
Java without the Coffee Breaks:
A Nonintrusive iVlultiprocessor Garbage CNlector

David R Bacon Clement R. Attanasio Han B. Lee V.T. Rajah Stephen Smith

IBM T.J. Watson Research Center

ABSTRACT

The deployment of Java as a concurrent programming language has
created a critical need for high-performance, concurrent, and incre-

mental multiprocessor garbage collection. We present the Recycler,
a fully concurrent pure reference counting garbage collector that we

have implemented in the Jalapefio Java virtual machine running on

shared memory multiprocessors.

While a variety ofmultiprocessor collectors have been proposed

and some have been implemented, experimental data is limited and

there is little quantitative basis for comparison between different al-

gorithms. We present measurements of the Recycler and compare

it against a non-concurrent but parallel load-balancing mark-and-
sweep collector (that we also implemented in Jalapefio), and eval-

uate the classical tradeoff between response time and throughput.

When processor or memory resources are limited, the Recycler
runs at about 90% of the speed of the mark-and-sweep collector.

However, with an extra processor to run collection and with a mod-

erate amount of memory headroom, the Recycler is able to operate

without ever blocking the mutators and achieves a maximum mea-

sured mutator delay of only 2.6 milliseconds for our benchmarks.
End-to-end execution time is usually within 5%.

1. INTRODUCTION
In this paper we present a new multiprocessor garbage collector

that achieves maximum measured pause times of 2.6 milliseconds

over a set of eleven benchmark programs that perform significant
amounts of memory allocation.

Our collector, the Recycler, is novel in a number of respects:

• In normal operation, the mutators are only very loosely syn-

chronized with the collector, allowing very low pause times;

• It is a pure concurrent reference counting collector; no global
tracing is performed to collect cyclic garbage; and

• Cyclic garbage is collected using a new concurrent cycle de-
tection algorithm that traces cycles locally.

• Work done at IBM. Current address: Department of Computer
Science, University of Colorado, Boulder, CO 80309.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.

To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

PLDI 2001 6101 Snowbird, Utah, USA

© 2001 ACM ISBN 1-58113-414-2/01/06... $5.00

In addition, we have implemented a non-concurrent ("stop-the-

world") parallel load-balancing mark-and-sweep collector, and in

this paper we provide comparative measurements of two very dif-

ferent approaches to multiprocessor garbage collection, for the first

time quantitatively illustrating the possible tradeoffs.

The Recycler uses a new concurrent reference counting algo-

rithm which is similar to that of Deutsch and Bobrow [13] but main-

tains the invariant that objects whose reference count drops to zero

can be collected, and therefore avoids the need for ancillary tables.

The concurrent cycle collector is the first fully concurrent algo-

rithm for the detection and collection of cyclic garbage in a ref-

erence counted system. It is based on a new synchronous algo-

rithm derived from the cyclic reference counting algorithm of Lins

[23]. Our algorithm reduces asymptotic complexity from O(n 2) to
O(n), and also significantly reduces the constant factors.

When the system runs too low on memory, or when mutators

exhaust their trace buffer space, the Recycler forces the mutators to

wait until it has freed memory to satisfy their allocation requests or
processed some trace buffers.

The Recycler is implemented in Jalapefio [1], a new Java virtual

machine and compiler being developed at the IBM T.J. Watson Re-

search Center. The entire system, including the collector itself, is

written in Java (extended with unsafe primitives for manipulating
raw memory).

In concurrently published work, we provide detailed pseudo-

code for the cycle collection algorithm and a proof of correctness

based on an abstract graph induced by the stream of increment and

decrement operations [5]. This paper concentrates on describing
the system as a whole, and on the comparative measurements.

The rest of this paper is organized as follows: Section 2 presents

our algorithm for concurrent reference counting. Section 3 presents

the synchronous algorithm for collecting cyclic garbage; Section 4
extends this algorithm to handle concurrent mutators. Section 5

describes the implementation, and Section 6 describes the paral-

lel mark-and-sweep collector. Section 7 presents measurements of

the running system and a comparison between the two garbage col-
lectors. Section 8 describes related work and is followed by our
conclusions.

2. REFERENCE COUNTING COLLECTOR
In this section we describe the reference-counting garbage col-

lection algorithm, for the time being ignoring the disposition of

cyclic garbage which will not be detected. Our collector shares
some characteristics with the Deutsch-Bobrow algorithm and its
descendants [l 3, 29, 12], as discussed in Section 8.

The Recycler is a producer-consumer system: the mutators pro-
duce operations on reference counts, which arc placed into buffers

and periodically turned over to the collector, which runs on its own

92

CPU1

inc dec

CPU2

inc dec

CPU3
(colLector)

inc dec

Figure 1: The Concurrent Reference Counting Collector. Ar-
rows represent the execution of the CPUs; bubbles are inter-
ruptions by the collector. Increment and decrement operations
are accumulated by each CPU into a buffer. At the end of epoch
8, the collector, running on CPU 3, will process all increments
through epoch 8 and all decrements through epoch 7.

processor. The collector is single-threaded, and is the only thread

in the system which is allowed to modify the reference count fields

of objects.

The operation of the collector is shown in Figure 1. During muta-

tor operation, updates to the stacks are not reference-counted. Only

heap updates are reference-counted, and those operations are de-

ferred with a write barrier by storing the addresses of objects whose

counts must be adjusted into mutation buffers, which contain in-
crements or decrements. Objects are allocated with a reference

count of 1, and a corresponding decrement operation is immedi-

ately written into the mutation buffer; in this manner, temporary

objects never stored into the heap are collected quickly.

Time is divided into epochs, which are separated by collections

which comprise each processor briefly running its collector thread.

Epoch boundaries are staggered; the only restriction being that all

processors must participate in one collection before the next col-

lection can begin.
Periodically, some event will trigger a collection cycle: either

because a certain amount of memory has been allocated, or because

a mutation buffer is full, or because a timer has expired. In normal

operation, none of these triggers will cause the mutator to block;

however, they will schedule the collector thread to run on the first

processor.
On the first processor when the collector thread wakes up it scans

the stacks of its local threads, and places the addresses of objects

in the stack into a stack buffer. It then increments its local epoch

number, allocates a new mutation buffer, and schedules the collec-

tor thread on the next processor to run. Finally, it dispatches to the

thread that was interrupted by collection.

The collector thread performs these same operations for each

processor until it reaches the last processor. The last processor ac-

tually performs the work of collection.
The last processor scans the stacks of its local threads into a stack

buffer. Then it processes increments: the reference count of each

object addressed in the stack buffer for the current epoch computed

by each processor is incremented. Then the mutation buffer for
each processor for the current epoch is scanned, and the increment
operations it contains are performed.

To avoid race conditions that might cause the collector to pro-

cess a decrement before the corresponding increment has been pro-

cessed, not only must we process the increment operations first,

but we must process the decrement operations one epoch behind.

So the last processor scans the stack buffers of the previous epoch,

and decrements the reference counts of objects that they address,

and then processes the mutation buffers of the previous epoch, per-
forming the decrement operations.

During the decrement phase, any object whose reference count

drops to 0 is immediately freed, and the reference counts of objects

it points to are recursively decremented.

Finally, the stack and mutation buffers of the previous epoch are

returned to the buffer pool, and the epoch number is incremented.

The collection has finished and all processors have joined the new

epoch, and now any processor can trigger the next collection phase.

2.1 Optimization of Stack Scanning
A problem with the algorithm as we have described it is that the

stack of each thread is scanned for each epoch, even if the thread

has been idle. As a result, the pause times will increase with the

number of total threads in the system, and the collector will use-

lessly perform complementary increment and decrement operations

in every collection on the objects referenced from the stacks of idle
threads.

We now describe a refinement of the algorithm which eliminates

this inefficiency; the refined algorithm is the one we have actually
implemented.

Instead of a per-processor stack buffer, there are stack buffers

for each thread, as well as a flag to keep track of whether the thread

has been active in the current epoch. When the collector runs on

a processor, instead of scanning the stacks of all threads, it only

scans the stacks of active threads.

When buffer processing occurs on the last processor, the col-

lector iterates over all threads, and if the thread was active in the

current epoch, it processes the stack buffer and increments each

object it refers to. If the thread was inactive, it does not perform

any increments; instead, the stack buffer of the previous epoch is

promoted and becomes the stack buffer of the current epoch.

The collector then scans the mutation buffer of each processor

for the current epoch, and performs the increment operations.

Then the collector iterates over all of the threads again, and if a

thread has a stack buffer for the previous epoch, the objects referred

to are decremented. Note that if the thread was idle, its stack buffer

of the previous epoch will have been promoted in the increment

phase, and no decrements will be performed for the idle thread.

Finally, the decrements of the mutation buffers of the previous

epoch are performed, and the collection completes as before.

A natural refinement is to apply this optimization to unchanged

poNons of the thread stack, so that the entire stack is not reseanned

each time for deeply recursive programs. This is equivalent to the '

generational stack collection technique of Cheng et al [9]; so far we

have not implemented this optimization since our benchmarks are
not deeply recursive.

2.2 Parallelization
Our collector is concurrent (it operates simultaneously with the

mutators) but not parallel (the actual work of collection is only per-

formed on the distinguished last CPU). The scalability of the col-

93

Color Meaning
Black In use or free

Gray Possible member of cycle

White Member of garbage cycle

Purple Possible root of cycle

Green Acyclic
Red Candidate cycle undergoing E-computation

Orange Candidate cycle awaiting epoch boundary

Table 1: Object Colorings for Cycle Collection. Orange and
Red are only used by the concurrent cycle collector.

lector is therefore limited by how well the collector processor can
keep up with the mutator processors. Our design point was for one

collector CPU to be able to handle about 3 mutator CPU's, so that

for four-processor chip multiprocessors (CMPs) one CPU would be

dedicated to collection.
It is possible to parallelize our algorithm, particularly the refer-

ence counting described in this section. Most straightforwardly,

work could be partitioned by address, with different processors

handling reference count updates for different address ranges. If

these were the same address ranges out of which those proces-

sors allocated memory, locality would tend to be good except when

there was a lot of thread migration due to load imbalance.
A scheme which is in many ways simpler and would have bet-

ter load balance, would be to straightforwardly parallelize the ref-

erence count updates and use fetch-and-add operations to ensure

atomicity on the reference count word. The problem is that now all

operations on the reference count field will incur a synchronization

overhead.
These solutions only address the problem of reference counting;

cycle collection, which is discussed in Sections 3 and 4 is harder

to parallelize, although it would be possible to use the techniques

in this paper for a local "cluster" of processors and then use tech-

niques borrowed from the distributed computing community to col-

lect inter-cluster cycles [28].

3. SYNCHRONOUS CYCLE COLLECTION
Since the early 1960's when both mark-and-sweep [26] and ref-

erence counting [11] were first proposed for automatic garbage col-
lection, a deficiency of many collectors based on reference counting

has been their inability to collect cyclic garbage. Solutions to this
problem have ranged from placing the responsibility for breaking

cycles on the programmer, to providing special programming ab-
stractions [6] to using an infrequent mark-and-sweep collector as a

backup to the reference counting collector [12].
In passing, it should be noted that cycles can be problematic for

tracing collectors as well. Cyclic garbage greatly increases the false

retention effects in conservative collectors, sometimes to unaccept-

able levels [7]. Cycles can also disturb generational collectors by

causing large amounts of dead data to be moved into the "old" gen-

, eration. Finally, cycles can cause poor performance for the train
algorithm by requiring cars to be moved multiple times.

We now expand the algorithm of the previous section to handle

cyclic garbage. Following our philosophy of using a pure reference-

counting approach, rather than a hybrid of reference-counting and

tracing, we find cyclic garbage by performing localized cycle de-
tection.

In this section we describe a synchronous "stop the world" cycle
collector so that the concerns raised by concurrent mutator activity

can be factored out. In Section 4 we extend the algorithm to handle

dec>O "b,--.--" ~ Z ~ - .~.._. _ /

t,. % \ 15°° , .~
V'~ ~o \ / .~,o,'°/

',.._.2,,' >",._../

Figure 2: State transition graph for cycle collection.

concurrent mutation.

First of all, we observe that some objects are inherently acyclic,

and we speculate that they will comprise the majority of objects

in many applications. Therefore, if we can avoid cycle collection
for inherently acyclic objects, we will significantly reduce the over-

head of cycle collection.

Some classes can be statically determined to be acyclic: those

that contain only scalars and references to final acyclic classes (that

is, classes that are acyclic and may not be subelassed), and arrays

of final acyclic classes. In Java, an important special case of the

latter group are arrays of scalars.

In the Recycler, part of the reference counting field in each object

is reserved for cycle collection, which uses a coloring scheme as
detailed in Table 1. An object is colored green at object creation

time if the class of the object is statically determined to be acyclic.

Note that for static compilation, the class graph could be an-

alyzed to determine which classes are acyclic. However, in the

presence of dynamic class loading our more restrictive formulation

must be used, since an acyclic class could later be subclassed with

a cyclic class.

For those objects that are potentially cyclic, we use a technique
first decsribed by Christopher [10] in which garbage cycles are

identified by tentatively subtracting internal references, and observ-
ing whether the resulting structure has regions with zero reference

count.

Our algorithm is based variant of the coloring algorithm pro-
posed by Martinez et al [25] and extended by Lins [23]. An ex-

cellent description of the latter algorithm is contained in the book

by Jones and Lins [20]; we will briefly describe our algorithm and
highlight the differences with Lins' algorithm.

The basic approach is based on the fact that a live cycle must

contain at least one object with a reference count of two or more.

Therefore, whenever a reference count is decremented to a non-

zero value, we record the pointer in a root buffer and color the

object purple, meaning that it is a potential root of a garbage cy-
cle. We also set a buffered flag in the object to ensure that we do

not record the pointer in the root buffer more than once. The state
transition graph for our algorithm is shown in Figure 2.

Optimistically, we hope that eventually the potential root will ei-
ther become garbage (by its reference count dropping to zero) or
will become linked to some other live structure, causing its refer-
ence count to increase again, at which point we re-color it black.

In either of these cases, we know that the object is not part of a

94

Ikooi Buff°,]

. / " ,/ \

Figure 3: Example of compound cycle that causes Lins' algo-
rithm to exhibit quadratic complexity.

garbage cycle.

Periodically, we process the root buffer. The data structures
rooted by those objects that are still purple are traversed, and the

reference counts due to internal pointers are subtracted, with the

objects traversed marked gray indicating that they are candidates

for garbage cycle removal (inherently acyclic - g reen- objects are
not marked or traversed). This is the marking phase of the algo-

rithm.
A garbage cycle will have only internal pointers, and therefore

subtracting the counts due to internal pointers will cause the refer-
ence counts in the cycle to drop to zero. A second traversal start-

ing from the once-purple roots finds such objects and colors them
white. This is the scanning phase of the algorithm. Gray objects

whose reference count is non-zero are colored black, along with all
objects reachable from them. In the process, the reference counts
are restored, in a process called unscanning (or "scan black" in

Jones and Lins' book).
Finally, the white objects are swept into the free list, the refer-

ence counts of green objects they refer to are decremented, and the

root buffer is cleared. This is the collection phase of the algorithm.

Lins' algorithm performs the mark, scan, and collect Phases to-
gether for each candidate root in turn. Unfortunately, this makes

the algorithm O(n 2) in the worst case, as for example in the cycle
shown in Figure 3. His algorithm will perform a complete scan

from each of the candidate roots until it arrives at the final root, at
which point the cycle will be collected. Lins' algorithm also does
not use a buffered flag, and may therefore consider the same root

multiple times.
Our algorithm performs each phase in its entirety for all of the

roots, and is therefore linear in the size of the object g r a p h - O (N +
E) - since the mark, scan, and collect phases each traverse at
worst each object and each pointer. In the worst case our algorithm

would traverse the entire heap 3 times. In practice, we observe far
less memory traversal, since we eliminate consideration of green
nodes, and many candidate roots become garbage before they are

scanned.

4. CONCURRENT CYCLE COLLECTION
In this section we briefly describe the concurrent cycle collector.

A fuller description of the details of the algorithm, including de-

tailed pseudo-code and a formal proof of correctness, is presented

in concurrently published work [5].

The concurrent cycle collection algorithm is somewhat more com-

plex than the synchronous algorithm. As with other concurrent
garbage collection algorithms, we must contend with the fact that
the object graph may be modified while is is being scanned by the
collector. In addition the reference counts may be as much as two
epochs out of date.

Our algorithm relies on the stability property of garbage: once an
object becomes garbage, it can not cease being garbage. The basic

approach is to use the sequential algorithm of the previous section

to find what appear to be garbage cycles. We then perform two
validation tests to ensure that the garbage cycles were not detected

erroneously due to concurrent mutator activity.

An important characteristic of our algorithm is that the validation
tests are relatively simple and are independent of the algorithm used
to detect the candidate cycles. This greatly simplifies the proof of
correctness.

Since we can not rely on being able to re-trace the same graph
in order to restore reference counts that have been subtracted due

to internal pointers, we instead maintain two reference counts for

each object: one is the true reference count (usually just called the
RC), and the other is the cyclic rej~rence count (or CRC).

Both counts, the color, and the buffered flag are stored in a single
32-bit word in the object header. The RC and CRC are each 12 bits

plus an overflow bit. When the overflow bit is set, the excess count

is stored in a hash table. In practice this hash table never contains
more than a few entries.

The algorithm proceeds in a similar manner to the synchronous

algorithm, except that when an object is marked gray its cyclic ref-
erence count is initialized to its true reference count, and hence-

forward the algorithm operates only on the cyclic reference count,
leaving the true reference count unchanged. However, in the col-
lect phase instead of marking white objects black and freeing them,

we instead mark them orange (as shown in the transition graph in

Figure 2) and place them in a cycle buffbr. Different cycles are
delineated by nulls.

4.1 Safety Tests
So far we have simply used a synchronous cycle collection algo-

rithm in a concurrent setting, without any synchronization between

the mutators and the collector. Therefore, some of the cycles found

may not really be garbage. To prevent collection of live data, we
perform two validation steps: one to verify the number of exter-
nal references into the cycle; and a second, to check for concurrent
addition of references into the cycle which would make it live.

The ~-test checks for external references to a cycle, and pro-

ceeds as follows: for each cycle, set the cyclic reference count

(CRC) of each object to its true reference count (RC). Then fol-
low the pointers from each of the objects in the cycle, subtracting
one from the CRC of each reached object. Finally, take the sum of
the CRC's of each object in the cycle, This sum is the total number

of external references into the cycle. If it is zero, then the cycle is
garbage provided that no additional edges were concurrently added
into the cycle.

An important feature of the Z-test is that it operates on a fixed set

of nodes; it does not rely on following pointers within the objects
to elaborate the set, since those pointers are subject to concurrent
mutation. This is the key insight of the S-test.

The A-test runs after the next epoch and checks for concur-
rent modification to the cycle. It scans the objects in each cycle

and checks whether they are still orange (if their reference count

changed, they would have been recolored). If all objects in a cycle

are still orange, and it has passed the external reference test, then

95

the cycle is garbage and is collected.

Note that it is not necessary to wait to observe the effect of con-

current decrement operations, since they only reduce the external

reference count of the cycle.

4.2 Liveness
So far we have described an algorithm that is safe - i t does not

collect reachable data, by virtue of the two validation tests. How-

ever, we must also demonstrate liveness - that all garbage is col-

lected.
Acyclic garbage is handled by the basic reference counting tech-

nique of Section 2. Roots of cyclic garbage are entered into the

root buffer by the process described in the previous section for the

sequential algorithm. The concurrent variant of the sequential al-

gorithm then searches for dead cycles from those roots,

If there is no concurrent mutation, the synchronous algorithm

will find garbage due to the stability proper~ of garbage.

If a cycle is identified as garbage but fails either of the validation
tests, then its root (the first object in the buffer) and any members

that have been colored purple due to decrements are entered into

the root buffer and reconsidered during the next cycle collection.

This ensures that any cycle abandoned due to concurrent mutation

is correctly reconsidered.
The only other possible case is that the sequential algorithm does

not find a garbage cycle due to concurrent mutation, and therefore

never enters it into consideration by the validation tests. However,

in that case, the concurrent modification will subsequently be visi-

ble to the collector as a decrement, which will introduce the object

in question into the set of possible roots, which is then considered

correctly.

4.3 Collection of Cycles
To collect the cycles, we process the cycle buffer in reverse or-

der. To see why this is necessary, consider Figure 3. The concurrent

algorithm will consider each of the objects as a separate cycle, and
if we collected the cycles in the same order they appeared in the

buffer, we would only collect the rightmost cycle on each succes-

sive epoch, which is clearly unacceptable.

By collecting the cycles in reverse order, and decrementing both
the RC and CRC fields of any objects referenced by collected ob-

jects, by the time we reach the earlier, dependent cycle, its external

reference count will have dropped to zero, and it can be collected.

We observe that i fa cycle is collected, then the external reference

count (ERC) of any dependent cycles can be updated by subtracting

the number of edges from the collected cycle to the dependent cy-

cle. Since the collected cycle is garbage, it is not possible that those

edges were subject to concurrent mutation, and it is not necessary

to re-compute the ERC. Therefore, if the ERC of the dependent cy-

cle reaches zero, and it passes the A-test, then it is also a garbage

cycle and can be collected.
There are also certain types of dependent graphs not detected in

a single epoch by our algorithm that would be detected if a fully
general SCC algorithm were run. However, such an algorithm may

require constructing a supergraph as large as the original object
graph, and once again we believe the likelihood of such data struc-

tures in practice is very low.

4.4 Isolated Markings
Since the algorithm for finding candidate cycles is coloring ob-

jects concurrently with the execution of the mutators, it is possible

that the mutators can cut an edge that causes arbitrary gray or white
subgraphs to be isolated from the collector. These subgraphs could
later "fool" the algorithm into producing an incorrect result.

We handle this problem by always recoloring the reachable graph

of a gray or white object to black when its reference count is incre-

mented or decremented (in the case of a decrement, the root object

is colored purple and considered as a root). This means ttmt the

colors will always be properly reset after at most two epochs.

In the meantime, false positives are handled by the validation

tests. False negatives are not an issue since the objects are in-

herently live (because they have been concurrently mutated), and

any garbage cycles involving concurrent decrements will be found

when the object is recolored purple and added to the root buffer.

5. IMPLEMENTATION
The Recycler is implemented in Jalapefio [1], a Java virtual ma-

chine written in Java and extended with unsafe primitives that are

available only to the virtual machine. Jalapefio uses safe points
- rather than interrupting threads with asynchronous signals, each

thread periodically checks a bit in a condition register that indi-

cates that the runtime system wishes to gain control. This design

significantly simplifies garbage collection.

Implementing the garbage collector in Java creates a number of
its own problems: the memory allocator must bootstrap itself; the

collector must avoid any allocation and must make sure it does not

prematurely collect its own intemal data structures.

All information required by the reference counting collector is
stored in one extra word in the object header. We are implementing

other object model optimizations that in most cases will eliminate

this per-object overhead.

The Recycler is an exact collector, and makes use of the object
and stack reference maps generated for use with the mark-and-

sweep collector.

5.1 Memory Allocator
Since long allocation times must be treated as mutator pauses,

the design of the memory allocator is crucial. The design of the al-

locator also strongly affects the amount of work that can be shifted

to the collection processor; the more concurrent access to the allo-

cation structures is possible, the better.
We currently use an allocator which is less than ideal for the

Recycler; it was adapted from the non-copying parallel mark-and-

sweep collector described in the next section. Using the termi-

nology of Wilson et al [31], small objects are allocated from per-

processor segregated free lists built from 16 KB pages divided into

fixed-size blocks. Large objects are allocated out of 4 KB blocks

with a first-fit strategy.

6. THE PARALLEL COLLECTOR
In this section we briefly describe the parallel non-copying mark-

and-sweep collector with which the Recycler will be compared.

Each processor has an associated collector thread. Collection

is initiated by scheduling each collector thread to be the next dis-

patched thread on its processor, and commences when all proces-
sors are executing their respective collector threads (implying that

all mutator threads are stopped).

The parallel collector threads start by zeroing the mark arrays for

their assigned pages, and then marking all objects reachable from
roots (references in global static variables and in mutator stacks).

The Jalapefio scheduler ensures that all suspended threads are at

safe points, and the Jalapefio compilers generate stack maps for
the safe points identifying the location of references within stack

frames. This allows the collector threads to quickly and exactly
scan the stacks of the mutator threads and find the live object refer-
ences.

96

Program Description

20 l.compress

202dess

205.raytrace

Compression

Java expert system shell

Ray tracer

Applic.

Size

18KB

11 KB

57 KB
209.db Database 10 KB

213.ja;¢ac Java bytecode compiler 688 KB

222.mpeg~gdi9 MPEG coder/decoder 120 KB

227.mtrt Multithreaded ray tracer 571 KB

228.jack Parser generator 131 KB

specjbb 1.0 TPC-C style workload 821 KB

Ja!apefio Jalapefio compiler 1378 KB

ggauss Cyclic tomare test (synth.) 8 KB

Threads Obj Obj

Alloc Free

1 0 .15M 0.13M

1 17.4 M 17.2 M

1 13.4M 13.1M

1 6.6M 5.9M

1 16.1M 14.1M

1 0.30M 0.27M

2 14.0M 13.5M

1 16.8M 16.4M

3 33.3 M 33.0M

1 t9 .6M 18.4M

1 32.4M 32.0M

Byte
Alloc

240 MB

686 MB

361 MB

193 MB

195 MB

25 MB

381 MB

715 MB

1034 MB

676 MB

1163 MB

obj
Acyclic I Incs[Decs

90% 3.59M 16.3M

10% 67.0M 66.7M

51% 41.6M 51.8M

76% 12.1 M 6.70M

90% 4.5M 17.3 M

81% 16.8 M 33.0M

59% 52.4M 84.5 M

7%i 62.6M 6 5 . 6 M

< 1 % 1 56.9M 77.2M

Table 2: Benchmarks and their overall characteristics. The benchmarks include the complete SPEC suite and represent a wide range
of application characteristics.

While tracing reachable objects, multiple collector threads may

attempt to concurrently mark the same object, so marking is per-

formed with an atomic operation. A thread which succeeds in

marking a reached object places a pointer to it in a local work buffer
of objects to be scanned. After marking the roots, each collector

thread scans the objects in its work buffer, possibly marking addi-

tional objects and generating additional work buffer entries.

In order to balance the load among the parallel collector threads,

collector threads generating excessive work buffer entries put work
buffers into a shared queue of work buffers. Collector threads ex-

hausting their local work buffer request additional buffers from the

shared queue of work buffers. Garbage collection is complete when

all local buffers are empty and there are no buffers remaining in the

shared pool.
At the end of collection the mark arrays have marked entries

for blocks containing live objects, and unmarked enttries for blocks
available for allocation. If all blocks in a page are available, then

the page is returned to the shared pool of ftee heap pages, and can

be reassigned to another processor, possibly for a different block

size.
Collector threads complete the collection process by yielding

the processor, thus allowing the waiting mutator threads to be dis-

patched.
The design target for this collector is multiprocessor servers with

large main memories. When compiled with the Jalapefio optimiz-

• ing compiler, this collector was able to garbage collect a 1 GB heap

with millions of live objects in under 200 milliseconds on a 12-
processor PowerPC-based server. This statistic should give some

indication that we are not comparing the Recycler against an easy

target.

7. MEASUREMENTS
The Recycler is a fairly radical design for a garbage collector.

We now present measurements showing how well various aspects

of the design work.
The Recycler is optimized to minimize response time, while the

mark-and-sweep collector is optimized to maximize throughput.
We present measurements of both systems that illustrate this clas-

sical tradeoff in the context of multiprocessor garbage collection.
All tests were run on a 24 processor IBM RS/6000 Model $80

with 50 GB of RAM. Each processor is a 64-bit PowerPC RS64 III

CPU running at 450 MHz with 128 KB split L1 caches and an 8
MB unified L2 cache. The machine runs the IBM AIX 4.3.2 Unix

operating system.

7.1 Benchmarks
Table 2 summarizes the benchmarks we have used. Our bench-

marks consist of the full suite of SPEC benchmarks (including

SPECjbb); the Jalapefio optimizing compiler compiling itself; and
g g a u s s, a synthetic benchmark designed as a "torture test" for the
cycle collector: it does nothing but create cyclic garbage, using a

Gaussian distribution of neighbors to create a smooth distribution
of random graphs.

SPEC benchmarks were run with "size 100" for exactly two it-
erations, and the entire run, including time to JIT the application,
was counted.

We performed two types of measurements: response time ori-

ented and throughput oriented. Since our collector is targeting re-
sponse time, most of the measurements presented are for the former
category

For response time measurements, we ran the benchmarks with
one more CPU than there are threads. For throughput measure-

ments, we measured the benchmarks running on a single processor.

The first scenario is typical for response time critical applications
(multiprocessor workstations, soft real-time systems, etc.) The sec-

ond scenario is typical of multiprogrammed multiprocessor servers.

Table 2 summarizes the benchmarks and shows the number of
objects allocated and freed by each program; the difference is due

to the fact that some objects are not collected before the virtual

machine shuts down. It also shows the number of bytes requested

over the course of each program's execution.
To get a broad overview of the demands each program will place

on the Recyeler, we show the number of increment and decrement

operations performed, as well as the percentage of objects created
that are acyclic according to our very simple test performed at class

resolution time. These measurements confirm our basic hypothe-
ses: the number of reference count operations per objects is usually
small (between 2 and 6), so that reference counting will be efficient
- the exceptions are db and mpegaudio, which perform about

20 and 60 mutations per object, respectively. The effect of these

mutation rates will be seen in subsequent measurements.
The number of acyclic objects varies widely, indicating that the

system may be vulnerable to poor performance for applications
where it can not avoid checking for cycles on many candidate roots.
In practice this turns out not to be a problem.

7.2 Application Performance
Our collector has a new and unusual design, and there are ob-

vious questions about its overhead and applicability in practice.

97

0.6

~ 0 . 4 '

°0, |

E
F-

o

100%

90%

8O%

70%

60%

5O%

40%

30%

20%

10%

0%,

i i

m _ m ~ M

m _ _ ~ w

_ [] Free

N Va date

- - [] Collect

- - [] Scan

Purge

._ ~ Mark

[[2 Increment

[] Decrement
m .

Figure 4: Relative Speed of the Reeyeler compared to the Paral-
lel Mark-and-Sweep Collector. In the multiproeessing environ-
ment the Recycler offers much lower pause times while remain-
ing competitive with Mark-and-Sweep in end-to-end execution
time.

While these will be addressed below in more detail, we believe

that the ultimate measure of a garbage collector is, How well does

the application perform?
When we undertook this work, our goal was to develop a con-

current garbage collector that only suffered from rare pauses of un-

der 10 milliseconds, while achieving performance within 95% of a

tuned conventional garbage collector.

Figure 4 shows how well we have succeeded. It shows the speed

of applications running with the Recycler relative to the speed of

the same applications running with the parallel mark-and-sweep
collector. The "multiprocessing" bar shows the response time ori-

ented measurement, where an extra processor is allocated to run the

collector; the "uniprocessing" bar shows the throughput oriented

measurement, where the collector runs on the same processor as

the mutator(s).
For our design point, namely the multiprocessor environment, all

but two of the benchmarks run within about 95% of the speed of the

baseline (mark-and-sweep). The exceptions are j e s s and j a v a c .

For three out of eleven benchmarks, the Recycler even provides a

moderate application speedup.
In a single processor environment, performance generally drops

off by 5 to 10%, since the work of the collector is no longer be-

ing overlapped with the mutators. However, the performance of
j e s s and j a v a c is quite poor in this environment. Subsequent

sections will investigate the characteristics that lead to this perfor-

mance problem.

Depending on ones' point of view, the Recycler can be viewed

as having successfully extracted parallelism from the application
and distributed it to another processor; or as having introduced a

significant overhead into the collection process.
However, we believe that there is a significant body of users who

will appreciate the benefits provided by the Recycler, while being
willing to pay the associated cost in extra resources. Technology
trends such as chip multiprocessing (CMP) may favor this as well.

7.3 Collector Costs
Figure 5 shows the distribution of time spent on the collector

Figure 5: Collection Time Breakdown. The time devoted to
various phases varies widely depending on the characteristics
of the program.

CPU by the Recycler. This is work that is overlapped with the

mutators in the multiprocessing case, and these measurements are

from the multiprocessing runs.

For most applications, the majority of time is spent processing

decrements in the mutation buffers. Decrement processing includes

not only adjustments to the reference count and color of the object

itself, but the cost of freeing the object i f its reference count drops

to zero. Freeing may be recursive.

The memory allocator is largely code shared with the parallel

mark-and-sweep collector, and is not necessarily optimized for the

reference counting approach. Considerable speedups are probably
possible in the decrement processing and freeing.

A smaller but still significant portion of the time is spent in ap-

plying mutation buffer increments. The m p e g a u d i o application

spend almost all of its collector time in increment and decrement

processing. This is because it performs a very high rate of data

structure mutation, while containing data that is almost all deter-

mined to be acyclic by the class loader.

The Purge phase removes and frees objects in the root buffer
whose reference counts have dropped to zero. If the size of the

root buffer is sufficiently reduced and enough memory is available,

cycle collection may be deferred until another epoch. Purging is a
relatively small cost, except for jess and ggauss.

The Mark and Scan phases perform approximately complemen-

tary operations and take roughly the same amount of time. The

Mark phase colors objects gray starting from a candidate root, and

subtracts internal reference counts. The Scan phase traverses the

gray nodes and either recolors them black and restores their refer-

ence counts or else identifies them as candidate cycle elements by
coloring them white.

The performance problems with j a v a c are largely due to the

fact that it has a large live data set which is frequently mutated,

causing pointers into it to be considered as roots. These then cause
the large live data set to be traversed, even though this leads to no
garbage being collected: it spends over 50% of its time in Mark and
Scan.

Only three benchmarks, namely c o m p r e s s , j a l a p e f i o and

q g a u s s, actually spend a significant amount of time actually col-
lecting cyclic garbage. The case of c o m p r e s s is particularly inter-

98

Concurrent Reference Counting (The Recycler)

Program Epochs I PauseTime I Pause I Coll. I Elap.
Max. I Avg. Gap Time Time

compress I 41 1.0 ms 0.5 ms 53 ms 1.3 s 238 s

jess 93 2.2 ms 1.1 ms 120 ms 63.4s 136s

ray[race 101 1.1 ms 0.7 ms 84 ms 25.2 s 99 s

db 215 1.0 ms 0.5 ms 136ms 73.5 s 183 s

javac 182 2.3 ms 0.9 ms 285 ms 104.1s 147 s

mpegaudio 2i 0.7 ms 0.5 ms 36 ms 4.2 s 271 s

mtrt 66 2.2 ms 0.6 ms 150 ms 22.9 s 74 s

jack 153 1.3ms 0.7ms 122ms 31.1s 147s

specjbb 72 1.3 ms 0.5 ms 493 ms 136.7 s (2103)

ja!apefio 330 2.6 ms 0.6ms 192 ms 93.9 s 154 s

ggauss 405 0.5 ms 0.2 ms 22~2 ms 99.8 s 282 s

Parallel Mark-and-Sweep

oc] Max I co,, I E,ap
Pause Time Time

7 186 ms 1.2 s 242 s

24 237 ms 5.2 s 110 s

9 374 ms 2.7 s 93 s

4 414 ms 1.1 s 180 s

12 531 ms 2.8 s 129 s

4 172 ms 0.7 s 274 s

l0 530 ms 4.0 s 72 s

23 190 ms 4.1 s 144 s

6 l 127ms l 4.7s (2351)

4 162 ms 0.6 s 287 s

24 171 ms 3.7 s 271 s

Table 3: Response Time. Maximum pause time is 2.7 milliseconds while the elapsed time is generally within 5% of Mark-and-Sweep.
The smallest gap between pauses is 36 ms, and is usually much larger.

Program

compress 128

jess t920

raytrace 416

db 896

javac 1792

mpegaudio 43616

mtrt 992

jack 448

spe~bb 4832

j~apefio 1280

ggaus s 1568

Buffe..l___r. Space (KB) Possible Roots (M..~

Mutation I Root }l Possible[Buff , [Roots

131

1180

393

131

524

131

786

131

660

655

393

0.40 0.03 0.01

54.3 9.36 0.23

3.40 42.i 0.27

60.8 3.8 3.8

38.5 9.1 4.5

6.42 0.07 0.01

4.2 0.96 0.56

16.6 0.85 0.20

51:3 6.9 2.8

53.8 11.1 6.9

51.4 18.8 7.7

Table 4: Effects of Buffering. The buffer requirements are
small, and filtering significantly reduces the roots that must be
considered for cycle collection (see also Figure 6).

-1

50% 111

40% 111 - -

20% ~

0%

7

I 7-

I

• ~ ~

[3 ROOTS
Unbulfered

IB Freed
Repeat

! Accyclic _

esting: it uses many large buffers (roughly 1 MB in size), which are

referenced by cyclic structures which eventually become garbage.
While the amount of mutation and the number of objects is small,
the Recycler performs all zeroing of large objects (since this would

otherwise be counted as a mutator pause), and this is counted as
part of the Free phase. This accounts for c o m p r e s s running faster

under the Recycler: we have paraUelized block zeroing[

7 . 4 R e s p o n s e T i m e

While we have shown that the Recycler is very quite competitive

with the mark-and-sweep collector in end-to-end execution times,

the Recycler must also meet stringent timing requirements.
Table 3 provides details on both pause times and end-to-end ex-

ecution times for the benchmarks running under both the Recycler
and the parallel mark-and-sweep collector. The benchmarks are be-

ing run in our standard response time oriented framework: there is

one more processor than there are mutator threads.
The longest measured delay was 2.6 ms for the j a l a p e f i o bench-

mark.
The longest type of delay occurs when an allocation on the first

processor must fetch a new block and triggers a new epoch, which
immediately causes the collector thread to run, scan the stack of the

mutator threads, and switch the mutation buffers, On return from

Figure 6: Root Filtering

the collector, the allocator must still fetch a newly freed block of

memory and format it. Therefore the maximum delay experienced
by the application is usually when calling the allocator, and that

delay is slightly more than the maximum epoch boundary pause.
Maximum pause time is only part of the story, however. It is also

necessary that mutator pauses occur infrequently enough that the
mutator can achieve useful work without constant interruptions.

Cheng and Blelloch [8] have formalized this notion for his in-

cremental collector as maximum mutator utilization, which is the
fraction of time the mutator is guaranteed to be able to run within
a given time quantum. This is a natural measure for a highly in-

terleaved collector like theirs which interrupts the mutator at every

allocation point, but is less relevant for our collector which nor-
mally only interrupts the mutator infrequently at epoch boundaries.

We provide a measurement of the smallest time between pauses

("Pause Gap"), which ranges from 36 ms for mpeqaud±o to al-
most halfa second for s p e c j b b . Thus for m p e q a u d i o , the mu-
tator may be interrupted for as much as 0.7 ms, but it will then run
for at least 36 ms.

Interestingly, the programs with shorter pause gaps also seem
to have shorter maximum pause times. As a result, the mutator

99

Program Epochs

compress 41

jess 93

ray~ace 101

db 275

javac 182

mpegaudio 21
mtrt 66

jack 154
spe~bb 72

jalapefio 330

ggauss 405

Roots Cycles Found
Checked Coil. Aborted

6,067 101 0

226,707 0 0

270,900 3 1

3,791,011 0 0

4,520,382 3,874 3

9,638 0 0
273,109 13 0

199,827 701 0

2,786,822 0 0

6,938,814 388,945 7

7,666,111. 2691302 0

ReN.
Traced

123,739

14,870,730

35,611,945

83,056,779

168,570,902

176,634
114,054,072

1,783,240

96,338,266

50,389,369

28,970,954

Trace/
Alloc

0.84

0.85
2.64

12.49
10.45

0,58

0:78

0.10
2.98

2.57

0.89

] M&S
. Traced

1,800,816

8,558,011

4,009,684

2,004,687

4,550,773

1,065,008

4,217,820

6,651,059

4,081,266

1,463,823

5,851,686

Table 5: Cycle Collection. Many applications check a large number of roots without finding much cyclic garbage, and race conditions
leading to aborted cycles are rare. The number of references that have to be traced by the two collectors vary widely depending on
the program.

utilization remains good across a spectrum of applications.

Although the Recycler spends far more time performing collec-
tion than the mark-and-sweep collector, this collection time is al-

most completely overlapped with the mutators. We are investigat-

ing ways to reduce this overhead, including both algorithmic [4]
and implementation improvements.

The specj bb benchmark performs a variable amount of work
for a given time period, so its throughput scores are shown in paren-
theses.

Our maximum pause time of 2.6 ms is two orders of magnitude
shorter than that reported by Doligez and Leroy [16] and by Nettles
and O'Toole [27], both for a concurrent dialect of ML. While pro-
cessor speeds have increased significantly in the last seven years,
memory systems have progressed far less rapidly. We believe our
system represents a substantial increase in real performance; how-
ever, only "head-to-head" implementations will tell. Our work is a
beginning in this direction.

7.5 Buffering
The Recycler makes use of five kinds of buffers of object refer-

ences: mutation buffers, stack buffers, root buffers, cycle buffers,
and mark stacks. The four buffer types have been described in the
algorithm section; mark stacks are used to express the implicit re-
cursion of the marking procedures explicitly, thereby avoiding pro-
cedure calls and extra space overhead.

All five types of buffers consumes memory, and it is clearly un-
desirable for the garbage collector to consume memory. In practice,
only the mutation and root buffers turn out to be of significant size.
The thread stacks never have more than a few hundred object ref-
erences, so the stack buffers are of negligible size (although they
could become a factor on a system with large numbers of threads,
or for applications which are deeply recursive).

Table 4 shows the instantaneous maximum buffer space utiliza-
tion ("high water mark") for both mutation buffers and root buffers.
Mutation buffer consumption is reasonable, with the exception of
mpegaud io , which uses 43 MB (!) of mutation buffer space. This
is a direct result of the very high per-object mutation rate reflected
in the measurements in Table 2, showing that m p e g a u d i o per-
forms about 60 mutations per allocated object.

We are implementing some preprocessing strategies which should
reduce the buffer consumption by about a factor of 2. We also have
not yet tuned the feedback algorithm between the mutators and the
collector, which should further reduce buffer consumption. In par-

ticular, we hope to take advantage of Jalapefio's dynamic profiling,
feedback, and optimization system [3] to improve space consump-
tion for programs like rapegaudio .

Table 4 also shows the effectiveness of our strategies for reduc-

ing the number of objects that must be traced by the cycle collector.
Every decrement that does not actually flee an object potentially

leaves behind cyclic garbage, and must therefore be traced. The

number of such decrements is shown ("Possible"), as well as the
number that are actually placed in the buffer ("Buffered"), and the
number that are left in the buffer after purging ("Roots"). Purging

checks for objects that have been modified while the collector waits

to process the buffer; objects whose reference count has been incre-
mented are live and can be removed from consideration as roots,
and objects whose reference count has been decremented to zero
are garbage and can be freed.

While the number of possible candidate roots is high (as many as
60 million for db), the combination of the various filtering strate-
gies is highly effective, reducing the number of possible roots by at
least a factor of seven. Only ggaus s, our synthetic cycle genera-
tor, requires a large fraction of roots to be buffered.

While filtering is highly successful, Figure 6 shows that no one
technique is responsible for its success. On average, about 40%
of possible roots are excluded from consideration because the are
acyclic, while another 30% are eliminated because they are already
in the root buffer ("Repeat"). The balance between these two fac-
tors varies considerably between applications, but on balance the
two filtering techniques remove about 70% of all candidate roots
before they are ever put in the root buffer.

Another 10% or so are freed during root buffer purging, because
a concurrent mutator has decremented the reference count of the
object to zero while it was in the buffer. Surprisingly, the number
of objects in the buffer whose reference count is incremented, al-
lowing them to be removed ("Unbuffered") is very small and often
z e r o .

Finally, between 1 and 15% of the possible roots are left for the
cycle collection algorithm to traverse, looking for garbage cycles.
Thus the filtering techniques are a key component of making the
cycle collection algorithm viable in practice.

7.6 Cycle Collection
Table 5 summarizes the operation of the concurrent cycle collec-

tion algorithm. There were a number of surprising results. First
of all, despite the large number of roots considered, the number

I00

Reference Counting Mark-and,Sweep
Program Heap Epochs I Coll. Elapsed GCs Coll. Elapsed

Size I Time Time Time Time

compress 64 MB 46 1.3 s 247 s 7 1.1 s 236 s

j'ess 64 MB 116 44.1 s 166 s 19 4.2 s 108 s

raytrace 64 MB 195 15.3 s 108 s 9 2.5 s 94 s

db 64 MB 276 33.7 s 207 s 4 1.2 s 178 s

javac 64 MB 234 11 i.8 s 249 s 12 2.9 s 127 s

.... mpegaudio 64 MB 31 4.8 s 296 s 3 0.5 s 274 s

mtrt 64 MB 157 17.2 s 115 s 10 3.6 s 99 s

jack 64 MB 191 21.7 s 158 s 20 3.7 s 141 s

specjbb 72 MB 85 25.2 s (70~) 5 1.9 s (841)

jalapefio 256 MB 289 48.3 s 186 s 4 1.1 s 163

ggauss 40 MB 516 65.1 s 327 s 40 6.2 s 273 s

Table 6: Throughput. Unlike the previous tables, the programs are run on a single processor. Even on a single processor the
throughput of the Recycler is reasonable for most applications.

of garbage cycles found was usually quite low. Cyclic garbage was

significant in j a l a p e ~ . o and our torture test, g g a u s s . It was also

significant in c o m p r e s s , although the numbers do not show it:
multi-megabyte buffers hang from cyclic data structures in corn-

p r o s s, so the application runs out of memory if those 101 cycles

are not collected in a timely manner,

Note that j a v a c , which spends over 50% of its garbage collec-

tion time searching for cyclic garbage to collect, actually collects

less than 4,000 cycles. This explains j a v a c ' s poor performance

in the single processor environment.
The number of cycles aborted due to concurrent mutation was

smaller than we expected, but these invalidations only come into

play when race conditions fool the cycle detection algorithm.

Finally, Table 5 compares the number of references that must

be followed by the concurrent reference counting ("Refs. Traced")
and the parallel mark-and-sweep ("M&S Traced") collectors. The

reference counting collector has an advantage in that it only traces

locally from potential roots, but has a disadvantage in that the al-

gorithm requires three passes over the subgraph. Furthermore, if

the root of a large data structure is entered into the root buffer fre-

quently and high mutation rates force frequent epoch boundaries,

the same live data structure might be traversed multiple times.
In this category, there is no clear winner. Each type of garbage

collection sometimes performs one to two orders of magnitude more

tracing than the other. To calibrate the amount of tracing per-
formed, "Trace/Alloc" shows the number of references traced per

allocated object for the reference counting collector.

7.7 Throughput
In the previous section we measured our collectors in an envi-

ronment suited to response time; we now measure them in an envi-

ronment suited to throughput. Table 6 shows the results of running
our benchmarks on a single processor. The mark-and-sweep col-

lector suffers somewhat since it is no longer performing collection

in parallel.
However, in this environment, the lower overhead of the mark-

and-sweep collector dominates the equation, and it outperforms the

the Recycler, sometimes by a significant margin.
Of course, the Recycler is not designed to run in a single-threaded

environment; nevertheless, it provides a basis for comparing the in-
herent overhead of the two approaches in terms o f overall work

performed.

8. R E L A T E D W O R K

While numerous concurrent, multiprocessor garbage collectors

for general-purpose programming languages have been described

in the literature [i2, 14, 16, 18, 19, 21, 22, 24, 29, 30], the number
that have been implemented is quite small and of these, only a few

actually run on a multiprucessor [2, 12, 18, 16, 17, 27].

DeTreville's work on garbage collectors for Modula-2+ on the

DEC Firefly workstation [12] is the only comparative evaluation

of multiprocessor garbage collection techniques. His algorithm is
based on Rovner's reference counting collector [29] backed by a
concurrent tracing collector for cyclic garbage. Unfortunately, de-

spite having implemented a great variety of collectors, he only pro-

vides a qualitative comparison. Nevertheless, our findings agree

with DeTreville's in that he found reference counting to be highly

effective for a general-purpose programming language on a multi-
processor.

The Recycler differs in its use of cycle collection instead of a

backup mark-and-sweep collector. The Recycler also uses atomic

exchange operations when updating heap pointers to avoid race

conditions leading to lost reference count updates; DeTreville's im-
plementation required the user to avoid race conditions and was

therefore unsafe.
Huelsbergen and Winterbottom [19] describe a concurrent al-

gorithm (VCGC) that is used in the Inferno system to back up
a reference counting collector. They report that reference count-
ing collects 98% of data; our measurements for Java show that the
proportion of cyclic garbage is often small but varies greatly. The
only measurements provided for VCGC were on a uniprocessor for

SML/NJ, so it is difficult to make meaningful comparisons.
The only other concurrent, multiprocessor collector for Java that

we know of is the work of Domani et al [17]. This is a generational

collector based on the work of Doligez et al [16, 15], for which

generations were shown to sometimes provide significant improve-

ments in throughput. No response time measurements were pro-

vided.
The other implemented concurrent multiprocessor collectors [2,

18, 16, 27] are all tracing-based algorithms for concurrent variants

of ML, and generally have significantly longer maximum pause
times than our collector. In addition, ML produces large amounts
of immutable data, thereby simplifying the collection process.

The collector of Huelsbergen and Larus [18] for ML achieved
maximum pause times of 20 ms in 1993, but only for two small
benchmarks (Quicksort and Knuth-Bendix). Their collector re-

101

quires a read barrier for mutable objects that relies on processor

consistency to avoid locking objects while they are being forwarded.

Read barriers, even without synchronization instructions, are gen-
erally considered impractical for imperative languages [20], and

on weakly ordered multiprocessors their barrier would require syn-
chronization on every access to a mutable object, so it is not clear
that the algorithm is practical either for imperative languages or for
the current generation of multiprocessor machines.

In concurrently published work, Cheng and Blelloch [8] describe

a parallel, concurrent, and incremental collector for SML. They

take a much different approach, essentially trying to solve the prob-
lem of making a compacting garbage collector meet stringent time
bounds. Their approach requires such overheads as duplicating mu-

mble fields, which we did not consider acceptable in our collector.
On the other hand, their collector is scalable while ours is not.

8.1 Reference Counting
The Recycler shares with Deutsch and Bobrow's Deferred Refer-

ence Counting algorithm [13] the observation that reference count-

ing stack assignments is prohibitive, and that periodic scanning of
the stack can be used to avoid direct counting of stack references.

Th e principal difference is the manner in which the stack references
are handled. Deferred Reference Counting breaks the invariant that
zero-count objects are garbage, and requires the maintenance of

a Zero Count Table (ZCT) which is reconciled against the scanned
stack references. The ZCT adds Overhead to the collection, because

it must be scanned to find garbage.
The Recycler defers counting by processing all decrements one

epoch behind increments, and by its use of stack buffers. The result
is a simpler algorithm without the additional storage or scanning re-
quired by the ZCT, albeit at the expense &additional buffer space.

8.2 Cycle Collection
As described in Section 3, our cycle collection algorithm is de-

rived from the synchronous algorithm devised by Martinez et al
[25] and extended by Lins to lazily scan for cyclic garbage [23, 20].
Our synchronous variant differs in a number of important respects:

its complexity is linear rather than quadratic; it avoids placing a
root in the root buffer more than once per epoch; and it greatly
reduces overhead by not considering inherently acyclic structures.

Lins has presented a concurrent cycle collection algorithm [24]
based on his synchronous algorithm. Unlike the Recycler, Lins
does not use a separate reference count for the cycle collector; in-
stead he relies on processor-supported asymmetric locking primi-
tives to prevent concurrent mutation to the graph. His scheme has,
to our knowledge, never been implemented.

The Reeyeler's concurrent cycle collector could in the worst case
require space proportional to the number of objects (if it finds a cy-

cle consisting of all allocated objects). This is not directly compa-
rable to concurrent tracing collectors, which push modified pointers

onto a stack that must be processed before the algorithm completes.
Since the same pointer can be pushed multiple times, the worst case

complexity appears as bad or worse than the Recycler's. In prac-
tice, each algorithm requires a moderate amount of buffer memory.

9. CONCLUSIONS
We have presented the Recycler, a concurrent multiprocessor

garbage collector for Java implemented in Java. The Recycler com-
prises novel algorithms for concurrent reference counting and cycle
collection. Over a set of eleven benchmark programs including the
full SPEC benchmark suite, the Recycler achieves maximum mea-
sured application pause times of 2.6 milliseconds, about two orders
of magnitude shorter than the best previously published results.

We have measured the Recycler against an highly tuned non-

concurrent but parallel mark-and-sweep garbage collector. When
resources are scarce, the throughput-oriented design of the mark-
and-sweep collector yields superior execution times. But with an
extra processor and some extra memory headroom, the Recycler
runs without ever blocking the mutators, and achieves maximum

pauses that are about 100 times shorter without sacrificing end-to-
end execution time.

The Recycler uses a novel concurrent algorithm for detecting

cyclic garbage, and is the first demonstration of a purely refer-

ence counted garbage collector for a mainstream programming lan-
guage. It is competitive with the best concurrent tracing-based col-

lectors.

We believe these quantitative reductions will create a qualitative
change in the way garbage collected languages are perceived, pro-

grammed, and employed.

Acknowledgements
We thank Anthony Cocchi, Jong Choi, Alex Dupuy, David Grove,

Chet Murthy, and Mark Wegman for providing helpful feedback
at various stages of this project. Mike Burke and Mark Mergen
provided moral support. David Grove also provided invaluable help
with the optimizer.

The anonymous referees provided very detailed and thoughtful
feedback which has greatly improved the quality of the paper, as

has its shepherd, Wilson Hsieh.

Rob Strom suggested the method we employed for detecting
dead cycles. Kathryn McKinley stimulated this work with her talk
on a sophisticated generational collector, convincing us (despite her
best efforts) of the viability of reference counting for garbage col-
lection.

10. REFERENCES

[1] ALPERN, B., ET AL. Implementing Jalapefio in Java. In
ConJbrence on Object-Oriented Programming, Systems, Lan-
guages, and Applications (Oct. 1999). SIGPLAN Notices, 34,
10, 314-324.

[2] APPEL, A. W., ELLIS, J. R., AND LI, K. Real-time con-
current collection on stock multiprocessors. In Proceedings
of the SIGPLAN Conference on Programming Language De-
sign and Implementation (Atlanta, Georgia, June 1988), ACM
Press, New York, New York. SIGPLANNotices, 23, 7 (July),
11-20.

[3] ARNOLD, M., FINK, S., GROVE, D., M.HIND, AND

SWEENEY, P. Adaptive optimization in the Jalapefio JVM.
pp. 47-65.

[4] BACON, D. F., KOLODNER, H., NATHANIEL, R., PE-

TRANK, E., AND RAJAN, V. T. Strongly-connected com-
ponent algorithms for concurrent cycle collection. Tech. rep.,
IBM T.J. Watson Research Center and IBM Haifa Scientific
Center, Apr. 2001.

[5] BACON, D. F., AND RA.IAN, V. T. Concurrent cycle collec-
tion in reference counted systems. In European Conference
on Object-Oriented Programming (Budapest, Hungary, June
2001), J. L. Knudsen, Ed., vol. 2072 of Lecture Notes in Com-
puter Science, Springer-Verlag.

[6] BOBROW, D. G. Managing re-entrant structures using ref-
erence counts. ACM Trans. Program. Lang. Syst. 2, 3 (July
1980), 269-273.

102

[71 BOEHM, H. Personal communication. Hewlett-Packard Lab-
oratories, 2000.

[8] CHENG, P., AND BLELLOCH, G. A parallel, real-time
garbage collector. In Proc. of" the SIGPLAN Conference on
Programming Language Design and Implementation (Snow-
bird, Utah, June 2001). SIGPLANNotices, 36, 5 (May).

[9] CHENG, P., HARPER, R., AND LEE, P. Generational stack
collection and profile-driven pretenuring. In Proc. of the Con-

ference on Programming Language Design and Implementa-
tion (June 1998). SIGPLANNotices, 33, 6, 162-173.

[10] CHRISTOPHER, T. W. Reference count garbage collection.
Software - Practice and Experience 14, 6 (June 1984), 503--
507.

[11] COLLINS, G. E. A method for overlapping and erasure of
lists. Commun. ACM3, 12 (Dec. 1960), 655--657.

[12] DETREVILLE, J. Experience with concurrent garbage collec-
tors for Modula-2+. Tech. Rep. 64, DEC Systems Research
Center, Aug. 1990.

[13] DEUTSCH, L. P., AND BOBROW, D. G. An efficient in-
cremental automatic garbage collector. Commun. ACM 19, 7
(July 1976), 522-526.

[14] DIJKSTRA, E. W., LAMPORT, L., MARTIN, A. J.,
SCHOLTEN, C. S., AND STEFFENS, E. F. M. On-the-fly
garbage collection: An exercise in cooperation. In Hierar-

chies andlnterfaces, E L. Bauer et al., Eds., vol. 46 of Lecture
Notes in Computer Science. 1976, pp. 43--56.

[15] DOLIGEZ, D., AND GONTHIER, G. Portable, unobtru-
sive garbage collection for multiprocessor systems. In Conf.

Record of the Twenty-First ACM Symposium on Principles of
Programming Languages (Jan. 1994), pp. 70--83.

[16] DOLIGEZ, D., AND LEROY, X. A concurrent generational
garbage collector for a multi-threaded implementation of ML.
In Conf Record of the Twentieth ACM Symposium on Princi-
ples of Programming Languages (Jan. 1993), pp. 113--123,

[17] DOMANI, T., KOLODNER, E. K., AND PETRANK, E. A
generational on-the-fly garbage collector for Java. In Proc. of
the SIGPLAN Conference on Programming Language Design
and Implementation (June 2000). SIGPLAN Notices, 35, 6,

274--284.

[18] HUELSBERGEN, L., AND LARUS, J. R. A concurrent
copying garbage collector for languages that distinguish
(ira)mutable data. In Proc. of the Fourth ACM Symposium
on Principles and Practice of Parallel Programming (May
1993). SIGPLANNotices, 28, 7 (July), 73-.-82.

[19] HUELSBERGEN, L., AND WINTERBOTTOM, P. Very con-
current mark-&-sweep garbage collection without fine-grain
synchronization. In Proc. of the ACM SIGPLAN lnternational
Symposium on Memory Management (Mar. 1999). SIGPLAN

Notices, 34, 3, 166-174.

[20] JONES, R., AND LINS, R. Garbage Collection. John Wiley

and Sons, 1996.

[21] KUNG, H. T., AND SONG, S. W. An efficient parallel
garbage collection system and its correctness proof. In IEEE
Symposium on Foundations of Computer Science (1977),

pp. 120--131.

[22] LAMPORT, L. Garbage collection with multiple processes:
an exercise in parallelism. In Proc. of the 1976 International
Conference on Parallel Processing (1976), pp. 50--54.

[23] LINS, R. D. Cyclic reference counting with lazy mark-scan.
Inf. Process. Lett. 44, 4 (Dec. 1992), 215-220,

[24] LINS, R. D. A multi-processor shared memory architecture
for parallel cyclic reference counting. Microprocessing and

Microprogramming 35, 1-5 (Sept. 1992), 563-568. Proceed-
ings of the 18th EUROMICRO Conference (Paris, France).

[25] MARTfNEZ, A. D., WACHENCHAUZER, R., AND LINS,
R. D. Cyclic reference counting with local mark-scan. Inf
Process. Lett. 34, 1 (1990), 31-35.

[26] MCCARTHY, J. Recursive functions of symbolic expressions
and their computation by machine. Commun. ACM 3 (1960),
184-195.

[27] NETTLES, S., AND O'TOOLE, J. Real-time garbage collec-
tion. In Proc. of the SIGPLAN Conference on Programming
Language Design and Implementation (June 1993). SIGPLAN
Notices, 28, 6, 217-226.

[28] RODRIGUES, H. C. C. D., AND JONES, R. E. Cyclic dis-
tributed garbage collection with group merger. In Proc. of the
TweO~h European Conference on Object-Oriented Program-
ming (Brussels, July 1998), E. Jul, Ed., vol. 1445 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 249-273.

[29] ROVNER, P. On adding garbage collection and runtime types
to a strongly-typed, statically-checked, concurrent language.
Tech. Rep. CSL-84--7, Xerox Palo Alto Research Center, July
1985.

[30] STEELE, G. L. Multiprocessing compactifying garbage col-
lection. Commun. ACM 18, 9 (Sept. 1975), 495-508.

[31] WILSON, P. R., JOHNSTONE, M. S., NEELY, M., AND
BOLES, D. Dynamic storage allocation: A survey and critical
review. In Proceedings of lnternational Workshop on Memory
Management (Sept. 1995).

103

