for each thread, as well as a flag to keep track of whether the thread 

has been active in the current epoch. When the collector runs on 

a processor, instead of scanning the stacks of all threads, it only 

scans the stacks of active threads. 

When buffer processing occurs on the last processor, the col- 

lector iterates over all threads, and if the thread was active in the 

current epoch, it processes the stack buffer and increments each 

object it refers to. If the thread was inactive, it does not perform 

any increments; instead, the stack buffer of the previous epoch is 

promoted and becomes the stack buffer of the current epoch. 

The collector then scans the mutation buffer of each processor 

for the current epoch, and performs the increment operations. 

Then the collector iterates over all of the threads again, and if a 

thread has a stack buffer for the previous epoch, the objects referred 

to are decremented. Note that if the thread was idle, its stack buffer 

of the previous epoch will have been promoted in the increment 

phase, and no decrements will be performed for the idle thread. 

Finally, the decrements of the mutation buffers of the previous 

epoch are performed, and the collection completes as before. 

A natural refinement is to apply this optimization to unchanged 

poNons of the thread stack, so that the entire stack is not reseanned 

each time for deeply recursive programs. This is equivalent to the ' 

generational stack collection technique of Cheng et al [9]; so far we 

have not implemented this optimization since our benchmarks are 
not deeply recursive. 

2.2 Parallelization 
Our collector is concurrent (it operates simultaneously with the 

mutators) but not parallel (the actual work of collection is only per- 

formed on the distinguished last CPU). The scalability of the col- 
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Color Meaning 
Black In use or free 

Gray Possible member of cycle 

White Member of garbage cycle 

Purple Possible root of cycle 

Green Acyclic 
Red Candidate cycle undergoing E-computation 

Orange Candidate cycle awaiting epoch boundary 

Table 1: Object Colorings for Cycle Collection. Orange and 
Red are only used by the concurrent cycle collector. 

lector is therefore limited by how well the collector processor can 
keep up with the mutator processors. Our design point was for one 

collector CPU to be able to handle about 3 mutator CPU's, so that 

for four-processor chip multiprocessors (CMPs) one CPU would be 

dedicated to collection. 
It is possible to parallelize our algorithm, particularly the refer- 

ence counting described in this section. Most straightforwardly, 

work could be partitioned by address, with different processors 

handling reference count updates for different address ranges. If 

these were the same address ranges out of which those proces- 

sors allocated memory, locality would tend to be good except when 

there was a lot of thread migration due to load imbalance. 
A scheme which is in many ways simpler and would have bet- 

ter load balance, would be to straightforwardly parallelize the ref- 

erence count updates and use fetch-and-add operations to ensure 

atomicity on the reference count word. The problem is that now all 

operations on the reference count field will incur a synchronization 

overhead. 
These solutions only address the problem of reference counting; 

cycle collection, which is discussed in Sections 3 and 4 is harder 

to parallelize, although it would be possible to use the techniques 

in this paper for a local "cluster" of processors and then use tech- 

niques borrowed from the distributed computing community to col- 

lect inter-cluster cycles [28]. 

3. SYNCHRONOUS CYCLE COLLECTION 
Since the early 1960's when both mark-and-sweep [26] and ref- 

erence counting [ 11 ] were first proposed for automatic garbage col- 
lection, a deficiency of many collectors based on reference counting 

has been their inability to collect cyclic garbage. Solutions to this 
problem have ranged from placing the responsibility for breaking 

cycles on the programmer, to providing special programming ab- 
stractions [6] to using an infrequent mark-and-sweep collector as a 

backup to the reference counting collector [ 12]. 
In passing, it should be noted that cycles can be problematic for 

tracing collectors as well. Cyclic garbage greatly increases the false 

retention effects in conservative collectors, sometimes to unaccept- 

able levels [7]. Cycles can also disturb generational collectors by 

causing large amounts of dead data to be moved into the "old" gen- 

, eration. Finally, cycles can cause poor performance for the train 
algorithm by requiring cars to be moved multiple times. 

We now expand the algorithm of the previous section to handle 

cyclic garbage. Following our philosophy of using a pure reference- 

counting approach, rather than a hybrid of reference-counting and 

tracing, we find cyclic garbage by performing localized cycle de- 
tection. 

In this section we describe a synchronous "stop the world" cycle 
collector so that the concerns raised by concurrent mutator activity 

can be factored out. In Section 4 we extend the algorithm to handle 
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Figure 2: State transition graph for cycle collection. 

concurrent mutation. 

First of all, we observe that some objects are inherently acyclic, 

and we speculate that they will comprise the majority of objects 

in many applications. Therefore, if we can avoid cycle collection 
for inherently acyclic objects, we will significantly reduce the over- 

head of cycle collection. 

Some classes can be statically determined to be acyclic: those 

that contain only scalars and references to final acyclic classes (that 

is, classes that are acyclic and may not be subelassed), and arrays 

of final acyclic classes. In Java, an important special case of the 

latter group are arrays of scalars. 

In the Recycler, part of the reference counting field in each object 

is reserved for cycle collection, which uses a coloring scheme as 
detailed in Table 1. An object is colored green at object creation 

time if  the class of the object is statically determined to be acyclic. 

Note that for static compilation, the class graph could be an- 

alyzed to determine which classes are acyclic. However, in the 

presence of dynamic class loading our more restrictive formulation 

must be used, since an acyclic class could later be subclassed with 

a cyclic class. 

For those objects that are potentially cyclic, we use a technique 
first decsribed by Christopher [10] in which garbage cycles are 

identified by tentatively subtracting internal references, and observ- 
ing whether the resulting structure has regions with zero reference 

count. 

Our algorithm is based variant of the coloring algorithm pro- 
posed by Martinez et al [25] and extended by Lins [23]. An ex- 

cellent description of the latter algorithm is contained in the book 

by Jones and Lins [20]; we will briefly describe our algorithm and 
highlight the differences with Lins' algorithm. 

The basic approach is based on the fact that a live cycle must 

contain at least one object with a reference count of  two or more. 

Therefore, whenever a reference count is decremented to a non- 

zero value, we record the pointer in a root buffer and color the 

object purple, meaning that it is a potential root of  a garbage cy- 
cle. We also set a buffered flag in the object to ensure that we do 

not record the pointer in the root buffer more than once. The state 
transition graph for our algorithm is shown in Figure 2. 

Optimistically, we hope that eventually the potential root will ei- 
ther become garbage (by its reference count dropping to zero) or 
will become linked to some other live structure, causing its refer- 
ence count to increase again, at which point we re-color it black. 

In either of these cases, we know that the object is not part of a 
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Figure 3: Example of compound cycle that causes Lins' algo- 
rithm to exhibit quadratic complexity. 

garbage cycle. 

Periodically, we process the root buffer. The data structures 
rooted by those objects that are still purple are traversed, and the 

reference counts due to internal pointers are subtracted, with the 

objects traversed marked gray indicating that they are candidates 

for garbage cycle removal (inherently acyclic - g reen-  objects are 
not marked or traversed). This is the marking phase of the algo- 

rithm. 
A garbage cycle will have only internal pointers, and therefore 

subtracting the counts due to internal pointers will cause the refer- 
ence counts in the cycle to drop to zero. A second traversal start- 

ing from the once-purple roots finds such objects and colors them 
white. This is the scanning phase of the algorithm. Gray objects 

whose reference count is non-zero are colored black, along with all 
objects reachable from them. In the process, the reference counts 
are restored, in a process called unscanning (or "scan black" in 

Jones and Lins' book). 
Finally, the white objects are swept into the free list, the refer- 

ence counts of green objects they refer to are decremented, and the 

root buffer is cleared. This is the collection phase of the algorithm. 

Lins' algorithm performs the mark, scan, and collect Phases to- 
gether for each candidate root in turn. Unfortunately, this makes 

the algorithm O(n 2) in the worst case, as for example in the cycle 
shown in Figure 3. His algorithm will perform a complete scan 

from each of the candidate roots until it arrives at the final root, at 
which point the cycle will be collected. Lins' algorithm also does 
not use a buffered flag, and may therefore consider the same root 

multiple times. 
Our algorithm performs each phase in its entirety for all of the 

roots, and is therefore linear in the size of the object g r a p h - O ( N +  
E) - since the mark, scan, and collect phases each traverse at 
worst each object and each pointer. In the worst case our algorithm 

would traverse the entire heap 3 times. In practice, we observe far 
less memory traversal, since we eliminate consideration of green 
nodes, and many candidate roots become garbage before they are 

scanned. 

4. CONCURRENT CYCLE COLLECTION 
In this section we briefly describe the concurrent cycle collector. 

A fuller description of the details of the algorithm, including de- 

tailed pseudo-code and a formal proof of correctness, is presented 

in concurrently published work [5]. 

The concurrent cycle collection algorithm is somewhat more com- 

plex than the synchronous algorithm. As with other concurrent 
garbage collection algorithms, we must contend with the fact that 
the object graph may be modified while is is being scanned by the 
collector. In addition the reference counts may be as much as two 
epochs out of date. 

Our algorithm relies on the stability property of garbage: once an 
object becomes garbage, it can not cease being garbage. The basic 

approach is to use the sequential algorithm of the previous section 

to find what appear to be garbage cycles. We then perform two 
validation tests to ensure that the garbage cycles were not detected 

erroneously due to concurrent mutator activity. 

An important characteristic of our algorithm is that the validation 
tests are relatively simple and are independent of the algorithm used 
to detect the candidate cycles. This greatly simplifies the proof of 
correctness. 

Since we can not rely on being able to re-trace the same graph 
in order to restore reference counts that have been subtracted due 

to internal pointers, we instead maintain two reference counts for 

each object: one is the true reference count (usually just called the 
RC), and the other is the cyclic rej~rence count (or CRC). 

Both counts, the color, and the buffered flag are stored in a single 
32-bit word in the object header. The RC and CRC are each 12 bits 

plus an overflow bit. When the overflow bit is set, the excess count 

is stored in a hash table. In practice this hash table never contains 
more than a few entries. 

The algorithm proceeds in a similar manner to the synchronous 

algorithm, except that when an object is marked gray its cyclic ref- 
erence count is initialized to its true reference count, and hence- 

forward the algorithm operates only on the cyclic reference count, 
leaving the true reference count unchanged. However, in the col- 
lect phase instead of  marking white objects black and freeing them, 

we instead mark them orange (as shown in the transition graph in 

Figure 2) and place them in a cycle buffbr. Different cycles are 
delineated by nulls. 

4.1 Safety Tests 
So far we have simply used a synchronous cycle collection algo- 

rithm in a concurrent setting, without any synchronization between 

the mutators and the collector. Therefore, some of the cycles found 

may not really be garbage. To prevent collection of  live data, we 
perform two validation steps: one to verify the number of exter- 
nal references into the cycle; and a second, to check for concurrent 
addition of references into the cycle which would make it live. 

The ~-test checks for external references to a cycle, and pro- 

ceeds as follows: for each cycle, set the cyclic reference count 

(CRC) of each object to its true reference count (RC). Then fol- 
low the pointers from each of the objects in the cycle, subtracting 
one from the CRC of each reached object. Finally, take the sum of 
the CRC's of each object in the cycle, This sum is the total number 

of external references into the cycle. If  it is zero, then the cycle is 
garbage provided that no additional edges were concurrently added 
into the cycle. 

An important feature of the Z-test is that it operates on a fixed set 

of nodes; it does not rely on following pointers within the objects 
to elaborate the set, since those pointers are subject to concurrent 
mutation. This is the key insight of the S-test. 

The A-test runs after the next epoch and checks for concur- 
rent modification to the cycle. It scans the objects in each cycle 

and checks whether they are still orange (if their reference count 

changed, they would have been recolored). If  all objects in a cycle 

are still orange, and it has passed the external reference test, then 
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the cycle is garbage and is collected. 

Note that it is not necessary to wait to observe the effect of con- 

current decrement operations, since they only reduce the external 

reference count of the cycle. 

4.2 Liveness 
So far we have described an algorithm that is safe - i t  does not 

collect reachable data, by virtue of the two validation tests. How- 

ever, we must also demonstrate liveness - that all garbage is col- 

lected. 
Acyclic garbage is handled by the basic reference counting tech- 

nique of Section 2. Roots of cyclic garbage are entered into the 

root buffer by the process described in the previous section for the 

sequential algorithm. The concurrent variant of the sequential al- 

gorithm then searches for dead cycles from those roots, 

If there is no concurrent mutation, the synchronous algorithm 

will find garbage due to the stability proper~ of garbage. 

If a cycle is identified as garbage but fails either of the validation 
tests, then its root (the first object in the buffer) and any members 

that have been colored purple due to decrements are entered into 

the root buffer and reconsidered during the next cycle collection. 

This ensures that any cycle abandoned due to concurrent mutation 

is correctly reconsidered. 
The only other possible case is that the sequential algorithm does 

not find a garbage cycle due to concurrent mutation, and therefore 

never enters it into consideration by the validation tests. However, 

in that case, the concurrent modification will subsequently be visi- 

ble to the collector as a decrement, which will introduce the object 

in question into the set of possible roots, which is then considered 

correctly. 

4.3 Collection of Cycles 
To collect the cycles, we process the cycle buffer in reverse or- 

der. To see why this is necessary, consider Figure 3. The concurrent 

algorithm will consider each of the objects as a separate cycle, and 
if we collected the cycles in the same order they appeared in the 

buffer, we would only collect the rightmost cycle on each succes- 

sive epoch, which is clearly unacceptable. 

By collecting the cycles in reverse order, and decrementing both 
the RC and CRC fields of any objects referenced by collected ob- 

jects, by the time we reach the earlier, dependent cycle, its external 

reference count will have dropped to zero, and it can be collected. 

We observe that i fa  cycle is collected, then the external reference 

count (ERC) of  any dependent cycles can be updated by subtracting 

the number of  edges from the collected cycle to the dependent cy- 

cle. Since the collected cycle is garbage, it is not possible that those 

edges were subject to concurrent mutation, and it is not necessary 

to re-compute the ERC. Therefore, if the ERC of  the dependent cy- 

cle reaches zero, and it passes the A-test, then it is also a garbage 

cycle and can be collected. 
There are also certain types of dependent graphs not detected in 

a single epoch by our algorithm that would be detected if a fully 
general SCC algorithm were run. However, such an algorithm may 

require constructing a supergraph as large as the original object 
graph, and once again we believe the likelihood of such data struc- 

tures in practice is very low. 

4.4 Isolated Markings 
Since the algorithm for finding candidate cycles is coloring ob- 

jects concurrently with the execution of the mutators, it is possible 

that the mutators can cut an edge that causes arbitrary gray or white 
subgraphs to be isolated from the collector. These subgraphs could 
later "fool" the algorithm into producing an incorrect result. 

We handle this problem by always recoloring the reachable graph 

of a gray or white object to black when its reference count is incre- 

mented or decremented (in the case of a decrement, the root object 

is colored purple and considered as a root). This means ttmt the 

colors will always be properly reset after at most two epochs. 

In the meantime, false positives are handled by the validation 

tests. False negatives are not an issue since the objects are in- 

herently live (because they have been concurrently mutated), and 

any garbage cycles involving concurrent decrements will be found 

when the object is recolored purple and added to the root buffer. 

5. IMPLEMENTATION 
The Recycler is implemented in Jalapefio [1], a Java virtual ma- 

chine written in Java and extended with unsafe primitives that are 

available only to the virtual machine. Jalapefio uses safe points 
- rather than interrupting threads with asynchronous signals, each 

thread periodically checks a bit in a condition register that indi- 

cates that the runtime system wishes to gain control. This design 

significantly simplifies garbage collection. 

Implementing the garbage collector in Java creates a number of 
its own problems: the memory allocator must bootstrap itself; the 

collector must avoid any allocation and must make sure it does not 

prematurely collect its own intemal data structures. 

All information required by the reference counting collector is 
stored in one extra word in the object header. We are implementing 

other object model optimizations that in most cases will eliminate 

this per-object overhead. 

The Recycler is an exact collector, and makes use of the object 
and stack reference maps generated for use with the mark-and- 

sweep collector. 

5.1 Memory Allocator 
Since long allocation times must be treated as mutator pauses, 

the design of the memory allocator is crucial. The design of the al- 

locator also strongly affects the amount of  work that can be shifted 

to the collection processor; the more concurrent access to the allo- 

cation structures is possible, the better. 
We currently use an allocator which is less than ideal for the 

Recycler; it was adapted from the non-copying parallel mark-and- 

sweep collector described in the next section. Using the termi- 

nology of Wilson et al [31], small objects are allocated from per- 

processor segregated free lists built from 16 KB pages divided into 

fixed-size blocks. Large objects are allocated out of  4 KB blocks 

with a first-fit strategy. 

6. THE PARALLEL COLLECTOR 
In this section we briefly describe the parallel non-copying mark- 

and-sweep collector with which the Recycler will be compared. 

Each processor has an associated collector thread. Collection 

is initiated by scheduling each collector thread to be the next dis- 

patched thread on its processor, and commences when all proces- 
sors are executing their respective collector threads (implying that 

all mutator threads are stopped). 

The parallel collector threads start by zeroing the mark arrays for 

their assigned pages, and then marking all objects reachable from 
roots (references in global static variables and in mutator stacks). 

The Jalapefio scheduler ensures that all suspended threads are at 

safe points, and the Jalapefio compilers generate stack maps for 
the safe points identifying the location of  references within stack 

frames. This allows the collector threads to quickly and exactly 
scan the stacks of the mutator threads and find the live object refer- 
ences. 
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Program Description 

20 l.compress 

202dess 

205.raytrace 

Compression 

Java expert system shell 

Ray tracer 

Applic. 

Size 

18KB 

11 KB 

57 KB 
209.db Database 10 KB 

213.ja;¢ac ............... Java bytecode compiler 688 KB 

222.mpeg~gdi9 MPEG coder/decoder 120 KB 

227.mtrt Multithreaded ray tracer 571 KB 

228.jack Parser generator 131 KB 

specjbb 1.0 TPC-C style workload 821 KB 

Ja!apefio Jalapefio compiler 1378 KB 

ggauss ...... Cyclic tomare test (synth.) 8 KB 

Threads Obj Obj 

Alloc Free 

1 0 .15M 0.13M 

1 17.4 M 17.2 M 

1 13.4M 13.1M 

1 6.6M 5.9M 

1 16.1M 14.1M 

1 0.30M 0.27M 

2 14.0M 13.5M 

1 16.8M 16.4M 

3 33.3 M 33.0M 

1 t9 .6M 18.4M 

1 32.4M 32.0M 

Byte 
Alloc 

240 MB 

686 MB 

361 MB 

193 MB 

195 MB 

25 MB 

381 MB 

715 MB 

1034 MB 

676 MB 

1163 MB 

obj 
Acyclic I Incs[  Decs 

90% 3.59M 16.3M 

10% 67.0M 66.7M 

51% 41.6M 51.8M 

76% 12.1 M 6.70M 

90% 4.5M 17.3 M 

81% 16.8 M 33.0M 

59% 52.4M 84.5 M 

7%i  62.6M 6 5 . 6 M  

< 1 % 1  56.9M 77.2M 

Table 2: Benchmarks and their overall characteristics. The benchmarks include the complete SPEC suite and represent a wide range 
of application characteristics. 

While tracing reachable objects, multiple collector threads may 

attempt to concurrently mark the same object, so marking is per- 

formed with an atomic operation. A thread which succeeds in 

marking a reached object places a pointer to it in a local work buffer 
of  objects to be scanned. After marking the roots, each collector 

thread scans the objects in its work buffer, possibly marking addi- 

tional objects and generating additional work buffer entries. 

In order to balance the load among the parallel collector threads, 

collector threads generating excessive work buffer entries put work 
buffers into a shared queue of work buffers. Collector threads ex- 

hausting their local work buffer request additional buffers from the 

shared queue of work buffers. Garbage collection is complete when 

all local buffers are empty and there are no buffers remaining in the 

shared pool. 
At the end of collection the mark arrays have marked entries 

for blocks containing live objects, and unmarked enttries for blocks 
available for allocation. If all blocks in a page are available, then 

the page is returned to the shared pool of ftee heap pages, and can 

be reassigned to another processor, possibly for a different block 

size. 
Collector threads complete the collection process by yielding 

the processor, thus allowing the waiting mutator threads to be dis- 

patched. 
The design target for this collector is multiprocessor servers with 

large main memories. When compiled with the Jalapefio optimiz- 

• ing compiler, this collector was able to garbage collect a 1 GB heap 

with millions of live objects in under 200 milliseconds on a 12- 
processor PowerPC-based server. This statistic should give some 

indication that we are not comparing the Recycler against an easy 

target. 

7. MEASUREMENTS 
The Recycler is a fairly radical design for a garbage collector. 

We now present measurements showing how well various aspects 

of the design work. 
The Recycler is optimized to minimize response time, while the 

mark-and-sweep collector is optimized to maximize throughput. 
We present measurements of both systems that illustrate this clas- 

sical tradeoff in the context of multiprocessor garbage collection. 
All tests were run on a 24 processor IBM RS/6000 Model $80 

with 50 GB of RAM. Each processor is a 64-bit PowerPC RS64 III 

CPU running at 450 MHz with 128 KB split L1 caches and an 8 
MB unified L2 cache. The machine runs the IBM AIX 4.3.2 Unix 

operating system. 

7.1 Benchmarks 
Table 2 summarizes the benchmarks we have used. Our bench- 

marks consist of the full suite of SPEC benchmarks (including 

SPECjbb); the Jalapefio optimizing compiler compiling itself; and 
g g a u s  s, a synthetic benchmark designed as a "torture test" for the 
cycle collector: it does nothing but create cyclic garbage, using a 

Gaussian distribution of neighbors to create a smooth distribution 
of random graphs. 

SPEC benchmarks were run with "size 100" for exactly two it- 
erations, and the entire run, including time to JIT the application, 
was counted. 

We performed two types of measurements: response time ori- 

ented and throughput oriented. Since our collector is targeting re- 
sponse time, most of the measurements presented are for the former 
category 

For response time measurements, we ran the benchmarks with 
one more CPU than there are threads. For throughput measure- 

ments, we measured the benchmarks running on a single processor. 

The first scenario is typical for response time critical applications 
(multiprocessor workstations, soft real-time systems, etc.) The sec- 

ond scenario is typical of multiprogrammed multiprocessor servers. 

Table 2 summarizes the benchmarks and shows the number of 
objects allocated and freed by each program; the difference is due 

to the fact that some objects are not collected before the virtual 

machine shuts down. It also shows the number of bytes requested 

over the course of each program's execution. 
To get a broad overview of the demands each program will place 

on the Recyeler, we show the number of increment and decrement 

operations performed, as well as the percentage of objects created 
that are acyclic according to our very simple test performed at class 

resolution time. These measurements confirm our basic hypothe- 
ses: the number of reference count operations per objects is usually 
small (between 2 and 6), so that reference counting will be efficient 
- the exceptions are db and mpegaudio, which perform about 

20 and 60 mutations per object, respectively. The effect of these 

mutation rates will be seen in subsequent measurements. 
The number of acyclic objects varies widely, indicating that the 

system may be vulnerable to poor performance for applications 
where it can not avoid checking for cycles on many candidate roots. 
In practice this turns out not to be a problem. 

7.2 Application Performance 
Our collector has a new and unusual design, and there are ob- 

vious questions about its overhead and applicability in practice. 
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Figure 4: Relative Speed of the Reeyeler compared to the Paral- 
lel Mark-and-Sweep Collector. In the multiproeessing environ- 
ment the Recycler offers much lower pause times while remain- 
ing competitive with Mark-and-Sweep in end-to-end execution 
time. 

While these will be addressed below in more detail, we believe 

that the ultimate measure of a garbage collector is, How well does 

the application perform? 
When we undertook this work, our goal was to develop a con- 

current garbage collector that only suffered from rare pauses of un- 

der 10 milliseconds, while achieving performance within 95% of a 

tuned conventional garbage collector. 

Figure 4 shows how well we have succeeded. It shows the speed 

of applications running with the Recycler relative to the speed of 

the same applications running with the parallel mark-and-sweep 
collector. The "multiprocessing" bar shows the response time ori- 

ented measurement, where an extra processor is allocated to run the 

collector; the "uniprocessing" bar shows the throughput oriented 

measurement, where the collector runs on the same processor as 

the mutator(s). 
For our design point, namely the multiprocessor environment, all 

but two of the benchmarks run within about 95% of the speed of the 

baseline (mark-and-sweep). The exceptions are j e s  s and j a v a c .  

For three out of eleven benchmarks, the Recycler even provides a 

moderate application speedup. 
In a single processor environment, performance generally drops 

off by 5 to 10%, since the work of  the collector is no longer be- 

ing overlapped with the mutators. However, the performance of 
j e s s  and j a v a c  is quite poor in this environment. Subsequent 

sections will investigate the characteristics that lead to this perfor- 

mance problem. 

Depending on ones' point of view, the Recycler can be viewed 

as having successfully extracted parallelism from the application 
and distributed it to another processor; or as having introduced a 

significant overhead into the collection process. 
However, we believe that there is a significant body of users who 

will appreciate the benefits provided by the Recycler, while being 
willing to pay the associated cost in extra resources. Technology 
trends such as chip multiprocessing (CMP) may favor this as well. 

7.3 Collector Costs 
Figure 5 shows the distribution of time spent on the collector 

Figure 5: Collection Time Breakdown. The time devoted to 
various phases varies widely depending on the characteristics 
of the program. 

CPU by the Recycler. This is work that is overlapped with the 

mutators in the multiprocessing case, and these measurements are 

from the multiprocessing runs. 

For most applications, the majority of  time is spent processing 

decrements in the mutation buffers. Decrement processing includes 

not only adjustments to the reference count and color of the object 

itself, but the cost of freeing the object i f  its reference count drops 

to zero. Freeing may be recursive. 

The memory allocator is largely code shared with the parallel 

mark-and-sweep collector, and is not necessarily optimized for the 

reference counting approach. Considerable speedups are probably 
possible in the decrement processing and freeing. 

A smaller but still significant portion of the time is spent in ap- 

plying mutation buffer increments. The m p e g a u d i o  application 

spend almost all of its collector time in increment and decrement 

processing. This is because it performs a very high rate of  data 

structure mutation, while containing data that is almost all deter- 

mined to be acyclic by the class loader. 

The Purge phase removes and frees objects in the root buffer 
whose reference counts have dropped to zero. If  the size of the 

root buffer is sufficiently reduced and enough memory is available, 

cycle collection may be deferred until another epoch. Purging is a 
relatively small cost, except for jess and ggauss. 

The Mark and Scan phases perform approximately complemen- 

tary operations and take roughly the same amount of time. The 

Mark phase colors objects gray starting from a candidate root, and 

subtracts internal reference counts. The Scan phase traverses the 

gray nodes and either recolors them black and restores their refer- 

ence counts or else identifies them as candidate cycle elements by 
coloring them white. 

The performance problems with j a v a c  are largely due to the 

fact that it has a large live data set which is frequently mutated, 

causing pointers into it to be considered as roots. These then cause 
the large live data set to be traversed, even though this leads to no 
garbage being collected: it spends over 50% of its time in Mark and 
Scan. 

Only three benchmarks, namely c o m p r e s s ,  j a l a p e f i o  and 

q g a u s  s, actually spend a significant amount of time actually col- 
lecting cyclic garbage. The case of c o m p r e s s  is particularly inter- 

98 



Concurrent Reference Counting (The Recycler) 

Program Epochs I PauseTime I Pause I Coll. I Elap. 
Max. I Avg. Gap Time Time 

compress I 41 1.0 ms 0.5 ms 53 ms 1.3 s 238 s 

jess 93 2.2 ms 1.1 ms 120 ms 63.4s 136s 

ray[race 101 1.1 ms 0.7 ms 84 ms 25.2 s 99 s 

db 215 1.0 ms 0.5 ms 136ms 73.5 s 183 s 

javac 182 2.3 ms 0.9 ms 285 ms 104.1s 147 s 

mpegaudio 2i 0.7 ms 0.5 ms 36 ms 4.2 s 271 s 

mtrt 66 2.2 ms 0.6 ms 150 ms 22.9 s 74 s 

jack 153 1.3ms 0.7ms 122ms 31.1s 147s 

specjbb 72 1.3 ms 0.5 ms 493 ms 136.7 s (2103) 

ja!apefio 330 2.6 ms 0.6ms 192 ms 93.9 s 154 s 

ggauss 405 0.5 ms 0.2 ms 22~2 ms 99.8 s 282 s 

Parallel Mark-and-Sweep 

oc] Max I co,, I E,ap 
Pause Time Time 

7 186 ms 1.2 s 242 s 

24 237 ms 5.2 s 110 s 

9 374 ms 2.7 s 93 s 

4 414 ms 1.1 s 180 s 

12 531 ms 2.8 s 129 s 

4 172 ms 0.7 s 274 s 

l0 530 ms 4.0 s 72 s 

23 190 ms 4.1 s 144 s 

6 l 127ms l  4.7s (2351) 

4 162 ms 0.6 s 287 s 

24 171 ms 3.7 s 271 s 

Table 3: Response Time. Maximum pause time is 2.7 milliseconds while the elapsed time is generally within 5% of Mark-and-Sweep. 
The smallest gap between pauses is 36 ms, and is usually much larger. 

Program 

compress 128 

jess  t920 

raytrace 416 

db 896 

javac 1792 

mpegaudio 43616 

mtrt 992 

jack 448 

spe~bb 4832 

j~apefio 1280 

ggaus s 1568 

Buffe..l___r. Space (KB) Possible Roots (M..~ 

Mutation I Root }l Possible[Buff ,  [ Roots 

131 

1180 

393 

131 

524 

131 

786 

131 

660 

655 

393 

0.40 0.03 0.01 

54.3 9.36 0.23 

3.40 42.i 0.27 

60.8 3.8 3.8 

38.5 9.1 4.5 

6.42 0.07 0.01 

4.2 0.96 0.56 

16.6 0.85 0.20 

51:3 6.9 2.8 

53.8 11.1 6.9 

51.4 18.8 7.7 

Table 4: Effects of  Buffering. The buffer requirements are 
small, and filtering significantly reduces the roots that must be 
considered for cycle collection (see also Figure 6). 
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esting: it uses many large buffers (roughly 1 MB in size), which are 

referenced by cyclic structures which eventually become garbage. 
While the amount of  mutation and the number of objects is small, 
the Recycler performs all zeroing of large objects (since this would 

otherwise be counted as a mutator pause), and this is counted as 
part of the Free phase. This accounts for c o m p r e s s  running faster 

under the Recycler: we have paraUelized block zeroing[ 

7 . 4  R e s p o n s e  T i m e  

While we have shown that the Recycler is very quite competitive 

with the mark-and-sweep collector in end-to-end execution times, 

the Recycler must also meet stringent timing requirements. 
Table 3 provides details on both pause times and end-to-end ex- 

ecution times for the benchmarks running under both the Recycler 
and the parallel mark-and-sweep collector. The benchmarks are be- 

ing run in our standard response time oriented framework: there is 

one more processor than there are mutator threads. 
The longest measured delay was 2.6 ms for the j a l a p e f i o  bench- 

mark. 
The longest type of delay occurs when an allocation on the first 

processor must fetch a new block and triggers a new epoch, which 
immediately causes the collector thread to run, scan the stack of the 

mutator threads, and switch the mutation buffers, On return from 

Figure 6: Root Filtering 

the collector, the allocator must still fetch a newly freed block of 

memory and format it. Therefore the maximum delay experienced 
by the application is usually when calling the allocator, and that 

delay is slightly more than the maximum epoch boundary pause. 
Maximum pause time is only part of the story, however. It is also 

necessary that mutator pauses occur infrequently enough that the 
mutator can achieve useful work without constant interruptions. 

Cheng and Blelloch [8] have formalized this notion for his in- 

cremental collector as maximum mutator utilization, which is the 
fraction of  time the mutator is guaranteed to be able to run within 
a given time quantum. This is a natural measure for a highly in- 

terleaved collector like theirs which interrupts the mutator at every 

allocation point, but is less relevant for our collector which nor- 
mally only interrupts the mutator infrequently at epoch boundaries. 

We provide a measurement of the smallest time between pauses 

("Pause Gap"), which ranges from 36 ms for mpeqaud±o  to al- 
most halfa second for s p e c j b b .  Thus for m p e q a u d i o ,  the mu- 
tator may be interrupted for as much as 0.7 ms, but it will then run 
for at least 36 ms. 

Interestingly, the programs with shorter pause gaps also seem 
to have shorter maximum pause times. As a result, the mutator 
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Program Epochs 

compress 41 

jess 93 

ray~ace 101 

db 275 

javac 182 

mpegaudio 21 
mtrt 66 

jack 154 
spe~bb 72 

jalapefio 330 

ggauss 405 

Roots Cycles Found 
Checked Coil. Aborted 

6,067 101 0 

226,707 0 0 

270,900 3 1 

3,791,011 0 0 

4,520,382 3,874 3 

9,638 0 0 
273,109 13 0 

199,827 701 0 

2,786,822 0 0 

6,938,814 388,945 7 

7,666,111. 2691302 0 

ReN. 
Traced 

123,739 

14,870,730 

35,611,945 

83,056,779 

168,570,902 

176,634 
114,054,072 

1,783,240 

96,338,266 

50,389,369 

28,970,954 

Trace/ 
Alloc 

0.84 

0.85 
2.64 

12.49 
10.45 

0,58 

0:78 

0.10 
2.98 

2.57 

0.89 

] M&S 
. Traced 

1,800,816 

8,558,011 

4,009,684 

2,004,687 

4,550,773 

1,065,008 

4,217,820 

6,651,059 

4,081,266 

1,463,823 

5,851,686 

Table 5: Cycle Collection. Many applications check a large number of roots without finding much cyclic garbage, and race conditions 
leading to aborted cycles are rare. The number of references that have to be traced by the two collectors vary widely depending on 
the program. 

utilization remains good across a spectrum of applications. 

Although the Recycler spends far more time performing collec- 
tion than the mark-and-sweep collector, this collection time is al- 

most completely overlapped with the mutators. We are investigat- 

ing ways to reduce this overhead, including both algorithmic [4] 
and implementation improvements. 

The specj  bb benchmark performs a variable amount of work 
for a given time period, so its throughput scores are shown in paren- 
theses. 

Our maximum pause time of 2.6 ms is two orders of magnitude 
shorter than that reported by Doligez and Leroy [16] and by Nettles 
and O'Toole [27], both for a concurrent dialect of ML. While pro- 
cessor speeds have increased significantly in the last seven years, 
memory systems have progressed far less rapidly. We believe our 
system represents a substantial increase in real performance; how- 
ever, only "head-to-head" implementations will tell. Our work is a 
beginning in this direction. 

7.5 Buffering 
The Recycler makes use of five kinds of buffers of object refer- 

ences: mutation buffers, stack buffers, root buffers, cycle buffers, 
and mark stacks. The four buffer types have been described in the 
algorithm section; mark stacks are used to express the implicit re- 
cursion of the marking procedures explicitly, thereby avoiding pro- 
cedure calls and extra space overhead. 

All five types of buffers consumes memory, and it is clearly un- 
desirable for the garbage collector to consume memory. In practice, 
only the mutation and root buffers turn out to be of significant size. 
The thread stacks never have more than a few hundred object ref- 
erences, so the stack buffers are of  negligible size (although they 
could become a factor on a system with large numbers of threads, 
or for applications which are deeply recursive). 

Table 4 shows the instantaneous maximum buffer space utiliza- 
tion ("high water mark") for both mutation buffers and root buffers. 
Mutation buffer consumption is reasonable, with the exception of 
mpegaud io ,  which uses 43 MB (!) of mutation buffer space. This 
is a direct result of  the very high per-object mutation rate reflected 
in the measurements in Table 2, showing that m p e g a u d i o  per- 
forms about 60 mutations per allocated object. 

We are implementing some preprocessing strategies which should 
reduce the buffer consumption by about a factor of 2. We also have 
not yet tuned the feedback algorithm between the mutators and the 
collector, which should further reduce buffer consumption. In par- 

ticular, we hope to take advantage of Jalapefio's dynamic profiling, 
feedback, and optimization system [3] to improve space consump- 
tion for programs like rapegaudio .  

Table 4 also shows the effectiveness of our strategies for reduc- 

ing the number of objects that must be traced by the cycle collector. 
Every decrement that does not actually flee an object potentially 

leaves behind cyclic garbage, and must therefore be traced. The 

number of such decrements is shown ("Possible"), as well as the 
number that are actually placed in the buffer ("Buffered"), and the 
number that are left in the buffer after purging ("Roots"). Purging 

checks for objects that have been modified while the collector waits 

to process the buffer; objects whose reference count has been incre- 
mented are live and can be removed from consideration as roots, 
and objects whose reference count has been decremented to zero 
are garbage and can be freed. 

While the number of possible candidate roots is high (as many as 
60 million for db), the combination of the various filtering strate- 
gies is highly effective, reducing the number of  possible roots by at 
least a factor of  seven. Only ggaus s, our synthetic cycle genera- 
tor, requires a large fraction of roots to be buffered. 

While filtering is highly successful, Figure 6 shows that no one 
technique is responsible for its success. On average, about 40% 
of possible roots are excluded from consideration because the are 
acyclic, while another 30% are eliminated because they are already 
in the root buffer ("Repeat"). The balance between these two fac- 
tors varies considerably between applications, but on balance the 
two filtering techniques remove about 70% of all candidate roots 
before they are ever put in the root buffer. 

Another 10% or so are freed during root buffer purging, because 
a concurrent mutator has decremented the reference count of  the 
object to zero while it was in the buffer. Surprisingly, the number 
of objects in the buffer whose reference count is incremented, al- 
lowing them to be removed ("Unbuffered") is very small and often 
z e r o .  

Finally, between 1 and 15% of the possible roots are left for the 
cycle collection algorithm to traverse, looking for garbage cycles. 
Thus the filtering techniques are a key component of  making the 
cycle collection algorithm viable in practice. 

7.6 Cycle Collection 
Table 5 summarizes the operation of the concurrent cycle collec- 

tion algorithm. There were a number of surprising results. First 
of all, despite the large number of  roots considered, the number 
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Reference Counting Mark-and,Sweep 
Program Heap Epochs I Coll. Elapsed GCs Coll. Elapsed 

Size I Time Time Time Time 

compress 64 MB 46 1.3 s 247 s 7 1.1 s 236 s 

j'ess 64 MB 116 44.1 s 166 s 19 4.2 s 108 s 

raytrace 64 MB 195 15.3 s 108 s 9 2.5 s 94 s 

db 64 MB 276 33.7 s 207 s 4 1.2 s 178 s 

javac 64 MB 234 11 i.8 s 249 s 12 2.9 s 127 s 

.... mpegaudio 64 MB 31 4.8 s 296 s 3 0.5 s 274 s 

mtrt 64 MB 157 17.2 s 115 s 10 3.6 s 99 s 

jack 64 MB 191 21.7 s 158 s 20 3.7 s 141 s 

specjbb 72 MB 85 25.2 s (70~) 5 1.9 s (841) 

jalapefio 256 MB 289 48.3 s 186 s 4 1.1 s 163 

ggauss 40 MB 516 65.1 s 327 s 40 6.2 s 273 s 

Table 6: Throughput.  Unlike the previous tables, the programs are run on a single processor. Even on a single processor the 
throughput of the Recycler is reasonable for most applications. 

of garbage cycles found was usually quite low. Cyclic garbage was 

significant in j a l a p e ~ . o  and our torture test, g g a u s s .  It was also 

significant in c o m p r e s s ,  although the numbers do not show it: 
multi-megabyte buffers hang from cyclic data structures in corn- 

p r o  s s, so the application runs out of memory if those 101 cycles 

are not collected in a timely manner, 

Note that j a v a c ,  which spends over 50% of its garbage collec- 

tion time searching for cyclic garbage to collect, actually collects 

less than 4,000 cycles. This explains j a v a c ' s  poor performance 

in the single processor environment. 
The number of cycles aborted due to concurrent mutation was 

smaller than we expected, but these invalidations only come into 

play when race conditions fool the cycle detection algorithm. 

Finally, Table 5 compares the number of references that must 

be followed by the concurrent reference counting ("Refs. Traced") 
and the parallel mark-and-sweep ("M&S Traced") collectors. The 

reference counting collector has an advantage in that it only traces 

locally from potential roots, but has a disadvantage in that the al- 

gorithm requires three passes over the subgraph. Furthermore, if 

the root of a large data structure is entered into the root buffer fre- 

quently and high mutation rates force frequent epoch boundaries, 

the same live data structure might be traversed multiple times. 
In this category, there is no clear winner. Each type of garbage 

collection sometimes performs one to two orders of magnitude more 

tracing than the other. To calibrate the amount of tracing per- 
formed, "Trace/Alloc" shows the number of references traced per 

allocated object for the reference counting collector. 

7.7 Throughput 
In the previous section we measured our collectors in an envi- 

ronment suited to response time; we now measure them in an envi- 

ronment suited to throughput. Table 6 shows the results of running 
our benchmarks on a single processor. The mark-and-sweep col- 

lector suffers somewhat since it is no longer performing collection 

in parallel. 
However, in this environment, the lower overhead of the mark- 

and-sweep collector dominates the equation, and it outperforms the 

the Recycler, sometimes by a significant margin. 
Of course, the Recycler is not designed to run in a single-threaded 

environment; nevertheless, it provides a basis for comparing the in- 
herent overhead of the two approaches in terms o f  overall work 

performed. 

8.  R E L A T E D  W O R K  

While numerous concurrent, multiprocessor garbage collectors 

for general-purpose programming languages have been described 

in the literature [i2, 14, 16, 18, 19, 21, 22, 24, 29, 30], the number 
that have been implemented is quite small and of these, only a few 

actually run on a multiprucessor [2, 12, 18, 16, 17, 27]. 

DeTreville's work on garbage collectors for Modula-2+ on the 

DEC Firefly workstation [12] is the only comparative evaluation 

of multiprocessor garbage collection techniques. His algorithm is 
based on Rovner's reference counting collector [29] backed by a 
concurrent tracing collector for cyclic garbage. Unfortunately, de- 

spite having implemented a great variety of collectors, he only pro- 

vides a qualitative comparison. Nevertheless, our findings agree 

with DeTreville's in that he found reference counting to be highly 

effective for a general-purpose programming language on a multi- 
processor. 

The Recycler differs in its use of cycle collection instead of a 

backup mark-and-sweep collector. The Recycler also uses atomic 

exchange operations when updating heap pointers to avoid race 

conditions leading to lost reference count updates; DeTreville's im- 
plementation required the user to avoid race conditions and was 

therefore unsafe. 
Huelsbergen and Winterbottom [19] describe a concurrent al- 

gorithm (VCGC) that is used in the Inferno system to back up 
a reference counting collector. They report that reference count- 
ing collects 98% of data; our measurements for Java show that the 
proportion of cyclic garbage is often small but varies greatly. The 
only measurements provided for VCGC were on a uniprocessor for 

SML/NJ, so it is difficult to make meaningful comparisons. 
The only other concurrent, multiprocessor collector for Java that 

we know of is the work of Domani et al [17]. This is a generational 

collector based on the work of Doligez et al [16, 15], for which 

generations were shown to sometimes provide significant improve- 

ments in throughput. No response time measurements were pro- 

vided. 
The other implemented concurrent multiprocessor collectors [2, 

18, 16, 27] are all tracing-based algorithms for concurrent variants 

of ML, and generally have significantly longer maximum pause 
times than our collector. In addition, ML produces large amounts 
of immutable data, thereby simplifying the collection process. 

The collector of Huelsbergen and Larus [18] for ML achieved 
maximum pause times of 20 ms in 1993, but only for two small 
benchmarks (Quicksort and Knuth-Bendix). Their collector re- 
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quires a read barrier for mutable objects that relies on processor 

consistency to avoid locking objects while they are being forwarded. 

Read barriers, even without synchronization instructions, are gen- 
erally considered impractical for imperative languages [20], and 

on weakly ordered multiprocessors their barrier would require syn- 
chronization on every access to a mutable object, so it is not clear 
that the algorithm is practical either for imperative languages or for 
the current generation of multiprocessor machines. 

In concurrently published work, Cheng and Blelloch [8] describe 

a parallel, concurrent, and incremental collector for SML. They 

take a much different approach, essentially trying to solve the prob- 
lem of making a compacting garbage collector meet stringent time 
bounds. Their approach requires such overheads as duplicating mu- 

mble fields, which we did not consider acceptable in our collector. 
On the other hand, their collector is scalable while ours is not. 

8.1 Reference Counting 
The Recycler shares with Deutsch and Bobrow's Deferred Refer- 

ence Counting algorithm [ 13] the observation that reference count- 

ing stack assignments is prohibitive, and that periodic scanning of 
the stack can be used to avoid direct counting of stack references. 

Th e principal difference is the manner in which the stack references 
are handled. Deferred Reference Counting breaks the invariant that 
zero-count objects are garbage, and requires the maintenance of 

a Zero Count Table (ZCT) which is reconciled against the scanned 
stack references. The ZCT adds Overhead to the collection, because 

it must be scanned to find garbage. 
The Recycler defers counting by processing all decrements one 

epoch behind increments, and by its use of  stack buffers. The result 
is a simpler algorithm without the additional storage or scanning re- 
quired by the ZCT, albeit at the expense &additional buffer space. 

8.2 Cycle Collection 
As described in Section 3, our cycle collection algorithm is de- 

rived from the synchronous algorithm devised by Martinez et al 
[25] and extended by Lins to lazily scan for cyclic garbage [23, 20]. 
Our synchronous variant differs in a number of important respects: 

its complexity is linear rather than quadratic; it avoids placing a 
root in the root buffer more than once per epoch; and it greatly 
reduces overhead by not considering inherently acyclic structures. 

Lins has presented a concurrent cycle collection algorithm [24] 
based on his synchronous algorithm. Unlike the Recycler, Lins 
does not use a separate reference count for the cycle collector; in- 
stead he relies on processor-supported asymmetric locking primi- 
tives to prevent concurrent mutation to the graph. His scheme has, 
to our knowledge, never been implemented. 

The Reeyeler's concurrent cycle collector could in the worst case 
require space proportional to the number of  objects (if it finds a cy- 

cle consisting of  all allocated objects). This is not directly compa- 
rable to concurrent tracing collectors, which push modified pointers 

onto a stack that must be processed before the algorithm completes. 
Since the same pointer can be pushed multiple times, the worst case 

complexity appears as bad or worse than the Recycler's. In prac- 
tice, each algorithm requires a moderate amount of buffer memory. 

9. CONCLUSIONS 
We have presented the Recycler, a concurrent multiprocessor 

garbage collector for Java implemented in Java. The Recycler com- 
prises novel algorithms for concurrent reference counting and cycle 
collection. Over a set of  eleven benchmark programs including the 
full SPEC benchmark suite, the Recycler achieves maximum mea- 
sured application pause times of  2.6 milliseconds, about two orders 
of magnitude shorter than the best previously published results. 

We have measured the Recycler against an highly tuned non- 

concurrent but parallel mark-and-sweep garbage collector. When 
resources are scarce, the throughput-oriented design of the mark- 
and-sweep collector yields superior execution times. But with an 
extra processor and some extra memory headroom, the Recycler 
runs without ever blocking the mutators, and achieves maximum 

pauses that are about 100 times shorter without sacrificing end-to- 
end execution time. 

The Recycler uses a novel concurrent algorithm for detecting 

cyclic garbage, and is the first demonstration of a purely refer- 

ence counted garbage collector for a mainstream programming lan- 
guage. It is competitive with the best concurrent tracing-based col- 

lectors. 

We believe these quantitative reductions will create a qualitative 
change in the way garbage collected languages are perceived, pro- 

grammed, and employed. 
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