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Abstract
This paper introduces JAX-FEM, an open-source differentiable finite element method (FEM)

library. Constructed on top of Google JAX, a rising machine learning library focusing on high-
performance numerical computing, JAX-FEM is implemented with pure Python while scalable
to efficiently solve problems with moderate to large sizes. For example, in a 3D tensile loading
problem with 7.7 million degrees of freedom, JAX-FEM with GPU achieves around 10× acceler-
ation compared to a commercial FEM code depending on platform. Beyond efficiently solving
forward problems, JAX-FEM employs the automatic differentiation technique so that inverse
problems are solved in a fully automatic manner without the need to manually derive sensi-
tivities. Examples of 3D topology optimization of nonlinear materials are shown to achieve
optimal compliance. Finally, JAX-FEM is an integrated platform for machine learning-aided
computational mechanics. We show an example of data-driven multi-scale computations of a
composite material where JAX-FEM provides an all-in-one solution from microscopic data gen-
eration and model training to macroscopic FE computations. The source code of the library and
these examples are shared with the community to facilitate computational mechanics research.

1 Introduction

Research in computational science and engineering involving partial differential equations (PDEs)
has long focused on developing efficient numerical algorithms. Yet the overall efficiency of PDE-
based computational analysis depends not only on the smart use of computer hardware, but also
on the efficient use of human resources [1].

The finite element method (FEM) [2] is one of the most powerful approaches for numerical so-
lutions to PDEs that appear in structural analysis, heat transfer, fluid flow, electromagnetic poten-
tial, etc. This paper proposes a library called JAX-FEM that aims at automating the finite element
analysis workflows and enhancing human productivity. JAX-FEM is built on JAX [3], a library for
high-performance numerical computing and machine learning research. Besides its success in ma-
chine learning applications, JAX has proven to be a powerful building block for high-performance
scientific simulations, including computational fluid dynamics [4, 5], structural dynamics of meta-
materials [6], molecular dynamics [7], phase-field simulation of microstructure evolution [8], etc.
We emphasize the following three features that differentiate JAX-FEM from other FEM libraries:

1. Efficient solution to forward PDE with GPU acceleration;

2. Differentiable simulation for automatic inverse design;

3. Seamless integration with machine learning.

In the following paragraphs, we introduce the background and motivation for the three features
in detail.

*jcao@northwestern.edu (corresponding author)
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Feature 1 Most existing FEM libraries (e.g., the Dealii [9] library) are implemented with com-
piled languages like C/C++ or Fortran. JAX-FEM is implemented with pure Python, a higher-
level language known for its dynamic nature and flexibility. Due to the XLA (Accelerated Linear
Algebra) backend of JAX, JAX-FEM has a highly competitive performance, especially when GPU
is available. Therefore, our Python frontend provides both users and developers with fast pro-
duction experience without condemning them to only small-sized problems. Another benefit of
JAX-FEM is automatic linearization for nonlinear problems. Many FEM libraries require users
to derive the linearized incremental form in Newton’s method as input to the program, while
JAX-FEM works directly with the weak form and performs the linearization using automatic dif-
ferentiation (AD) [10] for the user. While the AD technique is well known to be the workhorse of
deep learning [11], its potential in scientific applications has just gained more attention in recent
years [12, 13, 14].

Feature 2 Inverse design problems are of great interest in various engineering applications. Solv-
ing inverse problems are more challenging and computationally demanding due to the need to
iteratively solve the forward problems. Mathematically, inverse problems can often be formu-
lated as PDE-constrained optimization problems [15]. Successfully computing the “sensitivity”
(gradient of the objective function to design parameters) is key to gradient-based optimization al-
gorithms. The derivation of the sensitivity, however, can be quite non-trivial particularly when
the forward problem involves complicated nonlinear constitutive relations [16]. Based on auto-
matic differentiation, JAX-FEM computes the sensitivity in a fully automatic manner, freeing the
users from deriving the sensitivities by hand. The dimension of design parameters is usually much
larger than the design objective, hence the the adjoint method [17, 18] is used for efficiency.

Feature 3 The ever-increasing interest in data-driven computational mechanics in recent years
has posed a strong need for an integrated platform with unified solutions. For example, machine
learning-based constitutive models have been a rapidly growing research area, including data-
driven elasticity [19], plasticity [20], viscoelasticity [21], etc. Yet, the current workflow requires
using multiple tools and transferring data back and forth, which is cumbersome. For instance,
simulation data is first generated with certain FEM software, models are then trained using a ma-
chine learning library, and finally the trained model is implemented back into the FEM software,
often in a hard-coded way. Built on JAX and having access to all its machine learning function-
alities, JAX-FEM provides an ideal platform to solve the sub-problems all in the same ecosystem
with high efficiency.

The paper is organized as follows. Section 2 solves several representative forward problems
and the computational performance of JAX-FEM is compared to an open-source FEM software
FEniCSx [22] and a commercial software Abaqus. Section 3 introduces the formulation of solving
inverse problems. Two applications are presented: full-field reconstruction from sparse observa-
tions and structural topology optimization. Section 4 discusses the role of JAX-FEM as an inte-
grated platform for machine learning-enabled computational mechanics. One numerical example
of data-driven multi-scale computations of composite material is presented. The three sections
correspond to the three features discussed previously. We then conclude in Section 5 with possible
future improvement.

Standard notation is used throughout the paper. Normal fonts are used for scalars, and bold-
face fonts for vectors (lower-case) and second-order tensors (upper-case). All tensor and vector
components are written with respect to a fixed Cartesian coordinate system with orthonormal ba-
sis {ei}. We denote by I the second-order identity tensor. The prefixes tr and det indicate the trace
and the determinant. The superscript > means the transpose of a second-order tensor. Let (a, b)
be vectors, (A, B) be second-order tensors and ∇ the gradient operator; we define the following:
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a · b = aibi, (A · a)i = Ailal , (A · B)il = AipBpl , A : B = Ail Bil , (∇a)il = ∂lai, ∇ · a = ∂iai and
(∇ · A)i = ∂l Ail . We denote by Hk(Ω, Rdim) the Sobolev space Wk,2(Ω, Rdim) and the square-
integrable function space L2 = H0. Norm is denoted by ‖�‖ for a function while |�| for a finite-
dimensional vector (Euclidean norm). Note that boldface font is also used for large matrix/vector
assembled by FEM, e.g., a vector of nodal degrees of freedom (DOF) U or a matrix K. We use K∗

to denote the adjoint of K.
Our code is continuously being developed and available at https://github.com/tianjuxue/jax-

am/tree/main/jax am/fem.

2 Solving forward problems

In this section, we first define the class of problems to solve. Then we discuss several key features of
JAX-FEM that are distinguished from the classic implementation of FEM, including array program-
ming style and the use of automatic differentiation technique. By solving typical solid mechanics
problems of linear elasticity, hyperelasticity, and plasticity with both JAX-FEM and FEniCSx and
comparing their results, we ensure the correctness of JAX-FEM. Finally, we conduct a performance
test to show the scalability of JAX-FEM for efficiently solving large-size problems of DOF around
7.7 million.

2.1 Problem statement: nonlinear FEM

For illustration purposes, let us consider second-order elliptic partial differential equations with
the following form: Find u : Ω→ Rvec such that

−∇ ·
(

f (∇u)
)
= b in Ω,

u = uD on ΓD,
f (∇u) · n = t on ΓN . (1)

where Ω ⊂ Rdim is the problem domain, b is the source term, uD is the Dirichlet boundary con-
dition defined on ΓD ⊂ ∂Ω, n is the outward normal, t prescribes Neumann boundary condition
on ΓN ⊂ ∂Ω (ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅), and f : Rvec×dim → Rvec×dim is a general tensor-
valued function that governs the physics of the problem. Here, “vec” is the number of vector
variable components, and “dim” is the spatial dimension. In this work, we only consider three-
dimensional problems with dim = 3.

The weak form of Eq. (1) reads the following: Find u ∈ U such that ∀v ∈ V

F(u; v) =
∫

Ω
f (∇u) : ∇v dΩ−

∫
ΓN

t · v dΓ−
∫

Ω
b · v dΩ = 0, (2)

where the trial and test function spaces are

U =
{

u ∈ H1(Ω, Rdim)
∣∣ u = uD on ΓD

}
,

V =
{

v ∈ H1(Ω, Rdim)
∣∣ v = 0 on ΓD

}
. (3)

Newton’s method for solving the nonlinear problem (2) yields the following linearized incre-
mental problem: Find the incremental solution δu ∈ V such that

F′(u, δu; v) = −F(u; v), (4)

where the Gateaux derivative is defined as

F′(u, δu; v) = lim
ε→0

F(u + εδu; v)− F(u; v)
ε

=
∫

Ω
∇v : C : ∇δu dΩ, (5)
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where C is the fourth-order tangent tensor with Cijkl = fij,kl . The Galerkin finite element method
discretizes Eq. (4) so that the following finite-dimensional linear system is solved:

F′(uh, δuh; vh) = −F(uh; vh), (6)

where uh ∈ U h ⊂ U is the current solution, δuh ∈ Vh ⊂ V is the incremental solution we need to
solve for, and vh ∈ V h is the test function. Here, U h and V h are the finite element function spaces.

2.2 Array programming and automatic differentiation

Central to FEM implementation is to assemble the linear system corresponding to Eq. (6). The
procedure is shown in Alg. 1, where Ne is the total number of elements and Nd is the number of
DOF associated with each element.

Algorithm 1: Conceptual process of matrix assembly

Initialize global stiffness matrix K // Sparse matrix
for e← 1 to Ne do

Initialize element stiffness matrix Ke // Dense matrix of size Nd × Nd
for i← 1 to Nd do

for j← 1 to Nd do
Update Ke[i, j]

Add Ke to K
Return K

When implementing Alg. 1, there are two features that fundamentally distinguish JAX-FEM
from traditional approaches: array programming and automatic differentiation.

Array programming While for-loops exist in the conceptual illustration of Alg. 1, we never ex-
plicitly write any of these for-loops as common practice in Fortran or C/C++ implementation.
Instead, array programming style [23] (in the same spirit of NumPy [24]) is used for fully utilizing
the power of GPU acceleration. The implementation makes use of jax.vmap, a core function of
JAX for vectorized operations.

Automatic differentiation Classic FEM implementation requires computing explicitly the en-
tries of the element stiffness matrix Ke such that

Ke[i, j] =
∫

Ωe

∇φi : C : ∇φj dΩ, (7)

where φi is the ith FEM basis function restricted to the element domain Ωe. JAX-FEM does not
require explicitly deriving the linearized form as in Eq. (5). Instead, the program works directly
with the weak form defined in Eq. (2). We define the element residual vector function re as

re : RNd → RNd ,
Ue 7→ Re,

Re[i] =
∫

Ωe

f (∇uh) : ∇φi dΩ, (8)

where Ue is the vector of nodal DOF defined in the element, Re is the residual vector, and uh(x) =
∑Nd

k Ue[k]φk(x) is the FEM solution field. To obtain Ke[i, j], we simply compute the Jacobian matrix
of re at Ue such that

Ke[i, j] =
∂re

∂Ue
[i, j]. (9)

4



We use automatic differentiation provided by JAX to compute this Jacobian matrix. In many ap-
plications, e.g., plasticity, the fourth-order tangent tensor C is nontrivial to derive, and JAX-FEM
frees developers from this tedious procedure.

2.3 Linear elasticity, hyperelasticity, and plasticity

To verify the correctness of JAX-FEM, we consider three typical solid mechanics problems, i.e.,
linear elasticity, hyperelasticity, and plasticity. Specifically, we impose uniaxial tensile loadings on
a cylinder (see Fig. 1 (a)) where the bottom boundary is fixed and the top boundary is subject to
fixed displacement conditions. The height of the cylinder is 10 mm and the radius is 5 mm. For
simplicity, we assume zero body force and free traction force for all three problems. We solve the
problems with both JAX-FEM and FEniCSx and compare the results.

Linear elasticity We replace the tensor function f in Eq. (1) with the Cauchy stress σ so that the
governing equation is

−∇ · σ = 0 in Ω,
u = uD on ΓD,

σ · n = 0 on ΓN , (10)

where we have

σ = λ tr(ε)I + 2µ ε,

ε =
1
2

[
∇u + (∇u)>

]
,

f (∇u) = σ, (11)

where I is the identity tensor and λ and µ are the Lamé parameters. We assume quasi-static incre-
mental loadings from 0 to 0.1 mm with 10 steps, and show the plot of force versus displacement in
Fig. 1 (b), where the results agree well between JAX-FEM and FEniCSx.

Hyperelasticity For a typical neo-Hookean solid, the governing equation is

−∇ · P = 0 in Ω,
u = uD on ΓD,

P · n = 0 on ΓN , (12)

where P is the first Piola-Kirchhoff stress. Eq. (12) is simply a specific form of Eq. (1) in the sense
that f can be defined through

P =
∂W
∂F

,

F = ∇u + I,

W(F) =
G
2
(J−2/3 I1 − 3) +

κ

2
(J − 1)2,

f (∇u) = P, (13)

where F is the deformation gradient, W is the strain energy density function, J = det(F), I1 =
tr(C); G = E

2(1+ν)
and κ = E

3(1−2ν)
denote the initial shear and bulk moduli, respectively, with E be-

ing the Young’s modulus and and ν the Poisson’s ratio of the material. The above W is commonly
used to model isotropic elastomers that are almost incompressible [25]. We assume quasi-static
incremental loadings from 0 to 2 mm with 10 steps. We show the plot of force versus displacement
in Fig. 1 (c), where the results agree well between JAX-FEM and FEniCSx.
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Plasticity For perfect J2-plasticity model [26], we assume that the total strain εk−1 and stress σk−1

from the previous loading step are known, and the problem states that find the displacement field
uk at the current loading step such that

−∇ ·
(

f (∇uk, εk−1, σk−1)
)
= 0 in Ω,

uk = uD on ΓD,
f · n = 0 on ΓN . (14)

Eq. (14) is a specific form of Eq. (1), where the function f is defined with the following plasticity-
related equations

σtrial = σk−1 + ∆σ,
∆σ = λ tr(∆ε)I + 2µ ∆ε,

∆ε = εk − εk−1 =
1
2

[
∇uk + (∇uk)>

]
− εk−1,

s = σtrial −
1
3

tr(σtrial)I,

s =

√
3
2

s : s,

fyield = s− σyield,

σk = σtrial −
s
s
〈 fyield〉+,

f (∇uk, εk−1, σk−1) = σk, (15)

where σtrial is the elastic trial stress, s is the devitoric part of σtrial, fyield is the yield function, σyeild

is the yield strength, 〈x〉+ := 1
2 (x + |x|) is the ramp function, and σk is the stress at the currently

loading step. Deriving the four-order elastoplastic tangent moduli tensor C is usually required by
traditional FEM implementation, but is not needed by JAX-FEM due to automatic differentiation.
We assume quasi-static loadings from 0 to 0.1 mm and then unload from 0.1 mm to 0. We show
the plot of the z-z component of volume-averaged stress versus displacement of the top surface in
Fig. 1 (d), where the path-dependent results match exactly between JAX-FEM and FEniCSx.
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Figure 1: Testing JAX-FEM with FEniCSx being the ground truth, where (a) is the problem mesh,
(b) considers a linear elastic material, (c) considers a hyperelastic material, and (d) considers an
elasto-plastic material.

Besides the comparison results above, we have maintained a test suite in our open source repos-
itory for more tests like body force, Neumann boundary conditions, etc., so that each new version
of JAX-FEM must pass these tests.

2.4 A sample user program

The interface of JAX-FEM for users is succinct. Here, we revisit the tensile problem for the cylin-
der with linear elastic material. As shown in the code snippet below, users first create the cylin-
der mesh. Dirichlet boundary conditions are imposed component-wisely, i.e., we need to specify
conditions for bottom-x, bottom-y, bottom-z, top-x, top-y, and top-z separately. Then, mesh and
dirichlet bc info are passed to the FEM model LinearElasticity and the solver solves
the problem

import jax.numpy as np
from jax_am.fem.models import LinearElasticity
from jax_am.fem.solver import solver
from jax_am.fem.generate_mesh import cylinder_mesh

mesh = cylinder_mesh()

bottom = lambda point: np.isclose(point[2], 0.)
top = lambda point: np.isclose(point[2], 10.)
zero_disp = lambda point: 0.
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top_z_disp = lambda point: 0.1

dirichlet_bc_info = [[bottom, bottom, bottom, top, top, top],
[0, 1, 2, 0, 1, 2],
[zero_disp, zero_disp, zero_disp,
zero_disp, zero_disp, top_z_disp]]

problem = LinearElasticity(mesh, dirichlet_bc_info)
solution = solver(problem)

2.5 Performance and scalability

JAX-FEM is based on JAX and uses just-in-time compilation for high performance. Therefore,
the fact that JAX-FEM is written in pure Python does not limit us to only small problems. For
benchmarking the performance, we solve a standard uniaxial tensile loading problem on an ASTM
D638 Type 1 specimen (see Fig. 2) assuming linear elastic material.

Mesh

Solution

Figure 2: The dog bone shaped ASTM D638 Type 1 specimen, which is a standard test specimen
for tensile properties of polymers [27]. The tensile experiment fixes the left side and pulls the right
side with a prescribed displacement condition.

The same problem with different levels of mesh resolution is solved using JAX-FEM with CPU-
only mode and with GPU, FEniCSx with MPI for parallel programming, and Abaqus running on
CPU with/without MPI. The wall time measurements with respect to the number of DOF are
shown in Fig. 3. JAX-FEM shows a predominant advantage when GPU is used. The largest prob-
lem has 7,703,841 DOF and takes 8409 s and 4769 s for Abaqus with CPU and MPI (24 cores),
respectively, and 523 s for JAX-FEM on GPU. JAX-FEM on GPU achieves 16.1× and 9.1× acceler-
ation compared to Abaqus on CPU and with MPI, respectively. The problem in Fig. 2 has 10,224
DOF and corresponds to the first column of data points in Fig. 3.

Note that for Abaqus the MPI acceleration is not significant as the number of DOF becomes
larger. For example, the Abaqus MPI speedup compared with Abaqus CPU is 9.1× for 2,344,230
DOF but 1.8× for 7,703,841 DOF. This decreased performance in Abaqus as DOF increases is at-
tributed to the severe message passing delay for large DOF problems. In Abaqus, if the size of
transient variables (mainly the global stiffness matrix) exceeds CPU memory limit, they are stored
on local storage where most of the delay takes place. It is also worth mentioning that with 24 cores,
we need 19 paid tokens. Compared to this, JAX-FEM is an open-source software and faster than
Abaqus with an extended license for tokens.

We report the platforms for those numerical experiments. JAX-FEM runs on 2.3 GHz Intel(R)
Xeon(R) W-2195 CPU (18 cores) with NVIDIA Quadro RTX 8000 GPU (48 GB Graphics memory)
on Ubuntu 20.04.5 LTS. FEniCSx runs on 2.4 GHz Intel i9 CPU (8 cores) on macOS Big Sur 11.6.5.
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Abaqus CPU runs on Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz under Windows operating sys-
tem. Abaqus CPU with MPI runs on Intel(R) Xeon (R) CPU E5-2680 v3 @ 2.50 GHz (total 24 cores)
with 19 tokens under CentOS 6.9 operating system.
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Abaqus CPU MPI 24
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JAX-FEM GPU

Figure 3: Performance report. Here, “FEniCSx CPU MPI 4” means FEniCSx runs with 4 processes
of MPI parallel programming.

3 Solving inverse problems

We formulate inverse problems as PDE-constrained optimization (PDE-CO) problems. There are
in general two strategies for solving PDE-CO problems: optimize-then-discretize and discretize-
then-optimize [28, 29]. We follow the discretize-then-optimize approach. The discretized PDE-CO
problem is formulated as

min
U∈RN ,θ∈RM

J (U, θ)

s.t. C(U, θ) = 0, (16)

where U is the finite element solution vector of DOF, θ is the parameter vector, and J (·, ·) : RN ×
RM → R is the objective function. The constraint function C(·, ·) : RN ×RM → RN represents the
discretized governing PDE and should be regarded as the direct consequence of discretizing the
weak form in Eq. (2) and imposing Dirichlet boundary conditions.

A reduced formulation is used to embed the PDE constraint so that the problem posed in (16)
is re-formulated as

min
θ∈RM

Ĵ (θ), (17)

where Ĵ (θ) := J (U(θ), θ) and U(θ) is the implicit function that arises from solving the PDE. For
efficient optimization algorithms, gradient information is necessary. The total derivative of Ĵ with
respect to parameters θ is computed with chain rules

dĴ
dθ

=
∂J
∂U

dU
dθ

+
∂J
∂θ

, (18)
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where the existence of the derivative dU
dθ is justified by the implicit function theorem [30] under

certain mild conditions. We then take the derivative of the constraint function in Eq. (16) with
respect to θ so that the following relations are obtained

dC
dθ

=
∂C
∂U

dU
dθ

+
∂C
∂θ

= 0. (19)

Hence,

dU
dθ

= −
( ∂C

∂U

)−1 ∂C
∂θ

. (20)

Substitute Eq. (20) to Eq. (18), we obtain

dĴ
dθ

= −

adjoint PDE︷ ︸︸ ︷
∂J
∂U

( ∂C
∂U

)−1 ∂C
∂θ︸ ︷︷ ︸

tangent linear PDE

+
∂J
∂θ

, (21)

where the first term can be evaluated either from left to right (solving the adjoint PDE first) or
from right to left (solving the tangent linear PDE first). When the size of the parameter vector θ
is larger than that of the objective (e.g., M� 1 in our case), it is more efficient to solve the adjoint
PDE first, giving the name adjoint method [18]. For interested readers, Xu and Darve [31] recently
presented a detailed discussion on the cost comparison of the adjoint method and the tangent
linear approach. We continue the discussion by adopting the adjoint method. The adjoint PDE is

∂C
∂U

∗
λ =

∂J
∂U

∗
, (22)

where λ ∈ RN is the adjoint variable. Substitute λ to Eq. (21) we have

dĴ
dθ

= −λ∗
∂C
∂θ

+
∂J
∂θ

. (23)

Note that Eq. (22) is a linear PDE to solve, but it relies on the Jacobian matrix ∂C
∂U , which requires the

solution vector U. Therefore, the computational cost is largely dominated by solving the forward
problem, not the adjoint PDE, especially when the forward PDE is nonlinear.

The derivations above are abstract and problem independent. When solving specific problems,
one typically needs to further derive the concrete expressions of those derivatives, e.g., ∂C

∂θ , which
is often tedious and error-prone. In JAX-FEM, we use automatic differentiation to compute these
derivatives, which greatly enhances productivity. The following code snippet demonstrates an
example of given C(·, θ) (partial constraint fn) and computing λ∗ ∂C

∂θ (result) using JAX
function jax.vjp, which stands for vector-Jacobian product.

# params: JAX array of shape (M,)
# adjoint: JAX array of shape (N,)
def vec_jac_prod_fn(v):

primals, vec_jac_prod = jax.vjp(partial_constraint_fn, params)
val, = vec_jac_prod(v)
return val

result = vec_jac_prod_fn(adjoint)

Similar approaches are applied to other derivative-related computations like ∂C
∂U
∗
λ in Eq. (22) so

that the entire workflow of computing the total derivative dĴ
dθ is fully automatic. For general in-

formation about automatic differentiation involving implicit functions, we refer to the recent work
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by Blondel et al. [32]. As a summary, we show the overall workflow of solving PDE-CO problems
in Alg. 2. In general, the “optimizer” in the algorithm can use any off-the-shelf gradient-based
optimization algorithms. The simplest one is the gradient descent method, but more sophisticated
algorithms are usually required given the complexity of the specific problem.

Algorithm 2: PDE-constrained optimization with the adjoint method

Input: θini, imax // Initial parameter and maximum iteration number
θ← θini, i← 0
while i < imax do

U ← ForwardPDESolver(θ) // See constraint function in Eq. (16)
dĴ
dθ ← AdjointMethod(U, θ) // See Eq. (17) to Eq. (23)

θ← Optimizer(θ, dĴ
dθ ) // Gradient-based optimizer

i← i + 1
Output: U, θ

In the next two subsections, we pose specific PDE-CO problems in the form of Eq. (16) and use
JAX-FEM for solutions.

3.1 Full field inference from sparse observations

In this numerical example, we consider predicting the full scalar field with sparse observations at
certain randomly picked points. The forward governing PDE is a linear Poisson’s equation:

−α∆u = b in Ω,
u = 0 on ∂Ω, (24)

where α is a constant coefficient and b is the source function that we can control. The weak form
states that find the solution u so that for any test function v we have∫

Ω
α∇u · ∇v dΩ =

∫
Ω

b v dΩ, (25)

The PDE-CO problem states that

min
U∈RN ,θ∈RM

∑
i∈Iobs

(U[i]−Ui,obs)
2

s.t. A U = F(θ), (26)

where U is the DOF vector of u, θ is the discretized version of b, U[i] is the ith component of U,
Ui,obs is the ith observed value, Iobs is the index set of observations, and the constraint equation
A U = F(θ) is the discretized version of the weak form (25).

The problem domain Ω is a 1× 1× 0.2 rectangular box discretized with 50 × 50× 10 linear
hexahedral elements. We randomly pick 250 points for observing the true solution values, as
shown in the top panel of Fig. 4. The ground truth solution obtained from solving Eq. (24) is shown
in the lower left panel of Fig. 4. The source term function b is set to have a bimodal shape such
that b(x) = 10 · exp(−10 · |x− (2.5, 2.5, 5.0)|2) + 10 · exp(−10 · |x− (7.5, 7.5, 5.0)|2). The predicted
solution by solving the PDE-CO problem is shown in the lower right panel Fig. 4.
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Predicted full fieldGround truth

Observed points

Figure 4: Configurations and results of the full field prediction example. The top panel shows
the 250 points where the solution value can be observed. The left panel shows the ground truth
solution. The right panel shows the predicted solution field with PDE-CO.

We show the optimization iterations of the PDE-CO problem in Fig. 5 (a). In the plot, the
objective value (y-axis) is defined in Eq. (26) and the optimization step (x-axis) is defined as each
time the gradient information is queried by the optimizer (see Alg. 2). In this problem, the limited-
memory BFGS algorithm [33] provided by the SciPy [34] package is used as the optimizer. As
shown, the objective value quickly drops to nearly zero within only 20 steps. To quantitatively
show the error of the predicted full field solution upred compared with the ground truth utrue, we

define the relative L2 norm error ‖upred−utrue‖L2

‖utrue‖L2
and show this inference error in Fig. 5 (b). As seen,

the error is about 12.0% when the optimization is over. Note that this is the result of observing
only 250 points, which is less than 1% of the total points, and we anticipate the error to decrease if
more points are observed. For example, with 2500 observed points, the error is decreased to about
1.4%.
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Figure 5: Optimization results of the full field prediction example. Subfigure (a) shows the opti-
mization objective converging to zero, and subfigure (b) shows the relative inference error of the
predicted solution to the true solution.
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In this PDE-CO problem, the total derivative dĴ
dθ is computed automatically by JAX-FEM. We

perform a sanity test here to ensure that this derivative is computed correctly. Following the works
of [35, 36], Taylor test can be used to check the accuracy of the computed gradient. Given a pertur-
bation δθ, the convergence rate of the residual should be 1 using a zeroth-order expansion:

rzeroth =
∣∣ Ĵ(θ+ hδθ)− Ĵ(θ)

∣∣→ 0 at O(h), (27)

and the convergence rate should be 2 by a first-order expansion:

rfirst =
∣∣ Ĵ(θ+ hδθ)− Ĵ(θ)− h

d Ĵ
dθ
· δθ
∣∣→ 0 at O(h2). (28)

The results above are the direct consequence of Taylor’s theorem [30]. We set the step size h to be
h = 10−4, 10−3, 10−2, 10−1 and calculate rzeroth and rfirst, and show the results in Fig. 6. As expected,
the rzeroth ∝ h and the rfirst ∝ h2, which demonstrates the correct computation of the gradient by
JAM-FEM.
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rzeroth

First order reference
rfirst
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Figure 6: Taylor test results. As expected, the zeroth-order expansion of the residual achieves a
first order convergence, and the first-order expansion achieves a second order convergence.

3.2 Topology optimization

As the second numerical example of PDE-CO, we consider topology optimization [37], an impor-
tant field that is well-received and developed. We first study compliance minimization of a thin
plate made of a hyperelastic material, as shown in the left panel of Fig. 7. Following the classic
Solid Isotropic Material with Penalization (SIMP) [37] method, the governing PDE is

−∇ · (θpP) = 0 in Ω,
u = 0 on ΓD,

θpP · n = t on ΓN , (29)

which is similar to Eq. (12), except that θ(x) ∈ [0, 1] is the continuous design density field and p is
the penalty exponent. The weak form states that find the solution u so that for any test function v
we have ∫

Ω
θpP : ∇v dΩ−

∫
ΓN

t · v dΓ = 0. (30)
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The compliance minimization problem states that

min
U∈RN ,θ∈RM

∫
ΓN

uh · t

s.t. C(U, θ) = 0, (31)

where uh(x) = ∑k U[k]φk(x) is the finite element solution field constructed with U, θ is the dis-
cretized version of θ, and the constraint equation C(U, θ) = 0 matches the discretized version
of Eq. (30). With JAX-FEM, we bypass the need to further perform sensitivity analysis, which
is usually required in topology optimization. The sensitivity information is computed by the
program automatically. The optimized topological structure of this thin plate is shown in the
right panel of Fig. 7. The optimizer used in this example is the method of moving asymptotes
(MMA) [38]. We have also passed a constraint that requires to only use 50% of the material, i.e.,∫

Ω θdΩ/
∫

Ω dΩ = 0.5 to the optimizer. To avoid checkerboard patterns [39], a convolution filter
is used to blur the calculated sensitivities. The implementation of MMA in Python is borrowed
from the work of Chandrasekhar et al. [40].

Load

Fixed

Initial configuration Topology optimization

Figure 7: Topology optimization of a thin plate.

The compliance versus optimization step is shown in Fig. 8, where the final structure has a
compliance value of 15.63 µJ. As a reminder, the original solid plate with full material has the
compliance to be 9.46 µJ.
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Figure 8: Objective value versus optimization step for the thin plate example.
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As a more realistic case with more complex geometry, we use topology optimization for the
lightweight design of a bracket with three screw holes. The bracket is assumed to be made of a
linear elastic material and the boundary conditions are shown in the upper panel of Fig. 9. We limit
the design space to the blue box region (see Fig. 9), and prohibit any material change outside of the
blue box. A reasonable human design is shown in the lower left panel that uses 45% material of the
blue box region, and the compliance is 3.07 µJ. The deign out of topology optimization that uses
the same amount of material is shown in the lower right panel of Fig. 9, whose compliance is 1.10
µJ, achieving a reduction of 64.2% compared with the human design. The optimization iterations
are shown in Fig. 10 where the compliance value is plotted against the optimization step.

Human design

Load

Fixed

Fixed

Topology optimization

Design space

Figure 9: Topology optimization of a three-hole bracket. As shown in the top panel, fixed boundary
conditions are applied on the inner walls of the two holes, and uniform loading condition along
the positive y-axis is applied on the inner wall of the upper hole. The lower left panel shows a
human design while the lower right panel shows the result of topology optimization that uses the
same amount of material.
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Figure 10: Objective value versus optimization step for the bracket example.

4 Integration with machine learning

In this section, we show one numerical example of solving a data-driven multi-scale computation
problem. JAX-FEM provides an all-in-one solution to problems of this kind.

4.1 Data-driven homogenization of composite material

We consider a composite material whose representative volume element (RVE) is a 1 mm cube
of the mixture of a soft material (E =100 MPa; ν = 0.4) and a hard material (E =1000 MPa;
ν = 0.3), as shown in the left panel of Fig. 12. Both soft and hard materials are assumed to be nearly
incompressible neo-Hookean solids (similar to Eq. (13)). The multi-scale computational scheme
follows our previous work [41] on data-driven homogenization of mechanical meta-materials. The
basic workflow involves three major steps:

1. Performing RVE-level FEM computations and collecting data;

2. Training the neural network that represents the homogenized constitutive relationship;

3. Deploying the trained model to solve a macroscopic problem.

The three steps are described in Fig. 11, where C is the macroscopic right Cauchy-Green tensor and
W is the macroscopic strain energy density function. For usual workflows, one needs to conduct
step 1 with FEM software such as Abaqus, conduct step 2 with a machine learning library such
as PyTorch [42] and then perhaps most tediously in step 3 get back to the FEM software so that the
trained neural network parameters are hard-coded in the user-defined material model program.
In our work, all these three steps are performed in JAX-FEM, which is efficient and convenient. In
the next three subsections, we introduce the three steps in more detail.
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Step 1: RVE database construction

Step 2: Training neural network
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Step 3: Deploy to macroscopic problem
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Figure 11: Workflow of the data-driven multi-scale computational scheme. “MLP” stands for
multi-layer perceptron.

4.1.1 RVE database construction

For each RVE problem, we prescribe a macroscopic deformation gradient F and use FEM to solve
for the displacement field u(X), where X is the material point. As for the boundary condition, the
solution u(X) is decomposed into a macroscopic (overall) part u = (F − I) · X and a microscopic
(fluctuating) part u? such that

u(X) = (F − I) · X + u?(X), (32)

where the fluctuating part u? satisfies periodic boundary conditions. Then the macroscopic energy
density W is calculated as a volume averaged quantity:

W =
1
V

∫
W, (33)

where W is the strain energy density that depends on u and V is the RVE volume. Due to material
frame indifference [43], W is a function of the macroscopic right Cauchy-Green tensor C = F>F
and that W(C) is the nonlinear constitutive relation we want to approximate with a data-driven
approach. The RVE computation is repeated with different C so that a database {(C, W)}Ns

i=1 is
constructed for supervised learning. Each data point contains the feature vector C and the scalar
label W. Sobol sequence [44] method is used to generate around 1000 random data points for
training.
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Figure 12: The RVE computation mechanism. The left panel shows half of the RVE (the other half is
symmetric). The middle and right panels show the deformation of an RVE subject to a macroscopic
deformation gradient F condition and periodic boundary conditions.

4.1.2 Training, validation and testing

We train multi-layer perceptron (MLP) [45] for an approximate surrogate model such that WMLP(C) ≈
W(C), as shown in the middle panel of Fig. 11. The data set is split with an 8:1:1 ratio for train-
ing, model validation, and testing. Three MLPs with increasing model capability are considered:
“MLP1” has 4 hidden layers and each hidden has 32 neurons; “MLP2” has 8 hidden layers and 64
layer width; “MLP3” has 16 hidden layers and 128 layer width. The activation function is set to be
the hyperbolic tangent function. The scaled mean square error (SMSE) is used as the criterion to
select the optimal model, which is defined as

SMSE =
1

Ns

Ns

∑
i=1

(ȳtrue − ȳpred)
2 with ȳ :=

y− ymin

ymax − ymin
, (34)

where Ns is the number of samples considered, ȳtrue is the scaled true output, ȳpred is the scaled
predicted output, and (ymin, ymax) are the lower and upper bounds in the training data. We report
training and validation SMSEs for the three MLPs and Fig. 13 (a). As shown, MLP2 has the best
validation SMSE and is selected for deployment. The test result of MLP2 is shown in Fig. 13 (b)
where the predicted macroscopic strain energy density values match the true values well.
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Figure 13: Training, validation, and testing of the models. In (a), training and validation errors are
shown for all three MLPs. The black star shows the lowest validation error. In (b), we show the
test result for the selected MLP2.

4.1.3 Macroscopic problem

The trained MLP2 represents the homogenized constitutive relationship and is deployed to solve
a macroscopic problem. We consider a uni-axial tensile loading on a 10× 2× 10 mm3 (consisting
of 10× 2× 10 RVEs) sample. The problem setup is shown in Fig. 14, where quasi-static loading up
to 1 mm (10% of the y-axis sample size) is applied.

Initial configuration Solution

Displacement control B.C.

Figure 14: Problem setup. The left panel shows the boundary condition such that the bottom
surface is fixed and the top surface is subject to a prescribed y-axis displacement. The right penal
shows the deformed configuration.

We use both direct numerical simulation (DNS) and neural network (NN) surrogate models
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to solve the problem. The total elastic energy stored in the sample as well as the tensile force
applied on the top surface is plotted in Figs. 15 (a) and (b), respectively. Mechanical responses of
bulk materials that are made solely by the hard and soft materials are also shown in the figure for
reference. We observe good agreements between DNS and NN results, showing the effectiveness
of the proposed data-driven multi-scale computational approach. DNS uses 200,000 FEM cells
while the NN-based model only uses 25,000 FEM cells, being more computationally efficient.
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Figure 15: Comparison between DNS and NN results. In (a), the total energy is shown with respect
to relative displacement up to 10%. In (b), force on the top surface is plotted.

5 Conclusions and future work

We proposed and shared with the community an open-source FEM library JAX-FEM, a fundamen-
tal tool that efficiently solves the forward/inverse problems and facilitates research in data-driven
computational mechanics. The software can be more powerful and we list the following consider-
ations for possible future improvement:

1. The basic FEM toolkit needs to be more complete, e.g., richer element types, support of tri-
angular/tetrahedron mesh, etc.

2. The current linear solver is the biconjugate gradient stabilized method [46] with the simplest
Jacobi preconditioner. A better linear solver with a suitable preconditioner can greatly im-
prove the performance of JAX-FEM. Interfacing with powerful external linear solvers like
PETSc [47] is in progress.

3. Inverse problems considered in this paper are all deterministic. We plan to solve Bayesian
inverse problems [48] and consider uncertainty quantification in the future.

4. The largest problem we can solve with a single 48 GB memory NVIDIA GPU is around 10
million DOF, otherwise the memory is insufficient. A multi-GPU version of JAX-FEM is
highly-desired and is our future research goal.
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