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JAYWALKING YOUR DOG: COMPUTING THE FRÉCHET
DISTANCE WITH SHORTCUTS∗

ANNE DRIEMEL† AND SARIEL HAR-PELED‡

Abstract. The similarity of two polygonal curves can be measured using the Fréchet distance.
We introduce the notion of a more robust Fréchet distance, where one is allowed to shortcut between
vertices of one of the curves. This is a natural approach for handling noise, in particular batched
outliers. We compute a (3 + ε)-approximation to the minimum Fréchet distance over all possible
such shortcuts, in near linear time, if the curve is c-packed and the number of shortcuts is either
small or unbounded. To facilitate the new algorithm we develop several new tools: (a) a data
structure for preprocessing a curve (not necessarily c-packed) that supports (1 + ε)-approximate
Fréchet distance queries between a subcurve (of the original curve) and a line segment; (b) a near
linear time algorithm that computes a permutation of the vertices of a curve, such that any prefix
of 2k − 1 vertices of this permutation forms an optimal approximation (up to a constant factor) to
the original curve compared to any polygonal curve with k vertices, for any k > 0; and (c) a data
structure for preprocessing a curve that supports approximate Fréchet distance queries between a
subcurve and query polygonal curve. The query time depends quadratically on the complexity of
the query curve and only (roughly) logarithmically on the complexity of the original curve. To our
knowledge, these are the first data structures to support these kind of queries efficiently.
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1. Introduction. Comparing the shapes of polygonal curves—or sequenced data
in general—is a challenging task that arises in many different contexts. The Fréchet
distance and its variants (e.g., dynamic time warping [30]) have been used as similar-
ity measures in various applications such as matching of time series in databases [31],
comparing melodies in music information retrieval [37], and matching coastlines over
time [35], as well as in map-matching of vehicle tracking data [9, 38] and moving ob-
jects analysis [10, 11]. Informally, the Fréchet distance between two curves is defined
as the maximum distance a point on the first curve has to travel as this curve is being
continuously deformed into the second curve. Another common description uses the
following “leash” metaphor: Imagine traversing the two curves simultaneously and
at each point in time the two positions are connected by a leash of a fixed length.
During the traversal you can vary the speeds on both curves independently but not
walk backward. The Fréchet distance corresponds to the minimum length of a leash
that permits such a traversal.

The Fréchet distance captures similarity under small non-affine distortions and for
some of its variants also spatiotemporal similarity [33]. However, it is very sensitive
to local noise, which is frequent in real data. Unlike similarity measures such as
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JAYWALKING YOUR DOG 1831

the root-mean-square deviation, which averages over a set of similarity values, and
dynamic time warping, which minimizes the sum of distances along the curves, the
Fréchet distance is a so-called bottleneck measure and can therefore be affected to an
extent which is generally unrelated to the relative amount of noise across the curves.
In practice, curves might be generated by physical tracking devices, such as GPS,
which is known to be inaccurate when the connection to the satellites is temporarily
disturbed due to atmospheric conditions or reflections of the positioning signal on
high buildings. Such inaccurate data points are commonly referred to as “outliers.”
Note that outliers come in batches if they are due to such a temporary external
condition. Similarly, in computer vision applications, the silhouette of an object
could be partially occluded, and in sound recordings, outliers may be introduced due
to background sounds or breathing. Detecting outliers in time series has been studied
extensively in the literature [34]. One may also be interested in outliers as a deviation
from a certain expected behavior or because they carry some meaning. It could be,
for instance, that trajectories of two hikers deviate locally because one hiker chose to
take a detour to a panoramic view point, as in the following figure:

Outlier detection is inherently nontrivial if not much is known about the un-
derlying probability distributions and the data is sparse [4]. We circumvent this
problem in the computation of the Fréchet distance by minimizing over all possibil-
ities for outlier removal. In a sense, our approach is similar to computing a certain
notion of partial similarity. Unlike other partial distance measures, the distance mea-
sure we propose is parameter-free. For comparison, in the partial Fréchet distance,
as studied by Buchin, Buchin, and Wang [14], one is interested in maximizing the
portions of the curves which can be matched within a certain Fréchet distance (the
parameter). In this case, the dissimilar portions of the curves are ignored. In our
case, they are replaced by shortcuts, which have to be matched under the Fréchet
distance.

The task at hand. We are given two polygonal curves X and Y in �d, which
we perceive as a sequence of linearly interpolated measurement points. We believe
that Y is similar to X but it might contain considerable noise that is occluding this
similarity. That is, it might contain erroneous measurement points (outliers), which
need to be ignored when assessing the similarity. We would like to apply a few edit
operations to Y so that it becomes as similar to X as possible, in the process hopefully
removing the noise in Y and judging how similar it really is to X . To this end, we—
conceptually—remove subsequences of measurement points, which we suspect to be
outliers, and minimize over all possibilities for such a removal. This is formalized in
the shortcut Fréchet distance.

Shortcut Fréchet distance. A shortcut replaces a subcurve between two vertices
by a straight segment that connects these vertices. The part being shortcut is not
ignored, but rather the new curve with the shortcuts has to be matched entirely to the
other curve under the Fréchet distance. As a concrete example, consider the following
figure:
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1832 ANNE DRIEMEL AND SARIEL HAR-PELED

h

X

Y

Z

The Fréchet distance between X and Y is quite large, but after we shortcut the
outlier “bump” in Y , the resulting new curve Z has a considerably smaller Fréchet
distance to X . We are interested in computing the minimum such distance allowing
an unbounded number of shortcuts.

Naturally, there are many other possibilities for tackling the task at hand, for
example,

(i) bounding the number of shortcuts by a parameter k,
(ii) allowing shortcuts on both curves,
(iii) allowing only shortcuts between vertices that are close by along the curve,
(iv) ignoring the part being shortcut and maximizing the length of the remaining

portions,
(v) allowing shortcuts to start and end anywhere along the curve,
(vi) allowing curved shortcuts.

If one is interested in (iii), then the problem turns into a map-matching problem,
where the start and end points are fixed and the graph is formed by the curve and
its eligible shortcuts. For this problem, results can be found in the literature [17, 5].
A recent result by Har-Peled and Raichel [28] is applicable to the variant where one
allows such shortcuts on both curves, i.e., (ii)+(iii). The version in (iv) has been
studied under the name of partial Fréchet distance [14].

In this paper, we concentrate on the directed vertex-restricted shortcut Fréchet
distance (see section 2.2 for the exact definition) because computing it efficiently
seems like a first step in understanding how to solve some of the more difficult variants,
e.g., (v). Surprisingly, computing this simpler version of the shortcut Fréchet distance
is already quite challenging, especially if one is interested in an efficient algorithm. A
more recent result by Buchin, Driemel, and Speckmann [16] and Driemel [22] shows
that computing the shortcut Fréchet distance exactly is weakly NP-hard for variant
(v), where we allow shortcuts to start and end anywhere along the curve. Furthermore,
our algorithms can be extended to variant (i), i.e., where at most k shortcuts are
allowed; see Remark 4.11.

Note that allowing shortcuts on both curves does not always yield a meaningful
measure, especially if shortcuts on both curves may be matched to each other. In
particular, if one of the two curves is more accurately sampled and can act as a model
curve, allowing shortcuts on only one of the two curves seems reasonable.

Input model. A curve Y is c-packed if the total length of Y inside any ball
is bounded by c times the radius of the ball. Intuitively, c-packed curves behave
reasonably in any resolution. The boundary of convex polygons, algebraic curves
of bounded maximum degree, the boundary of (α, β)-covered shapes [25], and the
boundary of γ-fat shapes [18] are all c-packed (under the standard assumption that
they have bounded complexity). Interestingly, the class of c-packed curves is closed
under simplification; see [24]. This makes them attractive for efficient algorithmic
manipulation.

Another input model which is commonly used is called low density [20]. We call a
set of line segments φ-dense if for any ball the number of line segments that intersect
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JAYWALKING YOUR DOG 1833

this ball and which are longer than the radius of the ball is bounded by φ. It is easy
to see by a simple packing argument that c-packed curves are O(c)-dense.

Informal restatement of the problem. In the parametric space of the two input
curves, we are given a terrain defined over a grid partitioning [0, 1]2, where the height
at each point is defined as the distance between the two associated points on the
two curves. The grid is induced by the vertices of the two curves. As in the regular
Fréchet distance, we are interested in finding a path between (0, 0) and (1, 1) on the
terrain, such that the maximum height on the path does not exceed some δ. (The
minimum such δ is the desired distance.) This might not be possible as there might be
“mountain chains” blocking the way. To overcome this, we are allowed to introduce
tunnels that go through such obstacles. Each of these tunnels connects two points that
lie on the horizontal lines of the grid, as these correspond to the vertices of one curve.
Naturally, we require that the starting and ending points of such a tunnel have height
at most δ (the current distance threshold being considered), and furthermore, the
price of such a tunnel (i.e., the Fréchet distance between the corresponding shortcut
and subcurve) is smaller than δ. Once we introduce these tunnels, we need to compute
a monotone path from (0, 0) to (1, 1) in the grid which uses tunnels. Finally, we need
to search for the minimum δ for which there is a feasible solution.

Challenge and ideas. Let n be the total number of vertices of the input curves. A
priori there are potentially O(n2) horizontal edges of the grid that might contain end
points of a tunnel, and as such, there are potentially O(n4) different families of tunnels
that the algorithm might have to consider. A careful analysis of the structure of these
families shows that, in general, it is sufficient to consider one (canonical) tunnel per
family. Using c-packedness and simplification, we can reduce the number of relevant
grid edges to near linear. This in turn reduces the number of potential tunnels that
need to be inspected to O(n2). This is still insufficient to get a near linear time
algorithm. Surprisingly, we prove that if we are interested only in a constant factor
approximation, for every horizontal edge of the grid we need to inspect only a constant
number of tunnels. Thus, we reduce the number of tunnels that the algorithm needs
to inspect to near linear. And yet we are not done, as naively computing the price of
a tunnel requires time near linear in the size of the associated subcurve. To overcome
this, we develop a new data structure, so that after preprocessing we can compute the
price of a tunnel in polylogarithmic time per tunnel. Now, carefully putting all these
insights together, we get a near linear time algorithm for the approximate decision
version of the problem.

However, to compute the minimum δ, for which the decision version returns true—
which is the shortcut Fréchet distance—we need to search over the critical values of
δ. To this end, we investigate and characterize the critical values introduced by the
shortcut version of the problem. Using the decision procedure, we perform a binary
search of several stages over these values, in the spirit of [24], to get the required
approximation.

Our results.
(A) Computing the shortcut Fréchet distance. For a prescribed parameter ε > 0,

we present an algorithm for computing a (3+ε)-approximation to the directed vertex-
restricted shortcut Fréchet distance between two given c-packed polygonal curves of
total complexity n; see Definition 2.5 for the formal definition of the distance being
approximated.

If we allow an unbounded number of shortcuts the running time of the new algo-
rithm is O(c2n log2 n(log n+ ε−2d log(1/ε))); see Theorem 4.10 for the exact result.
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1834 ANNE DRIEMEL AND SARIEL HAR-PELED

A variant of this algorithm can also handle the case where we allow only k shortcuts,
with running time O(c2kn log3 n); see Remark 4.11. In the analysis of these problems
we use techniques developed by Driemel, Har-Peled, and Wenk in [24] and follow the
general approach used in the parametric search technique of devising a decision pro-
cedure which is used to search over the critical events for the Fréchet distance. The
shortcuts introduce a new type of critical event, which we analyze in section 4.3. The
presented approximation algorithms can be easily modified to yield polynomial-time
exact algorithms for the same problems (and for general polygonal curves). As such,
the main challenge in devising the new algorithm was to achieve near linear time
performance. Furthermore, the algorithm uses a new data structure (described next)
that is interesting on its own merit.

(B) Fréchet-distance queries between a segment and a subcurve. We present a
data structure that preprocesses a given polygonal curve Z such that given a query
segment h, and two points p, p′ on Z (and the edges containing them), it (1 + ε)-
approximates the Fréchet distance between h and the subcurve of Z between p and
p′. Surprisingly, the data structure works for any polygonal curve (not necessarily
packed or dense), requires near linear preprocessing time and space, and can answer
such queries in polylogarithmic time (ignoring the dependency on ε). See Theorem 5.9
for the exact result.

(C) Universal vertex permutation for curve simplification. We show how to pre-
process a polygonal curve in near linear time and space such that given a number
k ∈ �, one can compute a simplification in O(k) time which has K = 2k − 1 vertices
(of the original curve) and is optimal up to a constant factor with respect to the
Fréchet distance to the original curve, compared to any curve which uses k vertices.
Surprisingly, this can be done by computing a permutation of the vertices of the input
curve, such that this simplification is the subcurve defined by the first K vertices in
this permutation. Namely, we compute an ordering of the vertices of the curves by
their Fréchet “significance.” See Theorem 6.7 for the exact result.

(D) Fréchet-distance queries between a curve with k vertices and a
subcurve. We use the above universal vertex permutation to extend the data struc-
ture in (B) to support queries with polygonal curves of multiple segments (as opposed
to single segments) and obtain a constant factor approximation with polylogarith-
mic query time; see Theorem 6.9. The query time is quadratic in the query curve
complexity and logarithmic in the input curve complexity.

Related work. Assume we are given two polygonal curves of total complexity n
and we are interested in computing the Fréchet distance between these curves. The
problem has been studied in many variations. We only discuss the results which we
deem most relevant and refer the reader to [13] for additional references.

Driemel, Har-Peled, and Wenk presented a near linear time (1+ε)-approximation
algorithm for the Fréchet distance assuming the curves are well behaved, that is,
c-packed [24]. In general, computing the Fréchet distance exactly takes roughly
quadratic time. After publication in the seminal paper by Alt and Godau [6], their
O(n2 logn)-time algorithm remained the state of the art for more than a decade. This
lead Alt to conjecture that the problem of deciding whether the Fréchet distance be-
tween two curves is smaller than or equal to a given value is 3SUM-hard. However,
recently, there has been some progress in improving upon the quadratic running time
of the decision algorithm. First, Agarwal et al. presented a subquadratic time algo-
rithm for a specific variant of the Fréchet distance [2]. Buchin et al. build upon their
work and give an algorithm for the original Fréchet distance [13]. Their algorithm
is randomized and takes o(n2 log n) expected time overall to compute the Fréchet
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JAYWALKING YOUR DOG 1835

distance. The decision algorithm they present is deterministic and takes subquadratic
time. The only lower bound known for the decision problem is Ω(n logn) and was
given by Buchin et al. [12]. A randomized algorithm simpler than the one by Alt and
Godau, which has the same running time but avoids parametric search, was recently
presented by Har-Peled and Raichel [29].

Buchin, Buchin, and Wang [14] showed how to compute the partial Fréchet dis-
tance under the L1 and L∞ metric. Here, one fixes a threshold δ and computes the
maximal length of subcurves of the input curves that match under Fréchet distance
δ. The running time of their algorithm is roughly O(n3 logn).

For the problem of counting the number of subcurves that are within a certain
Fréchet distance, a recent result by Gudmundsson, de Berg, and Cook provides a data
structure to answer such queries up to a constant approximation factor [32]. To the
best of our knowledge the problem of computing the Fréchet distance when one is
allowed to introduce shortcuts has not been studied before.

Previous work on curve simplification. There is a large body of literature on
curve simplification. Since this is not the main subject of the paper, we only discuss
a selection of results which we consider most relevant, since they use the Fréchet
distance as a quality measure. Agarwal et al. [3] give a near linear time approximation
algorithm to compute a simplification which is in Fréchet distance ε to the original
curve and of which the size is at most the size of the optimal simplification with error
ε/2. Abam et al. [1] study the problem in the streaming setting, where one wishes
to maintain a simplification of the prefix seen so far. Their algorithm achieves an
O(1) competitive ratio using O(k2) additional storage and maintains a curve with 2k
vertices which has a smaller Fréchet distance to the prefix than the optimal Fréchet
simplification with k vertices. Bereg et al. [8] give an exact O(n log n) algorithm that
minimizes the number of vertices in the simplification but using the discrete Fréchet
distance, where only distances between the vertices of the curves are considered.
Simplification under the Fréchet distance has also been studied by Guibas et al. [27].

Organization. In section 2 we describe some basic definitions and results. In
particular, the formal problem statement and the definition of the directed vertex-
restricted shortcut Fréchet distance between two curves is given in section 2.2. We
also discuss some basic tools needed for the algorithms. In section 3, we describe
the approximation algorithm for the shortcut Fréchet distance. Here, we devise an
approximate decision procedure in section 3.2 that is used in the main algorithm,
described in section 3.3, to search over an approximate set of candidate values. The
analysis of this algorithm is given in section 4. Since the shortcuts introduce a new
set of candidate values, we provide an elaborate study of these new events in sec-
tion 4.3. The main result for approximating the shortcut Fréchet distance is stated
in Theorem 4.10. In the remaining sections we describe the new data structures. In
section 5.4 we describe a data structure for a fixed curve that answers queries for the
Fréchet distance between a subcurve and a given segment. In section 6, we use this
data structure to compute the universal vertex permutation. The extension to query
curves with more than two vertices is described in section 6.2. We conclude with
discussion and some open problems in section 7.

2. Preliminaries.

Notation. A curve X is a continuous mapping from [0, 1] to �d, where X(t)
denotes the point on the curve parameterized by t ∈ [0, 1]. Given two curves X and
Y that share an end point, let X⊕Y denote the concatenated curve. We denote with
X[x, x′] the subcurve of X from X(x) to X(x′) and with X〈p, p′〉 the subcurve of X
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1836 ANNE DRIEMEL AND SARIEL HAR-PELED

between the two points p, p′ ∈ X . Similarly, Y [y, y′] denotes the line segment between
the points Y (y) to Y (y′); we call this a shortcut of Y . For a set of numbers U , an
atomic interval is a maximum interval of � that does not contain any point of U in
its interior.

2.1. Background and standard definitions. Some of the material covered in
this section is standard and follows the presentation in Driemel, Har-Peled, and Wenk
[24]. A reparameterization is a one-to-one and continuous function f : [0, 1] → [0, 1].
It is orientation-preserving if it maps f(0) = 0 and f(1) = 1. The Fréchet distance is
defined only for oriented curves, as we need to match the start and end points of the
curves. The orientation of the curves we use would be understood from the context.

Definition 2.1. Let X : [0, 1] → �
d and Y : [0, 1] → �

d be two polygonal curves.
We define the width of an orientation-preserving reparametrization f : [0, 1] → [0, 1],
with respect to X and Y, as

widthf (X,Y ) = max
α∈[0,1]

‖X(f(α))− Y (α)‖ .

The Fréchet distance between the two curves is

dF(X,Y ) = inf
f :[0,1]→[0,1]

widthf (X,Y ).

Definition 2.2. Let X : [0, 1] → �
d and Y : [0, 1] → �

d be two polygonal curves.
The square [0, 1]2 represents their parametric space. For a point p = (xp, yp) ∈ [0, 1]2,
we define its elevation to be d(p) = ‖X(xp)− Y (yp)‖ . Let δ > 0 be a parameter; the
δ-free space of X and Y is defined as

D≤δ(X,Y ) = {p ∈ [0, 1]2
∣∣d(p) ≤ δ}.

Free space diagram. We are interested only in polygonal curves, which we as-
sume to have uniform parameterizations. The parametric space can be broken into
a (not necessarily uniform) grid called the free space diagram, where a vertical line
corresponds to a vertex of X and a horizontal line corresponds to a vertex of Y .

Every two segments of X and Y define a free space cell in this grid. In particular,
let Ci,j = Ci,j(X,Y ) denote the free space cell that corresponds to the ith edge of X
and the jth edge of Y . The cell Ci,j is located in the ith column and jth row of this
grid.

It is known that the free space, for a fixed δ, inside such a cell Ci,j (i.e.,
D≤δ(X,Y ) ∩ Ci,j) is the clipping of an affine transformation of a disk to the cell
[6], as such, it is convex and of constant complexity:

Rv
i−1,j

Ci,j

Rv
i,j

Rh
i,j

Ihi,j−1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Ivi,j

Ihi,j

Ivi−1,j

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Let Ihi,j denote the horizontal free space interval at the top boundary of Ci,j , and
Ivi,j denote the vertical free space interval at the right boundary.
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We define the complexity of the relevant free space, for distance, δ, denoted by
N≤δ (X,Y ), as the total number of grid cells that have a nonempty intersection with
D≤δ(X,Y ).

Observation 2.3. Given two segments pq and uv, it holds that dF(pq, uv) =
max(‖u− p‖, ‖v − q‖). To see this, consider the uniform parameterization
p(t) = tp + (1 − t)q and u(t) = tu + (1 − t)v for t ∈ [0, 1]. It is easy to verify that
f(t) = ‖p(t)− u(t)‖ is convex, and as such f(t) ≤ max(f(0), f(1)), for any t ∈ [0, 1].

Free space events. To compute the Fréchet distance consider increasing δ from 0
to ∞. As δ increases, structural changes happen to the free space. We are interested
in the radii (i.e., the value of δ) of these events.

Consider a segment u ∈ X and a vertex p ∈ Y ; a vertex-edge event corresponds
to the minimum radius of a ball centered at p, such that u is tangent to the ball:

δ

u

p

In the free space diagram, this corresponds to the event that a free space interval
consists of one point only. The line supporting this boundary edge corresponds to the
vertex, and the other dimension corresponds to the edge. Naturally, the event could
happen at a vertex of u. The second type of event, a monotonicity event, corresponds
to a value δ for which a monotone subpath inside the δ-free space becomes feasible.
Geometrically, this corresponds to the common distance of two vertices on one curve
to the intersection point of their bisector with a segment on the other curve.

2.2. The k-shortcut Fréchet distance.

Definition 2.4. For a polygonal curve Y , we refer to any order-preserving
concatenation of k+1 nonoverlapping (possibly empty) subcurves of Y with k shortcuts
connecting the end points of the subcurves in the order along the curve as a k-shortcut
curve of Y . Formally, for values 0 ≤ y1 ≤ y2 ≤ · · · ≤ y2k ≤ 1, the shortcut curve is
defined as Y [0, y1]+Y [y1, y2]+Y [y2, y3]+ · · ·+Y [y2k−1, y2k]+Y [y2k, 1]. If each Y (yi)
is a vertex of Y, we refer to the shortcut curve as being vertex-restricted; otherwise
we say it is unrestricted.

Definition 2.5. Given two polygonal curves X and Y , we define their contin-
uous k-shortcut Fréchet distance as the minimal Fréchet distance between the curve
X and any unrestricted k-shortcut curve of Y . We denote it with dS(k,X, Y ). If we
do not want to bound the number of shortcuts, we omit the parameter k and denote it
with dS(X,Y ). The vertex-restricted k-shortcut Fréchet distance is defined as above
using only vertex-restricted shortcut curves of Y . Furthermore, note that in all cases
we allow only one of the input curves to be shortcut, namely, Y , and thus we call the
distance measure directed.

In this paper, we study the directed vertex-restricted k-shortcut Fréchet distance
for the case of bounded and unbounded k. In the following, we will omit the predicates
directed and vertex-restricted when it is clear from the context.

Free space. The k-reachable free space Rk
≤δ(X,Y ) is

Rk
≤δ(X,Y ) = {p = (xp, yp) ∈ [0, 1]2| dS(k,X[0, xp], Y [0, yp]) ≤ δ}.
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This is the set of points that have an (x, y)-monotone path from (0, 0) that stays
inside the free space and otherwise uses at most k tunnels, which are defined in the
next subsection.

2.3. Tunnels and gates: Definitions.

2.3.1. Tunnels. In the parametric space, a shortcut Y [yp, yq] and the subcurve

X[xp, xq] that it is being matched to correspond to a rectangle with corners p and q,
where p =(xp, yp) and q =(xq, yq). By shortcutting the curve on the vertical axis, we
are collapsing this rectangle to a single row; see Figure 2.1(c). More precisely, this is
the free space diagram of the shortcut and the subcurve. We call this row a tunnel
and denote it by τ(p, q). We require xp ≤ xq and yp ≤ yq for monotonicity. Figure 2.1
shows the full example of a tunnel. We call the Fréchet distance of the shortcut
segment to the subcurve the price of this tunnel and denote it with prc(τ(p, q)) =

dF(X[xp, xq], Y [yp, yq]). A tunnel τ(p, q) is feasible for δ if it holds that d(p) ≤ δ and
d(q) ≤ δ, i.e., if p, q ∈ D≤δ(X,Y ). (Note that in turn the feasibility of a monotone
path in the free space of the tunnel is determined by the price of the tunnel.) Now,
let u = Y (yp) and v = Y (yq) and let e be the edge of X that contains X(xp) (resp.,
e′ the edge that contains X(xq)) for the tunnel τ(p, q). We denote with T (e, e′, u, v)
the family of tunnels that τ(p, q) belongs to. Furthermore, let T≤δ(e, e

′, u, v) denote
the subset of these tunnels that are feasible for δ.

Definition 2.6. The canonical tunnel of the tunnel family T (e, e′, u, v), denoted
by τmin(e, e

′, u, v), is the tunnel that matches the shortcut uv to the subcurve X [s, t]
such that s and t are the values realizing

(2.1) rmin(e, e
′, u, v) = min

X(s)∈e,X(t)∈e′ ,
s≤t

max

(
‖X(s)− u‖ ,
‖X(t)− v‖

)
.

p

Y (yp)

Y (yq)

xp xq

yp

yq

X
Y

X
Z

(0, 0)

(1, 1)

(a)

(d)(e)

(b)

Y (yp)

Y (yq)

X(xq)

X(xp)

(c)

q

q

p

Fig. 2.1. (a) Example of two dissimilar curves that can be made similar by shortcutting one
of them. (b) A tunnel τ(p, q) corresponds to a shortcut and a subcurve matched to each other and
(c) their free space diagram. (d) The tunnel connects previously disconnected components of the
free space. (e) The curve Z resulting from shortcutting Y . Its (regular) Fréchet distance from X is
dramatically reduced.
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We refer to rmin(e, e
′, u, v) as the minimum radius of this family. The canonical

tunnel may not be uniquely defined if only one of the two values s or t determines the
minimum radius. In this case, we define s and t as the values minimizing ‖X(s)− u‖
and ‖X(t)− v‖ for X(s) ∈ e and X(t) ∈ e′, individually. We call the price of the
canonical tunnel the canonical price of this tunnel family.

Clearly, one can compute the canonical tunnel T (e, e′, u, v) in constant time. In
particular, the price of this canonical tunnel is

(2.2) prc(τmin(e, e
′, u, v)) = dF(X[s, t], uv).

We emphasize that a shortcut is always a segment connecting two vertices of the
curve Y , and a tunnel always lies in the parametric space; that is, they exist in two
completely different domains.

Observation 2.7. The minimum radius of a tunnel family rmin(e, e
′, u, v) cor-

responds to either (i) the distance of u to its closest point on e, (ii) the distance of v
to its closest point on e′, or (iii) the common distance of u and v to the intersection
of their bisector with the edge e (i.e., a monotonicity event). Note that the event in
case (iii) can happen only if e = e′.

2.3.2. Gates. Let U be a subset of the parametric space that is convex in every
cell. Let Ihi,j be a free space interval. We call the left end points of U ∩ Ihi,j the left
gate of U in the cell Ci,j , and similarly the right end point is the right gate. The
figure below shows an example of gates p and q:

Ci,j

U

p q

The set of gates of U are the gates with respect to all cells in the free space
diagram. We define the canonical gate of a vertex-edge pair as the point in parametric
space that minimizes the vertex-edge distance. Note that canonical gates serve as
end points of canonical tunnels that span across columns in the free space diagram.

2.4. Curve simplification. We use the following simple algorithm for the sim-
plification of the input curves. It is easy to verify that the curve simplified with
parameter μ is in Fréchet distance at most μ to the original curve; see [24].

Definition 2.8. Given a polygonal curve XXX and a parameter μ > 0, first mark
the initial vertex of XXX and set it as the current vertex. Now scan the polygonal curve
from the current vertex until it reaches the first vertex that is in distance at least μ
from the current vertex. Mark this vertex and set it as the current vertex. Repeat
this until reaching the final vertex of the curve and also mark it. We refer to the
resulting curve X that connects only the marked vertices, in their order along XXX, as
a μ-simplification of XXX and we denote it with simpl(XXX,μ).

During the course of the algorithm we will simplify the input curves in order
to reduce the complexity of the free space. The k-shortcut Fréchet distance does
not satisfy the triangle inequality, as can be seen by the counterexample shown in
Figure 2.2. Therefore, we need the next lemma to ensure that the computed distance
between the simplified curves approximates the distance between the original curves.
The proof is straightforward and can be found in [22].
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1840 ANNE DRIEMEL AND SARIEL HAR-PELED

X
Y
Z

Fig. 2.2. The directed k-shortcut Fréchet does not satisfy the triangle inequality. In the depicted
counterexample it holds that dS(k,X,Z) > dS(k,X, Y ) + dS(k, Y, Z) for any value of k and for k
unbounded. This holds true in the vertex-restricted and the continuous case.

Lemma 2.9 (see [22]).Given a simplification parameter μ and two polygonal curves
XXX and YYY , let X = simpl(XXX,μ) and Y = simpl(YYY , μ) denote their μ-simplifications,
respectively. For any k ∈ �, it holds that dS(k,X, Y )−2μ≤dS(k,XXX,YYY )≤dS(k,X, Y ) +
2μ. Similarly, dS(X,Y )− 2μ ≤ dS(XXX,YYY ) ≤ dS(X,Y ) + 2μ.

Lemma 2.10 (see [24]). For any two c-packed curves XXX and YYY in �d of total
complexity n, and two parameters 0 < ε < 1 and δ > 0, we have that

N≤δ (simpl(XXX,μ), simpl(YYY , μ)) = O(cn/ε),

where μ = Θ(εδ).

2.5. Building blocks for the algorithm. The algorithm uses the following
two nontrivial data structures.

Data Structure 2.11. Given a polygonal curve Z with n vertices in �d, one
can build a data structure, in O(χ2n log2 n) time, using O(χ2n) space, where χ =
ε−d log(1/ε), that supports a procedure price(p, q) which receives two points p and q
in the parametric space of X and Y and returns a value φ such that φ ≤ prc(τ(p, q)) ≤
(1 + ε)φ in O(ε−3 logn log logn) time. See section 5.4 and Theorem 5.9.

Data Structure 2.12. For given parameters ε and δ and two c-packed curves
XXX and YYY in �d, let X = simpl(XXX,μ) and X = simpl(YYY , μ), where μ = εδ. One can
compute all the vertex-edge pairs of the two simplified curves X and Y in distance at
most δ from each other in time O(n log n+ c2n/ε). See below for details.

We describe here how to realize Data Structure 2.12. Observe that X and Y have
density φ = O(c). Now, we build the data structure of de Berg and Streppel [21] for
the segments of Y (with ε = 1/2). For each vertex of X we compute all the segments
of Y that are in distance at most δ from it, using the data structure [21]. Each query
takes O(log n + kφ) time, where k is the number of edges reported. Lemma 2.10
implies that the total sum of the k’s is O(cn/ε). We now repeat this for the other
direction. This way, one can realize Data Structure 2.12.

2.6. Monotonicity of the prices of tunnels. The following two lemmas imply
readily that under certain conditions the prices of tunnels which share an end point
are approximately monotone with respect to the x-coordinate of their starting point.
We will exploit this in the approximation algorithm that computes the reachability
in the free space diagram. We will see in section 3.1 that this drastically reduces the
number of tunnels that need to be inspected in order to decide if a particular cell is
reachable.

Lemma 2.13. Given a value δ > 0 and two curves X1 and X2, such that X2 is
a subcurve of X1, and given two line segments Y 1 and Y 2, such that dF(X1, Y 1) ≤ δ
and the start (resp., end) point of X2 is in distance δ to the start (resp., end) point
of Y 2, then dF(X2, Y 2) ≤ 3δ.
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JAYWALKING YOUR DOG 1841

Proof. Let u denote the subsegment of Y 1 that is matched to X2

under an optimal Fréchet mapping between X1 and Y 1. We know
that dF(X2, u) ≤ δ by this mapping. The start point of Y 2 is in
distance 2δ to the start point of u, since they are both in distance
δ to the start point of X2 and the same holds for the end points.
This implies that dF(u, Y 2) ≤ 2δ. Now, by the triangle inequality,
dF(X2, Y 2) ≤ dF(X2, u) + dF(u, Y 2) ≤ 3δ.

X1

X2

≤ δ

Y 1

Y 2

u

Lemma 2.14. Consider two polygonal curves X and Y and three points p, q, and
r in their free space, and let δ′ = max(d(p), d(q), d(r)). If x(p) ≤ x(q) ≤ x(r), then

prc(τ(q, r)) ≤ 3max(δ′, prc(τ(p, r))).1

Proof. Let X1 be the subcurve X[xp, xr], and let X2 = X[xq, xr]. Similarly, let

Y 1 be the shortcut Y [yp, yr] and let Y 2 = Y [yq, yr]. By Lemma 2.13 prc(τ(q, r)) ≤ 3δ′

for δ′ = max(dF(X1, Y 1), δ).

We will see in section 3.3.2 that the monotonicity property of Lemma 2.14 also
enables a faster search over tunnel events. The property holds even if the tunnels under
consideration are not valid. For example, if xp < xr and yp > yr, then the tunnel τ(p, r)
is not a valid tunnel and it cannot be used by a valid solution. Nevertheless, τ(p, r)
has a well-defined price, and these prices have the required monotonicity property.

Lemma 2.15. For a parameter δ ≥ 0, let p1, . . . , pm be m points in the δ-free
space in increasing order by their x-coordinates, and let ψi = prc(τ(pi, pm)) for any
1 ≤ i ≤ m. Then we have the following:

(A) If ψi ≥ δ, then for all j > i, we have prc(τ(pj , pm)) ≤ 3ψi.
(B) If ψi > 3δ, then for all j < i, we have prc(τ(pj , pm)) ≥ ψi/3.

Proof. To see the first part of the claim, note that by Lemma 2.14, prc(τ(pj , pm)) ≤
3max(δ, ψi) ≤ 3ψi. As for the second part, we have by the same lemma that
δ < ψi/3 ≤ max(δ, prc(τ(pj , pm))) and thus ψi/3 ≤ prc(τ(pj , pm)).

3. Approximating the shortcut Fréchet distance. We describe the algo-
rithm to approximate the directed vertex-restricted shortcut Fréchet distance between
two given polygonal curves X and Y where the number of shortcuts that can be used
in a solution is unbounded. In section 4 we prove the correctness and analyze the
complexity of this algorithm.

3.1. The tunnel procedure. A key element in the decision procedure is the
tunnel procedure depicted in Figure 3.1. During the decision procedure, we will
repeatedly invoke the tunnel procedure with a set of gates R, for which we already
know that they are contained in the reachable free space R∞

≤δ(X,Y ), and the left gate
associated with a horizontal free space interval of D≤δ(X,Y ), in order to determine
if and to which extent this interval is reachable.

Intuitively, this procedure receives as input a set of reachable points in the para-
metric space and a free space interval (in the form of the left gate) and we are asking
if there exists an affordable tunnel connecting a reachable point to the interval. Here,
affordable means that its price is less than δ. More precisely, the procedure receives a
set of gates R and a gate p as input and returns the end point of an (approximately)
affordable tunnel that starts at a gate of R and ends at either p or the leftmost point
to the right of p in the same free space interval. If a tunnel between a gate in R
and the free space interval of p exists which has price less than δ, then the algorithm

1Here, d(p) is the elevation of p (see Definition 2.2), and τ(q, r) is the tunnel between q and r
(see section 2.3.1).
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tunnel(R, p, ε, δ)

1: Let q = (xq, yq) point in R with max value of xq,
such that xq ≤ xp and yq < yp, where p = (xp, yp).

2: φ = price(q, p), see Data Structure 2.11.
3: if φ ≤ 3δ then
4: Return p // tunnel τ(q, p)
5: Compute j such that xp ∈ Iedge(X, j) = [xj , xj+1]
6: Let q = (xq, yq) point in R with min value of xq,

such that xq ∈ Iedge(X, j), xq ≥ xp, and yq < yp
7: if q does not exist then
8: Return null.
9: v = (xq, yp)

10: if d(v) ≤ δ then
11: Return v // vertical tunnel τ(q, v)
12: else
13: Return null.

Fig. 3.1. The tunnel procedure receives a set of gates R and a gate p in the parametric space
and returns the end point of an affordable tunnel between R and p (or a point close to it) if it
exists. The technical details of the range queries in Line 1 and Line 6 are described in the proof of
Lemma 4.2.

will return the end point of a tunnel of price less than or equal to (1 + ε)3δ. If the
algorithm returns null, then we know that no such tunnel of price less than δ exists.

The main idea of the tunnel procedure is the following. For a given tunnel, we
can (1 + ε)-approximate its price, using a data structure which answers these queries
in polylogarithmic time; see Data Structure 2.11. The desired tunnel could be a
vertical tunnel which starts at a gate of R or could be a tunnel between a gate of R
and p. Naively, one could test all tunnels that start from a gate in R and end in p;
however, this takes time at least linear in the size of R. Since we are only interested
in a constant factor approximation, it is sufficient, by Lemma 2.14, to test only the
tunnel which corresponds to the shortest subcurve of X . The corresponding gates can
be found in polylogarithmic time using a two-dimensional range tree, which is built
on the set R and we assume is available to us. We can maintain the range tree during
the decision procedure depicted in Figure 3.2. The technical details are described in
the proof of Lemma 4.2. An alternative solution that uses a balanced binary search
tree only is described in [22].

3.2. The decision algorithm. In the decision problem we want to know whether
the shortcut Fréchet distance between two curves, X and Y , is smaller than or equal
to a given value δ. The free space diagramD≤δ(X,Y ) may consist of a certain number
of disconnected components and our task is to find a monotone path from (0, 0) to
(1, 1) that traverses these components while using shortcuts between vertices of Y to
“bridge” between points in different components or where there is no monotone path
connecting them (see Figure 2.1). The decision algorithm exploits the monotonicity
of the tunnel prices shown in Lemma 2.14 and is based on a breadth-first search in
the free space diagram. (A similar idea was used in [24], but here the details are more
involved.)

Given two curves X and Y and parameters δ and ε, the algorithm may output
an answer equivalent to “yes” if there exists a shortcut curve Y ′ of Y such that
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decider(X,Y, ε, δ)

1: Assert that d(0, 0) = ‖X(0)− Y (0)‖ ≤ δ and d(1, 1) ≤ δ
2: Let Q be a min-priority queue for nodes v(i, j) with keys (jn+ i)
3: Compute and enqueue the cells Ci,j that have non-empty Ihi,j or Ivi,j .
4: Let R = {(0, 0)}.
5: while Q �= ∅ do
6: Dequeue node v(i, j) and its copies from Q
7: Let p be the left gate of Ihi,j
8: v = tunnel(R, p, ε, δ)
9: Compute Rh

i,j and Rv
i,j from v, Rv

i−1,j , R
h
i,j−1, I

v
i,j and Ihi,j

10: if Rv
i,j �= ∅ then

11: Enqueue v(i + 1, j) and insert edge between v(i, j) and v(i+ 1, j)
12: if Rh

i,j �= ∅ then
13: Enqueue v(i, j + 1) and insert edge between v(i, j) and v(i, j + 1)
14: Add gates of Rh

i,j to R
15: if (1, 1) ∈ R then
16: Return “dS(X,Y ) ≤ (1 + ε)3δ”
17: else
18: Return “dS(X,Y ) > δ”

Fig. 3.2. The decision procedure decider for the shortcut Fréchet distance.

dS(X,Y
′) ≤ δ and an answer equivalent to “no” if there exists no shortcut curve such

that dS(X,Y
′) ≤ (1 + ε)3δ.

3.2.1. Detailed description of the decision procedure. The decision algo-
rithm is depicted in Figure 3.3 (and Figure 3.2). The algorithm uses a directed graph
G that has a node v(i, j) for every free space cell Ci,j whose boundary has a non-
empty intersection with the free space D≤δ(X,Y ). These intersections are defined as
the free space intervals Ihi,j , I

v
i,j , I

h
i−1,j , and I

v
i,j−1; see section 2.1. For any path along

the edges of the graph G from v(1, 1) to v(i, j), there exists a monotone path that
traverses the corresponding cells of D≤δ(X,Y ) while using zero or more affordable
tunnels. A node v(i, j) can have an incoming edge from another node v(i′, j′) if i′ ≤ i
and j′ ≤ j and either v(i′, j′) is a neighboring node or the two cells can be connected
by an affordable tunnel which starts at the lower boundary of the cell corresponding
to v(i′, j′) and ends at the upper boundary of the cell corresponding to v(i, j). The
idea of the algorithm is to propagate reachability intervals Rv

i,j ⊂ Ivi,j and Rh
i,j ⊂ Ihi,j

while traversing a sufficiently large subgraph starting from v(1, 1) and computing the
necessary parts of this subgraph on the fly. We store these intervals with the cell
v(i, j) that has them on the top (resp., right) boundary. The reachability intervals
Rv

i,j being computed satisfy

Decider(XXX,YYY , ε, δ)

1: Let ε′ = ε/10
2: Compute X = simpl(XXX,μ) and Y = simpl(YYY , μ) with μ = ε′δ
3: Call decider(X,Y, ε′, δ′) with δ′ = (1 + 2ε′)δ
4: Return either “dS(XXX,YYY ) ≤ (1 + ε)3δ” or “dS(XXX,YYY ) > δ”

Fig. 3.3. The resulting decision procedure Decider. A detailed description of the complete
algorithm is given in section 3.2.1.
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1844 ANNE DRIEMEL AND SARIEL HAR-PELED

(3.1) R∞
≤δ(X,Y ) ∩ Ivi,j ⊆ Rv

i,j ⊆ R∞
≤(1+ε)3δ(X,Y ) ∩ Ivi,j ,

and an analogous statement applies to Rh
i,j . The aim is to determine if either (1, 1) ∈

R∞
≤(1+ε)3δ(X,Y ) or (1, 1) /∈ R∞

≤δ(X,Y ). Throughout the whole algorithm we also
maintain a set of gatesR, which represents the end points of the horizontal reachability
intervals computed so far.

We will traverse the graph by handling the nodes in a row-by-row order, thereby
handling any node v(i, j) only after we handled the nodes v(i′, j′), where j′ ≤ j, i′ ≤ i,
and (i′ + j′) < (i + j). To this end we keep the nodes in a min-priority queue where
the node v(i, j) has the key (jn + i). The correctness of the computed reachability
intervals will follow by induction on the order of these keys. Furthermore, it will
ensure that we handle each node at most once and that we traverse at most three of
the incoming edges to each node of the graph.

The queue is initialized with the entire node set at once. To compute this initial
node set and the corresponding free space intervals we use Data Structure 2.12. The
algorithm then proceeds by handling nodes in the order of extraction from this queue.
When dequeuing nodes from the queue, the same node might appear three times
(consecutively) in this queue. Once from each of its direct neighbors in the grid and
once from the initial enqueuing.

In every iteration, the algorithm dequeues the one or more copies of the same
node v(i, j) and merges them into one node if necessary. Assume that v(i, j) has an
incoming edge that corresponds to an affordable tunnel. Let p be the left gate of Ihi,j .
We invoke tunnel(R, p, ε, δ) to test if this is the case. If the call returns null, then
there is no such affordable tunnel. Otherwise, we know that the returned point v is
contained in Rh

i,j . If there is more than one copy of this node in the queue, we also
access the reachability intervals of the one or two neighboring vertices (i.e., Rv

i−1,j

and Rh
i,j−1). Using the reachability information from the at most three incoming

edges obtained this way, we can determine if the cells Ci,j+1 and Ci+1,j are reachable
by computing the resulting reachability intervals Rh

i,j at the top side and Rv
i,j the

right side of the cell Ci,j . Since the free space within a cell is convex and of constant
complexity, this can be done in constant time.

Now, if Rh
i,j �= ∅ we create a node v(i, j + 1), connect it to v(i, j) by an edge,

enqueue it, and add the gates of Rh
i,j to R. If Rv

i,j �= ∅ we create a node v(i + 1, j),
connect it to v(i, j) by an edge, and enqueue it. If we discover that the top right
corner of the free space diagram is reachable this way, we output the equivalent to
“yes” and the algorithm terminates. In this case we must have added (1, 1) as a gate
to R. The algorithm may also terminate before this happens if there are no more
nodes in the queue; in this case we output that no suitable shortcut curve exists.

3.3. The main algorithm. The given input is two curves X and Y . We want
to use the approximate decision procedure Decider, described above, in a binary
search fashion to compute the shortcut Fréchet distance. Conceptually, one can think
of the decider as being exact. In particular, the algorithm would, for a given value of
δ, call the decision procedure twice with parameters δ and δ′ = δ/4 (using ε = 1/3).
If the two calls agree, then we can make an exact decision; if the two calls disagree,
then we can output a O(1)-approximation of the shortcut Fréchet distance.

The challenge is how to choose the right subset of candidate values to guide this
binary search. Some of the techniques used for this search have been introduced in
previous papers. In particular, this holds for the search over vertex-vertex, vertex-
edge, and monotonicity events which we describe as preliminary computations in
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section 3.3.1. This stage of the algorithm eliminates the candidate values that also
need to be considered for the approximation of the standard Fréchet distance and it
is almost identical to the algorithm presented in [24].

As mentioned, a monotone path could also become usable by taking a tunnel.
There are two types of events associated with a tunnel family: the first time such
that any tunnel in this family is feasible, which is the creation radius. Fortunately,
the creation radii of all tunnels are approximated by the set of vertex-vertex and
vertex-edge event radii, and our first-stage search (see section 3.3.1) would thus take
care of such events.

The second event we have to worry about is the first time that the feasible family
of tunnels becomes usable via a tunnel (i.e., the price of some tunnel in this family
is below the distance threshold δ). Luckily, it turns out that it is sufficient to search
over the price of the canonical tunnel associated with such a family. The price of
a specific tunnel can be approximated quickly using Data Structure 2.11. However,
there are Θ(n4) tunnel families, and potentially the algorithm has to consider all of
them. Fortunately, because of c-packedness, only O(n2) of these events are relevant. A
further reduction in running time is achieved by using a certain monotonicity property
of the prices of these tunnels and our ability to represent them implicitly to search
over them efficiently.

3.3.1. The algorithm: First stage. We are given two c-packed polygonal
curvesXXX and YYY with total complexity n. We repeatedly compute sets of event values
and perform binary searches on these values as follows.

We compute the set of vertices V of the two curves, and using well-separated pairs
decomposition, we compute, in O(n log n) time, a set U of O(n) distances that, up to
a factor of two, represents any distance between any two vertices of V . Next, we use
Decider (with fixed ε = 1/3) to perform a binary search for the atomic interval in
U that contains the desired distance. Let [α, β] denote this interval. If 10α ≥ β/10,
then we are done, since we found a constant size interval that contains the Fréchet
distance. Otherwise, we use the decision procedure to verify that the desired radius
is not in the range [α, 10α] and [β/10, β]. For α′ = 3α, β′ = β/3, let I ′ = [α′, β′]
denote the obtained interval.

We now continue the search using only decider and the simplified curves X =
simpl(XXX,μ) and Y = simpl(YYY , μ), where μ = α′. We extract the vertex-edge events
of X and Y that are smaller than β′; see section 2.1. To this end, we compute all
edges of X that are in distance at most β′ of any vertex of Y and vice versa using
Data Structure 2.12. Let U ′ be the set of resulting distances. We perform a binary
search using decider to find the atomic interval I ′′ = [α′′, β′′] of U ′∩I ′ that contains
the shortcut Fréchet distance between X and Y .

Finally, we again search the margins of this interval, so that either we find the
desired approximation or alternatively we output the interval [10α′′, β′′/10],

3.3.2. Second stage: Searching over tunnel prices. It remains to search
over the canonical prices of tunnel families T (e, e′, u, v), where e �= e′2. After the first
stage, we have an interval [α, β] = [10α′′, β′′/10], and simplified curves X and Y of
which the shortcut Fréchet distance is contained in [α, β] and approximates dS(XXX,YYY ).
By Lemma 2.10, the number of vertex-edge pairs in distance β is bounded by O(cn/ε).
The corresponding horizontal grid edges in the parametric space contain the canonical
gates which are feasible for any value in [α, β]. Let P denote the m = O(cn/ε) points

2Since for the case where e = e′ the canonical price coincides with the creation event value.
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in the parametric space that correspond to the canonical gates of these vertex-edge
pairs; that is, for every feasible pair p (a vertex of Y ) and e (an edge of X), we
compute the closest point q on e to p and place the point corresponding to (q, p) in
the free space into P.

It is sufficient to consider the tunnel families between these vertex-edge pairs, since
all other families are not feasible in the remaining search interval. Thus, if we did
not care about the running time, we could compute and search over the prices of the
tunnels P× P using Data Structure 2.11. Naively, this would take roughly quadratic
time. Instead, we use a more involved implicit representation of these tunnels to carry
out this task.

Implicit search over tunnel prices. Consider the implicit matrix of tunnel prices
M = P × P where the entry M(i, j) is a (1 + ε)-approximation to the price of the
canonical tunnel τ(pi, pj). By Lemma 2.15, the first j values of the jth row of this
matrix are monotonically decreasing up to a constant factor, since they correspond
to tunnels that share the same end point pj and are ordered by their starting points
pi. (We ignore the values in this matrix above the diagonal.) Using Data Struc-
ture 2.11 we can (1 + ε)-approximate a value in the matrix in polylogarithmic time
per entry. Similarly, the lower triangle of this matrix is sorted in increasing order in
each column. As such, this matrix is sorted in both rows and columns and one can
apply the algorithm of Frederickson and Johnson [26] to find the desired value. This
requires O(logm) calls to Decider and the evaluation of O(m) entries in the matrix
and takes O(m) time otherwise. Here, we are using Decider as an exact decision
procedure. The algorithm will terminate this search with the desired constant factor
approximation to the shortcut Fréchet distance.

4. Analysis.

4.1. Analysis of the tunnel procedure.
Lemma 4.1. Given the left gate p of a free space interval Ihi,j and a set of gates

R, and parameters 0 < ε ≤ 1 and δ > 0, the algorithm tunnel depicted in Figure 3.1
outputs one of the following:

(i) a point v ∈ Ihi,j such that there exists a tunnel τ(q, v) of price prc(τ(q, v)) ≤
(1 + ε)3δ from a gate q ∈ R, or

(ii) null; in this case, there exists no tunnel of price less than or equal to δ between
a gate of R and a point in Ihi,j .

Furthermore, in case (i), there exists no other point r ∈ [p, v] that is the end point of
a tunnel from R with price less than or equal to δ.

Proof. The correctness of this procedure follows from the monotonicity of the
tunnel prices, which is affirmed by Lemma 2.14. Let φ be the (1 + ε)-approximation
to the price of the tunnel, which we compute in line 2. This tunnel starts at a point
in R and ends in p and it corresponds to the shortest subcurve X̂ of X over any such
tunnel. Lemma 2.14 implies that if φ < 3δ, then there can be no other tunnel of price
less than δ, which corresponds to a subcurve of X that contains X̂. Therefore, the
price of any tunnel from a point q ∈ R, which lies in the lower left quadrant of p, to a
point that lies in the upper right quadrant of p has a price larger than δ. In particular,
this holds for those tunnels that end to the right of p in the same free space interval.
The only other possibility for a tunnel from R to Ihi,j is a vertical tunnel that lies to
the right of p. Observe that a vertical tunnel which is feasible for δ always has price
at most δ, since it corresponds to a subcurve of X that is equal to a point which is in
distance δ to the shortcut edge. In line 5 and line 6 we compute the leftmost gate of
R in the lower right quadrant of p which lies in the same column as p. If there exists
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such a point with a vertical tunnel that ends in the free space interval Ihi,j , then we
return the end point of this tunnel. Otherwise we can safely output the equivalent to
the answer that there exists no tunnel of price less than δ.

4.2. Analysis of the decision procedure. Clearly, the priority queue opera-
tions take O(N logN) time and O(N) space, where N = N≤δ (X,Y ) is the size of the
node set, which corresponds to the complexity of the free space diagram. We invoke
the tunnel procedure once for each node. Since we add at most a constant number of
gates for every cell to R, the size of this set is also bounded by O(N). Therefore, after
the initialization the algorithm takes time near linear in the complexity of the free
space diagram. We can reduce this complexity by first simplifying the input curves
with μ = Θ(εδ) before invoking the decider procedure, thereby paying another ap-
proximation factor. We denote the resulting wrapper algorithm with Decider; it is
depicted in Figure 3.3. Now, the initial computation of the nodes takes near linear
time by Data Structure 2.12 and therefore the overall running time is near linear. A
more detailed analysis of the running time can be found in the following.

Lemma 4.2. Assume parameters δ > 0 and 0 < ε ≤ 1 and two c-packed polygonal
curves XXX and YYY in �d of total complexity n. The algorithm Decider depicted in
Figure 3.3 outputs one of the following: (i) dS(XXX,YYY ) ≤ (1+ε)3δ or (ii) dS(XXX,YYY ) > δ.
In any case, the output returned is correct. The running time is O(Cn log2 n), where
C = c2ε−2d log(1/ε).

Proof. The algorithm Decider computes the simplified curves X = simpl(XXX,μ)
and Y = simpl(YYY , μ) with μ = Θ(εδ) before invoking the algorithm decider de-
scribed in Figure 3.2 on these curves. By the correctness of the tunnel procedure
(i.e., Lemma 4.1), one can argue by induction that the subsets of points of R∞

≤δ(X,Y )
intersecting a grid edge are sufficiently approximated by the reachable intervals com-
puted by decider (see (3.1)). By Lemma 2.9, this sufficiently approximates the
decision with respect to the original curves.

It remains to analyze the running time. By Lemma 2.10, the size of the node set
of the graph G is bounded by N = O(cn/ε). This also bounds the size of the point set
R and the number of calls to the tunnel procedure, as those are at most a constant
number per node. During the tunnel procedure, which is depicted in Figure 3.1, we

(A) approximate the price of one tunnel in line 2 and
(B) invoke two orthogonal range queries on the set R in line 1 and line 6.

As for (A), building the data structure that supports this kind of query takes T1 =
O(nε−2d log2(1/ε) log2 n) time by Data Structure 2.11. Since we perform O(N) such
queries, this takes T2 = O(Nε−3 logn log logn) = O(cnε−4 logn log logn) time over-
all. As for (B), again, the set of gates R is a finite set of two-dimensional points
and we can use two-dimensional range trees (with fractional cascading as described in
[19]) to support the orthogonal range queries. We want to build this tree by adding
O(N) points throughout the algorithm execution. Since the range tree is a static
data structure, we have to make it dynamic, but we need to support only insertions
and no deletions. This can be easily done by using the logarithmic method if we
allow an additional logarithmic factor to the running time; see also [7, 36]. In this
method, the point set is distributed over O(logN) static range trees, which need to
be queried independently and which are repeatedly rebuilt throughout the algorithm.
Overall, maintaining this data structure and answering the orthogonal range queries
takes T3 = O(N log2N) time.

During the algorithm, we maintain a priority queue, where each node is added
and extracted at most three times. As such, the priority queue operations take time
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in O(N logN). The initial computation of the node set takes T4 = O(n log n+ c2n/ε)
by Data Structure 2.12.

Therefore, the overall running time is T1 + T2 + T3 + T4, which is

O(nε−2d log2(1/ε) log2 n+ cnε−4 logn log logn+ cn log2 n+ n logn+ c2n/ε)

= O(Cn log2 n),

where C = c2ε−2d log(1/ε).

Observation 4.3. It is easy to modify the decider algorithm such that it also
outputs the respective shortcut curve and reparametrization which satisfies the Fréchet
distance. We would modify the tunnel procedure such that it returns not only the
end point but also the starting point of the computed tunnel. During the algorithm, we
then insert an edge for each computed tunnel, thereby creating at most three incoming
edges to each node. After the algorithm terminates, we can trace any path backward
from (1, 1) to (0, 0) in the subgraph computed this way. This path encodes the shortcut
curves as well as the reparametrizations.

4.3. Analysis: Understanding tunnel events. The main algorithm uses the
procedure Decider to perform a binary search for the minimum δ for which the
decision procedure returns “yes.” In the problem at hand we are allowed to use
tunnels to traverse the free space diagram, and it is possible that a path becomes
feasible by introducing a tunnel. The algorithm has to consider this new type of
critical event.

Consider the first time (i.e., the minimal value of δ) that a decision procedure
would try to use a tunnel of a certain family.

Definition 4.4. Given a tunnel family T (ei, ej , u, v), we call the minimal value
of δ such that T≤δ(ei, ej, u, v) is nonempty the creation radius of the tunnel family and
we denote it with rcrt(ei, ej , u, v). (Note that the price of a tunnel might be considerably
larger than its creation radius.)

Lemma 4.5. The creation radius rcrt(ei, ej, u, v) = rmin(ei, ej , u, v); see Defini-
tion 2.6.

Proof. Recall that the creation radius of the tunnel family is the minimal value of
δ such that any tunnel in this family is feasible. Let u′ be the closest point on ei to u,
and v′ the closest point on ej to v. If u′ appears before v′ on X , then the canonical
tunnel is realized by X(xq) = u′ and X(xq) = v′ and the claim holds. In particular,
this is the case if i < j.

Now, the only remaining possibility is that u′ appears after v′ on e. It must be
that i = j; therefore let e = ei = ej . Observe that in this case any tunnel in the family
which is feasible for δ also has a price that is smaller than or equal to δ. Consider the
point r realizing the quantity

min
r∈e

max( ‖r − u‖ , ‖r − v‖ ).

Note that r is the subcurve of X corresponding to the (vertical) canonical tunnel in
this case. We claim that for any subsegment ûv̂ ⊆ e (agreeing with the orientation of
e) we have that dF(ûv̂, uv) ≥ dF(r, uv). If û = v̂, then the claim trivially holds.
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vu

v′

u′

v̂

u

vu

v′

u′

v̂

u

Fig. 4.1. Two cases: v′ appears either before or after û along e, assuming that u′ appears after
v′ on e.

Assume that v′ appears after û along e (the case depicted in Figure 4.1). Since
u′ appears after v′ along e, we have that ‖v′ − u‖ ≤ ‖û− u‖, as moving away from u′

only increases the distance from u. Therefore,

dF(r, uv) ≤ dF(v
′, uv) = max(‖v′ − u‖ , ‖v′ − v‖) ≤ max(‖û− u‖ , ‖v̂ − v‖)

= dF(ûv̂, uv).

Otherwise, if v′ appears before û along e, as depicted in Figure 4.1 on the right,
then

dF(r, uv) ≤ dF(û, uv) = max(‖û− u‖ , ‖û− v‖) ≤ max(‖û− u‖ , ‖v̂ − v‖)

= dF(ûv̂, uv),

since moving away from v′ only increases the distance from v.
This implies that the minimum δ for a tunnel in T (ei, ei, u, v) to be feasible is at

least dF(r, uv) = rcrt(ei, ei, u, v). And r testifies that there is a tunnel in this family
that is feasible for this value.

The following lemma describes the behavior when δ rises above a tunnel price,
such that the area in the free space that lies beyond this tunnel potentially becomes
reachable by using this tunnel. More specifically, it implies that the first time (i.e.,
the minimal value of δ) that any tunnel of a family T (ei, ej, u, v) is usable (i.e., its
price is less than δ), any tunnel in the feasible set T≤δ(ei, ej , u, v) associated with this
family will be usable.

Lemma 4.6. Given a value δ ≥ 0, we have for any tunnel τ(f, g) in the feasible
subset of a given tunnel family T≤δ(ei, ej, u, v) that

(i) if δ ≤ prc(τmin(ei, ej , u, v)), then prc(τ(f, g)) = prc(τmin(ei, ej, u, v)),
(ii) otherwise, prc(τ(f, g)) ≤ δ.
Proof. We first handle the case that i �= j. Let ei = pipi+1 and ej = pjpj+1.

u vpi

pi+1 pj
pj+1p q

uα vαuopt voptLet p ∈ ei and q ∈ ej be some
points on these edges that correspond
to f and g, respectively. Observe that
since this is a feasible tunnel in this
family, we have that

max(‖p− u‖ , ‖q− v‖) ≤ δ.

Consider the optimal Fréchet matching of X〈p, q〉 with uv, and let uopt and vopt be
the points on uv that are matched to pi+1 and pj by this optimal Fréchet matching.
Let α = dF(X〈pi+1, pj〉 , uαvα), where uαvα is the subsegment of uv minimizing α.
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1850 ANNE DRIEMEL AND SARIEL HAR-PELED

We have by Observation 2.3 that

dF(X〈p, q〉 , uv) = max
(
dF(ppi+1, uuopt), dF(X〈pi+1, pj〉 , uoptvopt), dF(pjq, voptv),

)
,

= max

⎛⎜⎜⎜⎜⎝
‖p− u‖ ,

‖pi+1 − uopt‖ ,
dF(X〈pi+1, pj〉 , uoptvopt),

‖pj − vopt‖ ,
‖q− v‖ ,

⎞⎟⎟⎟⎟⎠,
= max (‖p− u‖ , dF(X〈pi+1, pj〉 , uoptvopt), ‖q− v‖)
≥ max(‖p− u‖ , dF(X〈pi+1, pj〉 , uαvα), ‖q− v‖)
= max (dF(ppi+1, uuα), dF(X〈pi+1, pj〉 , uαvα), dF(pjq, v1v))
≥ dF(X〈p, q〉 , uv).

For α = dF(X〈pi+1, pj〉 , uαvα), this implies that

dF(X〈p, q〉 , uv) = max(‖p− u‖ , α, ‖q− v‖),

where α ≤ max(α, δ) is equal for all tunnels in the family. Now, if we have that δ ≤
prc(τmin(ei, ej , u, v)), then we have prc(τmin(ei, ej, u, v)) = α ≥ δ and

prc(τ(f, g)) = dF(X〈p, q〉 , uv) = max(‖p− u‖ , α, ‖q− v‖) ≤ max(α, δ) = α.

This proves (i). Otherwise, we have prc(τmin(ei, ej , u, v)) < δ, which implies that
α < δ, but then prc(τ(f, g)) ≤ δ, implying (ii).

If i = j, then the Fréchet distance is between the shortcut segment and a sub-
segment of ei. But this distance is the maximum distance between the corresponding
end points, by Observation 2.3. As the distance between end points of shortcuts and
subcurves corresponding to tunnels of T≤δ(ei, ej , u, v) is at most δ, and by Lemma 4.5,
the claim follows.

Lemma 4.7 below implies that the set of creation radii of all tunnels is approxi-
mated by the set of vertex-vertex and vertex-edge event radii. A similar lemma was
shown in [24] to prove this property for the monotonicity event values. Therefore, the
algorithm eliminates these types of events in the first stage, in addition to eliminating
the vertex-vertex and vertex-edge events.

Lemma 4.7. Consider an edge e = pq of a curve XXX and two vertices u and
v of a curve YYY . We have that x/2 ≤ rcrt(e, e, u, v) ≤ 2x, where x is in the set
{d(u, e), d(v, e), ‖u− v‖}.

Proof. First, observe that rcrt(e, e, u, v) ≥ ‖u− v‖ /2, as it is the maximum dis-
tance of some point on e from both u and v. In particular, if rcrt(e, e, u, v) ≤ 2 ‖u− v‖,
then we are done.

As such, it must be that rcrt(e, e, u, v) > 2 ‖u− v‖. Assume that u is closer to
e than v, and let u′ be the closest point on e to u. By the triangle inequality, the
distance of v from u′ is in the range I = [‖u− u′‖ , ‖u− u′‖+ ‖u− v‖]. Observe

that rcrt(e, e, u, v) ≥ ‖u− u′‖ and rcrt(e, e, u, v) ≤ max(‖u− u′‖ , ‖v − u′‖). Thus,
rcrt(e, e, u, v) ∈ I. Note that if ‖u− u′‖ ≤ ‖u− v‖, then we are done, as this implies
that rcrt(e, e, u, v) is in the range [‖u− v‖ , 2 ‖u− v‖]. Otherwise, rcrt(e, e, u, v) is in

the range [‖u− u′‖ , 2 ‖u− u′‖]. In either case, the claim follows.

The case that v is closer to e than u follows by symmetry.
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4.4. Analysis of the main algorithm. The following lemma can be obtained
using similar arguments as in the analysis of the main algorithm in [24]. We provide
a simplified proof for the case here, where we are only interested in a constant factor
approximation.

Lemma 4.8. Given two c-packed polygonal curves XXX and YYY in �d with total
complexity n, the first stage of the algorithm (see section 3.3.1) outputs one of the
following:

(A) an O(1)-approximation to the shortcut Fréchet distance between XXX and YYY ;

(B) an interval Î and curves X and Y with the following properties:

(i) dS(X,Y ) is contained in Î and dS(X,Y )/3 ≤ dS(XXX,YYY ) ≤ 3dS(X,Y ),

(ii) Î contains no vertex-edge, vertex-vertex, or monotonicity event values and
no tunnel creation radii (as defined in section 4.3) of X and Y .

The running time is O(c2n log3 n).

Proof. We first prove the correctness of the algorithm as stated in the claim. The
set U approximates the vertex-vertex distances of the vertices of XXX and YYY up to a
factor of two. Therefore, the interval I = [α, β], which we obtain from the first binary
search, contains no vertex-vertex distance ofXXX that is more than a factor of two away
from its boundary. This implies that the simplification X = simpl(XXX,μ) results in
the same curve for any μ ∈ [3α, β/3]. An analogous statement holds for YYY . Unless a
constant factor approximation is found either in the interval [α, 10α] or in the interval
[β/10, β], the algorithm continues the search using the procedure decider and the
curves simplified with μ = 3α.

It is now sufficient to search for a constant factor approximation to dS(X,Y ) in the
interval I ′ = [3α, β/3], since this will approximate the desired Fréchet distance by a
constant factor. Indeed, by the result of the initial searches, we have that 3μ ≤ 10α ≤
dS(XXX,YYY ). Lemma 2.9 implies that dS(X,Y ) ≤ dS(XXX,YYY ) + 2μ ≤ 3dS(XXX,YYY ). On the
other hand, the same lemma implies that dS(X,Y ) ≥ dS(XXX,YYY ) − 2μ ≥ dS(XXX,YYY )/3.
This implies that dS(X,Y ) ∈ I ′ = [3α, β/3], since dS(XXX,YYY ) ∈ [10α, β/10]. Note that
this also proves the correctness of (i), since the returned interval is contained in I ′.

Observe that the set of vertex-vertex distances of X and Y is contained in the set
of vertex-vertex distances of XXX and YYY . Clearly, I ′ cannot contain any vertex-vertex
distances of X and Y . The algorithm therefore extracts the remaining vertex-edge
events U ′ from the free space diagram and performs a binary search on them. We
obtain the atomic interval I ′′ = [α′′, β′′], which contains no vertex-edge events of
X and Y . Note that by (2.1) and Lemma 4.5, the monotonicity event values, as
described in section 2.1, coincide with the values of δ where a tunnel within a column
of the parametric space becomes feasible, that is, with the quantity rcrt(e, e, u, v). By
Lemma 4.7, these event values would have to lie within a factor two of the boundaries
of the interval I ′′. Therefore, we again search the margins of this interval, so that
we find the desired approximation or, alternatively, it must be in the interval I ′′′ =
[10α′′, β′′/10], which now contains no vertex-vertex, vertex-edge, monotonicity, or
tunnel creation events ofX and Y . Since I ′′′ is the interval that the algorithm returns,
unless it finds a constant factor approximation to the desired Fréchet distance, the
above argumentation implies (i) and (ii).

As for the running time, computing the set U using well-separated pairs decom-
position can be done in O(n log n) time; see [24]. Computing the set U ′ takes time
in O(n logn + c2n) by Data Structure 2.12 with μ = β/3 and δ = β. The algorithm
invokes the decision procedure O(log n) times, and this dominates the overall running
time; see Lemma 4.2.
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Lemma 4.9. Given two c-packed polygonal curves XXX and YYY in �d of total com-
plexity n, one can compute a constant factor approximation to dS(XXX,YYY ). The running
time is O(c2n log3 n).

Proof. First, the algorithm performs the preliminary computations as described
in section 3.3.1. By Lemma 4.8, we either find a constant factor approximation or we
obtain an interval [α, β] and simplified curves X and Y . Furthermore, the interval
[α, β] does not contain any vertex-vertex, vertex-edge, monotonicity, or tunnel creation
events of X and Y . Let P be the canonical gates that are feasible in the β-free space
of X and Y . We have that m = |P| = O(n) and we can compute them using
Data Structure 2.12 in O(n log n+ c2n) time for ε = 1/3. Thus, the running time up
to this stage is bounded by O(c2n log3 n) by Lemma 4.8.

Now, we invoke the second stage of the algorithm described in section 3.3.2 on the
matrix of implicit tunnel prices defined by P and return the output as our solution.

Consider a monotone path in the parametric space that corresponds to the optimal
solution. If the price of this path is determined by either a vertex-vertex, a vertex-
edge, or a monotonicity event, then we have found an approximation to the shortcut
Fréchet distance already in the first stage of the search algorithm. If it is dominated
by a tunnel price and this tunnel has both end points in the same column of the free
space, then by Observation 2.3 it is a creation radius. By Lemma 4.5 this is equivalent
to the minimum radius of the corresponding tunnel family. By Observation 2.7 the
minimum radius corresponds to either a vertex-edge event or a monotonicity event.
Thus, it lies outside the interval [α, β], since by Lemma 4.8 these critical values were
eliminated in the first stage. Otherwise, this critical tunnel has to be between two
columns. Let δ be the price of this tunnel (which is also the price of the whole
solution).

Consider what happens to this path if we slightly decrease δ. Since δ is opti-
mal, then either the critical tunnel ceases to be feasible or its price is not affordable
anymore.

If the critical tunnel is no longer feasible, then one of its end points is also an
end point of the free space interval it lies on. Consider the modified path in the
free space, which uses the new end point of the free space interval. If the free space
interval is empty, then this corresponds to a vertex edge event, and this is not possible
inside the interval [α, β]. The other possibility is that the path is no longer monotone.
However, this corresponds to a monotonicity event, which again we already handled
because of Lemma 4.8.

If the tunnel is still feasible, then it must be that the end points of this tunnel
are contained in the interior of the free space interval and not on its boundary. Now
Lemma 4.6(i) implies that the price of this tunnel is equal to the price of the canonical
tunnel. As such, the price of the optimal solution is being approximated correctly in
this case.

Observe that in the second stage we are searching over all tunnel events that lie
in the remaining search interval (whether they are relevant in our case or not). Hence,
the search would find the correct critical value, as it is one of the values considered
in the search.

The running time of the second stage is bounded by the following:
(A) O(n log n log logn) time to compute the needed entries in the matrix using

Data Structure 2.11;
(B) O((c2n log2 n) logn) time for the O(log n) calls to Decider;
(C) O(n) for other computations.
Therefore, the overall running time of the algorithm is O(c2n log3 n).
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4.5. Result. The following theorem states the main result for approximating
the shortcut Fréchet distance.

Theorem 4.10. Given two c-packed polygonal curves XXX and YYY in �d with total
complexity n and a parameter ε > 0, the main algorithm of section 3 computes a
(3+ε)-approximation to the shortcut Fréchet distance between X and Y . The running
time of the algorithm is O(c2n log2 n(log n+ ε−2d log(1/ε))) time. The algorithm also
outputs the shortcut curve of YYY and the reparametrizations that realize the respective
shortcut Fréchet distance.

Proof. The result follows from Lemma 4.9. This yields an interval I that contains
the value of the optimal solution. We can turn any constant factor approximation into
a (3 + ε)-approximation using Decider with ε′ = ε/3 by invoking it over a constant
number of subintervals of the form [α, β], where β = (3 + ε)α. These intervals are
required to cover I, and as such, Decider would return the desired approximation
for one of them. (The running time of each call to Decider is stated in Lemma 4.2.)

It is easy to modify the algorithm such that it also outputs the shortcut curve
and the reparametrizations realizing the approximate Fréchet distance; see
Observation 4.3.

Remark 4.11. One can extend the algorithm of Theorem 4.10 so that it approxi-
mates the Fréchet distance where only k shortcuts are allowed. The basic algorithm is
similar, except that we keep track for the points of R how many shortcuts were used
in computing them. The resulting algorithm has running time O(c2kn log3 n) (for ε
a constant). This version of the algorithm is described in the Driemel’s thesis [22].

5. Data structures for Fréchet-distance queries. Given a polygonal curve
Z in �d, we build a data structure that supports queries for the Fréchet distance of
subcurves of Z to query segments pq. We describe the data structure in three stages.
After establishing some basic facts in section 5.1, we first describe a data structure
that achieves a constant factor approximation in section 5.2. We proceed by describing
a data structure that answers queries for the Fréchet distance of the entire curve to
a query segment up to an approximation factor of (1 + ε) in section 5.3. Finally,
we describe how to combine these two results to obtain the final data structure for
segment queries in section 5.4.

5.1. Useful lemmas for curves and segments.

Definition 5.1. For a curve Z, the segment connecting its end points is its
spine, denoted by spine(Z).

The following is a sequence of technical lemmas that we need later on. These
lemmas affirm the following:

(A) The spine of a curve is, up to a factor of two, the closest segment to this
curve with respect to the Fréchet distance; see Lemma 5.2.

(B) The Fréchet distance between a curve and its spine is monotone, up to a
factor of two, with respect to subcurves; see Lemma 5.3.

(C) Shortcutting a curve cannot increase the Fréchet distance of the curve to a
line segment; see Lemma 5.4 or [15].

Lemma 5.2. Let pq be a segment and Z be a curve. Then, (i) dF(pq, Z) ≥
dF(pq, spine(Z)), and (ii) dF(pq, Z) ≥ dF(spine(Z), Z)/2.

Proof. Let r and u be the end points of Z; that is, spine(Z) = ru.

(i) Since in any matching of pq with Z it must be that p is matched to r and q
is matched to u, it follows that dF(pq, Z) ≥ max(‖p− u‖ , ‖q− v‖) = dF(pq, ru) =
dF(pq, spine(Z)), by Observation 2.3.
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(ii) By (i) and the triangle inequality, we have that

dF(spine(Z), Z) ≤ dF(spine(Z), pq) + dF(pq, Z) ≤ 2dF(pq, Z),

which implies the claim.
Lemma 5.3. Given two curves Z and Ẑ such that Ẑ is a subcurve of Z, then we

have that dF(spine(Ẑ), Ẑ) ≤ 2dF(spine(Z), Z).
Proof. Consider the matching that realizes the Fréchet distance between Z and

spine(Z). It has to match the end points of Ẑ to points q and r on spine(Z). We

have that dF(Ẑ, qr) ≤ dF(Z, spine(Z)). By Lemma 5.2(i), we have dF(spine(Ẑ), qr) ≤
dF(Ẑ, qr) ≤ dF(Z, spine(Z)). Now, by the triangle inequality, we have that

dF(Ẑ, spine(Ẑ)) ≤ dF(Ẑ, qr) + dF(qr, spine(Ẑ)) ≤ 2dF(Z, spine(Z)).

Lemma 5.4. Let Z = u1u2 . . . un be a polygonal curve, let pq be a segment, and
let i < j be any two indices. Then, for Z ′ = Z〈u1, ui〉 ⊕ uiuj ⊕ Z〈uj , un〉, we have
dF(Z

′, pq) ≤ dF(Z, pq).
Proof. Consider the matching realizing dF(Z, pq), and break it into three portions:
• the portion matching Z〈u1, ui〉 with a “prefix” pp′ ⊆ pq,
• the portion matching Z〈ui, uj〉 with a subsegment p′q′ ⊆ pq, and
• the portion matching Z〈uj , un〉 with a “suffix” q′q ⊆ pq.

Now, by Lemma 5.2(i), we have that

dF(Z, pq) = max(dF(Z〈u1, ui〉 , pp′), dF(Z〈ui, uj〉 , p′q′), dF(Z〈uj, un〉 , q′q))

≥ max(dF(Z〈u1, ui〉 , pp′), dF(uiuj, p′q′), dF(Z〈uj, un〉 , q′q))

≥ dF(Z
′, pq).

5.2. Stage 1: Achieving a constant factor approximation. In this section
we describe a data structure that preprocesses a curve Z to answer queries for the
Fréchet distance of a subcurve of Z to a query segment up to a constant approximation
factor. This data structure will be the basis for later extensions.

A query is specified by points u, v, p, and q. Here u and v are points on Z (and
we are also given the edges of Z containing these two points), and the points p and q
define the query segment. Our goal is to approximate dF(pq, Z〈u, v〉).

5.2.1. The data structure.

Preprocessing. Build a balanced binary tree T on the edges of Z. Every internal
node ν of T corresponds to a subcurve of Z, denoted by cr(ν). Let seg(ν) denote the
spine of cr(ν) (Definition 5.1). For every node, we precompute its Fréchet distance of
the curve cr(ν) to the segment seg(ν). Let dν denote this distance.

Answering a query. For the time being, assume that u and v are vertices of Z.
In this case, one can compute, in O(log n) time, k = O(log n) nodes ν1, . . . , νk of T ,
such that Z〈u, v〉 = cr(ν1) ⊕ cr(ν2) ⊕ · · · ⊕ cr(νk). We compute the polygonal curve
Y = seg(ν1) ⊕ · · · ⊕ seg(νk) and compute its Fréchet distance from the segment pq.
We denote this distance by d = dF(pq, Y ). We return

Δ = d+
k

max
i=1

dνi

as the approximate distance between pq and the subcurve Z〈u, v〉.
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5.2.2. Analysis.

Lemma 5.5. Given a polygonal curve Z with n edges, one can preprocess it in
O(n log2 n) time such that for any pair u, v of vertices of Z and a segment pq, one
can compute, in O(log n log logn) time, a 3-approximation to dF(pq, Z〈u, v〉).

Proof. The construction of the data structure and how to answer a query are
described above. For the preprocessing time, observe that computing the Fréchet
distance of a segment to a polygonal curve with k segments takes O(k log k) time [6].
Hence, the distance computations in each level of the tree T take O(n log n) time and
O(n log2 n) time overall.

As for the query time, computing Y takes O(log n) time, and computing its
Fréchet distance from pq takes O(log n log logn) time [6].

Finally, observe that the returned distance Δ is a realizable Fréchet distance, as
we can take the matching between pq and Y and chain it with the matching of every
edge of Y with its corresponding subcurve of Z. Clearly, the resulting matching has
width at most Δ.

Let t be the index realizing maxki=1 dνi . Then, by a repeated application of
Lemma 5.4, we have that d = dF(pq, Y ) ≤ dF(pq, Z). Thus,

Δ = d+
k

max
i=1

dνi = dF(pq, Y ) + dνt ≤ dF(pq, Z) + dF(seg(vt), cr(vt))

≤ dF(pq, Z) + 2 min
p′q′⊆pq

dF(p
′q′, cr(vt)) ≤ 3dF(pq, Z).

To see the last step, consider the matching realizing dF(pq, Z), and consider the
subsegment p′q′ of pq that is being matched to cr(vt) ⊆ Z. Clearly, dF(p

′q′, cr(vt)) ≤
dF(pq, Z).

Theorem 5.6. Given a polygonal curve Z with n edges, one can preprocess it in
O(n log2 n) time and using O(n) space such that, given a query specified by

(i) a pair of points u and v on the curve Z,
(ii) the edges containing these two points, and
(iii) a pair of points p and q,

one can compute, in O(log n log logn) time, a 3-approximation to dF(pq, Z〈u, v〉).
Proof. This follows by a relatively minor modification of the above algorithm and

analysis. Indeed, given u and v (and the edges containing them), the data structure
computes the two vertices u′, v′ that are end points of these edges that lie between u
and v on the curve. The data structure then concatenates the segments uu′ and v′v to
the approximation Y (here Y is computed for the vertices u′ and v′). The remaining
details are as described above.

5.3. Stage 2: A segment query to the entire curve. In this section we
describe a data structure that preprocesses a curve to answer queries for the Fréchet
distance of the entire curve to a query segment up to an approximation factor of
(1 + ε). We will use this data structure as a component in our later extensions.

5.3.1. The data structure. We need the following relatively easy construction
of an exponential grid. Figure 5.1 illustrates the idea. The details can be found in [22].

Lemma 5.7 (see [22]). Given a point u ∈ �d, a parameter 0 < ε ≤ 1, and an
interval [α, β] ⊆ � one can compute in O(ε−d log(β/α)) time and space an exponential
grid of points G(u) such that for any point p ∈ �d with ‖p− u‖ ∈ [α, β], one can
compute in constant time a grid point p′ ∈ G(u) with ‖p− p′‖ ≤ (ε/2) ‖p− u‖.
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u
Z

L

v

q

p′

p

Fig. 5.1. We build an exponential grid around each end point of the curve such that for any
point p, which has distance to the end point in the range [εL/4, L/ε], there exists a grid point p′
which is relatively close by.

Preprocessing. We are given a polygonal curve Z in �d with n segments, and we
would like to preprocess it for (1 + ε)-approximate Fréchet distance queries against a
query segment. To this end, let L = dF(uv, Z), where uv is the spine of Z. We con-
struct an exponential grid G(u) of points around u with the range [α, β] = [εL/4, L/ε]
as described in Lemma 5.7 and illustrated in Figure 5.1. We construct the same grid
G(v) around the vertex v.

Now, for every pair of points (p′, q′) ∈ G(u) × G(v) we compute the Fréchet
distance D[p′, q′] = dF(p

′q′, Z) and store it. Thus, we take O(χ2n logn) time to build
a data structure that requires O(χ2) space, where χ = ε−d log(1/ε).

Answering a query. Given a query segment pq, we compute the distance

r = max(‖p− u‖ , ‖q− v‖).

If r ≤ εL/4, then we return L− r as the approximation to the distance dF(pq, Z). If
r ≥ L/ε, then we return r as the approximation. Otherwise, let p′ (resp., q′) be the
nearest neighbor to p in G(u) (resp., G(v)). We return the distance

Δ = D[p′, q′]−max(‖p− p′‖ , ‖q− q′‖)

as the approximation.

5.3.2. Analysis.
Lemma 5.8. Given a polygonal curve Z with n vertices in �d, one can build

a data structure, in O(χ2n logn)) time, that uses O(χ2) space, such that given a
query segment pq one can (1 + ε)-approximate dF(pq, Z) in O(1) time, where χ =
ε−d log(1/ε).

Proof. The data structure is described above. Given pq we compute the distance
of the end points of this segment from the end points of Z. If they are too close, or if
one of them is too far away, then we are done since in this case the Fréchet distance
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is dominated either by these distances or by the precomputed value L. Otherwise,
we find the two cells in the exponential grid that contain p and q (that is, the indices
of the grid points that are close to them) as described above. Using the indices of
the grid points, we can directly look up the approximation of the Fréchet distance in
constant time.

Now, we argue about the quality of the approximation using the notation which
is also used above. There are three cases: either (i) r ≤ εL/4, or (ii) L ≤ εr, or
(iii) εL/4 ≤ r ≤ L/ε. Let Δ be the returned value. We claim that in all three cases,
it holds that

Δ ≤ dF(pq, Z) ≤ (1 + ε)Δ.(5.1)

First note that by the triangle inequality,

L− r ≤ dF(pq, Z) ≤ L+ r.(5.2)

Now, in case (i) above, L dominates the distance value and we return Δ = L − r.
Thus, (5.1) follows from (5.2).

In case (ii), r dominates the distance value and we return Δ = r. Since r is at
most dF(pq, Z), again (5.1) follows from (5.2).

In case (iii), the precomputed Fréchet distance of p′q′ to Z dominates the distance.
Recall that we return Δ = dF(p

′q′, Z)−dF(p
′q′, pq) in this case. Again, by the triangle

inequality, it holds that

dF(p
′q′, Z)− dF(p

′q′, pq) ≤ dF(pq, Z) ≤ dF(p
′q′, Z) + dF(p

′q′, pq).(5.3)

Since r is at least εL/4 and by Observation 2.3, Lemma 5.7 implies that

dF(p
′q′, pq) ≤ max(‖p− p′‖ , ‖q− q′‖) ≤ (ε/2)r;

thus, since also r is at most dF(pq, Z) it follows by (5.3) that

Δ ≤ dF(pq, Z) ≤ Δ+ 2dF(p
′q′, pq) ≤ Δ+ εr ≤ (1 + ε)Δ.

This implies the claim.

5.4. Stage 3: A segment query to a subcurve. In this section we describe a
data structure that preprocesses a curve Z to answer queries for the Fréchet distance
of a subcurve of Z to a query segment up to an approximation factor of (1 + ε). For
this we combine the data structures developed in the previous sections.

As in section 5.2, a query is defined by two points u and v on Z and a segment
with end points p and q. The goal is now a (1 + ε)-approximation to dF(pq, Z〈u, v〉).

5.4.1. The data structure.
Preprocessing. Let Z be a given polygonal curve with n vertices. We build the

data structure of Theorem 5.6. Next, for each node of the resulting tree T , we build
for its subcurve the data structure of Lemma 5.8 using ε′ = ε/3.

Answering a query. Using the data structure of Theorem 5.6 we first compute a
3-approximation r to dF(pq, Z〈u, v〉); that is, dF(pq, Z〈u, v〉) ≤ r ≤ 3dF(pq, Z〈u, v〉).
This query also results in a decomposition of Z〈u, v〉 into m = O(log n) subcurves.
Let u = v0, v1, . . . , vm−1, vm = v be the vertices of these subcurves, where v0v1 and
vm−1vm are subsegments of Z.
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v0 v1

v2

v3

v4

v6

v5

vm

V1

V2

V3

V4

V5

V6

p

q

V0

Vm

Fig. 5.2. Schematic illustration of the graph G on the vertex set
⋃

Vi.

We want to find points on pq that can be matched to v1, . . . , vm−1 under a (1+ε)-
approximate Fréchet matching. To this end, we uniformly partition the segment pq
into segments of length at most εr/c1, where c1 is a sufficiently large constant which
we define later. Let Π be the set of vertices of this implicit partition. For each vertex
vi, for i = 1, . . . ,m − 1, we compute its nearest point on pq, and let Vi ⊆ Π be the
set of all vertices in Π that are in distance at most 2r from vi. The set Vi is the set
of candidate points to match vi in the matching that realizes the Fréchet distance.

Now, we build a graph G where
⋃

i Vi is the multiset of vertices. Two points x ∈ Vi
and y ∈ Vi+1 are connected by a direct edge in this graph if and only if y is after x in
the oriented segment pq. See Figure 5.2 for a schematic illustration. The price of such
an edge x→ y is a (1+ε/4)-approximation to the Fréchet distance between Z〈vi, vi+1〉
and xy. The portion Z〈vi, vi+1〉 of the curve corresponds to a node in T , and this
node has an associated data structure that can answer such queries in constant time
(see Lemma 5.8). For any point x ∈ V1, we directly compute the Fréchet distance
v0v1 with px. Similarly, we compute, for each y ∈ Vm−1, the Fréchet distance of the
segment vm−1vm to the segment yq. We add the corresponding edges to G together
with the vertices p and q.

Using a variant of Dijkstra’s algorithm for bottleneck shortest paths, we now
compute a path in this graph which minimizes the maximum cost of any single edge
visited by the path, connecting p with q. The cost of this path is returned as the
approximation to the Fréchet distance between Z〈u, v〉 and pq. Intuitively, this path
corresponds to the cheapest matching of Z〈u, v〉 (broken into subcurves by the vertices
v0, . . . , vm) with V0 × V1 × · · ·Vm−1 × Vm, where V0 = {p}, Vm = {q}, and every
subcurve Z〈vi, vi+1〉 is matched with two points in the corresponding sets Vi and Vi+1.

5.4.2. Analysis.
Query time. Computing the set of vertices v0, v1, . . . , vm takes O(m) = O(log n)

time. The graph G has N = O(m/ε) vertices and they can be computed in O(m/ε)
time. In particular, the number of vertices in Vi is bounded by O(1/ε), since they
are spread apart on a line segment by εr/c1 and contained inside a ball of radius 2r.
Thus, the graph has O((1/ε)−2) edges connecting Vi with Vi+1 and M = O(m/ε2)
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Z

p

qv0

v1
v2

v3

Fig. 5.3. Illustration of the error introduced by snapping.

edges in total. The cost of each edge can be computed in constant time; see Lemma 5.8.
Computing the cheapest path between p and q in G can be done in O(N logN+M) =
O((m/ε) log(m/ε) +m/ε2) time, using Dijkstra’s algorithm for bottleneck shortest
paths. Overall, the query time is

O(m+ (m/ε) log(m/ε) +m/ε2) = O(ε−2 logn log logn).

Quality of approximation. Consider the matching that realizes the Fréchet dis-
tance between the query segment pq and the subcurve Z〈u, v〉, and break it at the
vertices of v0, . . . , vm. Now, snap the matching such that the end points of Z〈vi, vi+1〉
are mapped to their closest vertices in Vi and Vi+1, respectively, for all i. This in-
troduces an error of at most εr/c1 ≤ (ε/3)dF(Z〈u, v〉 , pq) if we choose c1 ≥ 9; see
Figure 5.3 for an illustration. We get another factor of (1+ ε′) = (1+ ε/3) error since
we are approximating the price of these portions using Lemma 5.8. Therefore, the
approximation has price at most

(1 + ε/3)(1 + ε/3) · dF(Z〈u, v〉 , pq) ≤ (1 + ε) · dF(Z〈u, v〉 , pq).
Preprocessing time and space. Building the data structure described in Theo-

rem 5.6 takes O(n log2 n) time. For each node v of this tree, building the data struc-
ture of Lemma 5.8 takes O(χ2l(v) log l(v)) time per node, where l(v) is the number
of vertices of the curve stored in the subtree of v. As such, overall, the preprocessing
time is O(χ2n log2 n). For each node, this data structure requires O(χ2) space and
thus the overall space usage is O(χ2n), where χ = ε−d log(1/ε).

Putting the above together, we get the following result.
Theorem 5.9. Given a polygonal curve Z with n vertices in �d, one can build

a data structure, in O(χ2n log2 n) time, that uses O(nχ2) space such that for a query
segment pq, and any two points u and v on the curve (and the segments of the
curve that contain them), one can (1+ ε)-approximate the distance dF(Z〈u, v〉 , pq) in
O(ε−2 logn log logn) time, and χ = ε−d log(1/ε).

We emphasize that the result of Theorem 5.9 assumed nothing on the input curve
Z. In particular, the curve Z is not necessarily c-packed.

6. Universal vertex permutation and its applications. We would like to
extend the data structure described in section 5.2 to support queries with curves
of more than one segment. For this, we first introduce a new method to represent
a polygonal curve in a way such that we can extract a simplification with a small
number of segments quickly. We describe this method in section 6.1 and we describe
the extension of the data structure in section 6.2.

6.1. Universal vertex permutation. We use the data structure described in
section 5.4 to preprocess Z such that, given a number of vertices k ∈ �, we can
quickly return a simplification of Z which has
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1860 ANNE DRIEMEL AND SARIEL HAR-PELED

(i) 2k − 1 vertices of the original curve and
(ii) minimal Fréchet distance to Z, up to a constant factor, compared to any sim-

plification of Z with only k vertices.
The idea is to compute a permutation of the vertices such that the curve formed
by the first k vertices in this permutation is a good approximation to the optimal
simplification of a curve using (roughly) k vertices.

Definition 6.1. Let Z be a polygonal curve with vertices V (Z). Let V ⊆ V (Z)
be a subset of the vertices that contains the end points of Z. We call the polygonal
curve obtained by connecting the vertices in V in their order along Z a spine curve
of Z and we denote it with ZV . Additionally we may call ZV a k-spine curve of Z if
it has k vertices.

Definition 6.2. Given a polygonal curve Z and a permutation Φ = 〈v1, . . . , vn〉
of the vertices of Z, where v1 and v2 are the end points of Z, let Vi be the subset
{vj | 1 ≤ j ≤ i} of the vertices for any 2 ≤ i ≤ n. We call Φ a universal vertex
permutation if it holds that

(i) c1dF(ZVi , Z) ≥ dF(ZVi+1 , Z) for any 2 ≤ i < n, and
(ii) dF(ZVi , Z) ≤ c2dF(Y, Z) for any polygonal curve Y with �i/c3� vertices,

where c1, c2, and c3 are constants larger than one which do not depend on n.

6.1.1. Construction of the permutation. We compute a universal vertex
permutation of Z. The idea of the algorithm is to estimate for each vertex the error
introduced by removing it and repeatedly remove the vertex with the lowest error in
a greedy fashion.

Specifically, for each vertex v that is not an end point of Z, let v− be its prede-
cessor on Z and let v+ be its successor on Z. Let φv be a (11/10)-approximation of
dF(Z〈v−, v+〉 , v−v+). Insert the vertex v with weight φv into a min-heap H. Repeat
this for all the internal vertices of Z.

At each step, the algorithm extracts the vertex v from the heap H having mini-
mum weight. Let u = v−(ZH) and w = v+(ZH) be the predecessor and successor of
v in the curve ZH, respectively, where H denotes the set of vertices currently in the
heap with the addition of the two end points of Z.

The algorithm removes v from H and updates the weight of u and w in H. (If the
vertex being updated is an end point of Z its weight is +∞ and its weight is not being
updated.) Updating the weight of a vertex u is done by computing its predecessor and
successor vertices in the current curve ZH (i.e., u− = u−(ZH) and u+ = u+(ZH)) and
approximating the Fréchet distance of the subcurve of (the original curve) Z between
these two vertices and the segment u−u+. Formally, the updated weight of u is φu,
which is a (11/10)-approximation to

dF(Z
〈
u−, u+

〉
, u−u+).

The updated weight of w is computed in a similar fashion.
The algorithm stops when H is empty. Reversing the order of the handled vertices

results in a permutation 〈v1, . . . , vn〉, where v1 and v2 are the two end points of Z.
Implementation details. Using Theorem 5.9, the initialization takes O(n log2 n)

time overall, using ε = 1/10. In addition, the algorithm keeps the current set of
vertices of H in a doubly linked list in the order in which the vertices appear along
the original curve Z. In each iteration, the algorithm performs one extract-min from
the min-heap H and calls the data structure of Theorem 5.9 twice to update the
weight of the two neighbors of the extracted vertex. As such, overall, the running
time of this algorithm is O(n log2 n).
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Extracting a spine curve quickly. Given a parameter K, we would like to be able
to quickly compute the spine curve ZVK , where VK = {v1, . . . , vK}. To this end, we
compute for i = 1, . . . �log2 n� the spine curve ZV

2i
by removing the unused vertices

from ZV2i+1 . Naturally, we also store the original curve Z. Clearly, one can store
these O(log n) curves in O(n) space and compute them in linear time. Now, given K,
one can find the first curve in this collection that has more vertices than K, copy it,
and remove from it all the unused vertices. Clearly, this query can be answered in
O(K) time.

6.1.2. Analysis.
Lemma 6.3. Let 〈v1, . . . , vn〉 be the permutation computed above. Consider

a value k, and let Vk = {u1, . . . , uk} be an ordering of the vertices of v1, . . . , vk
by their order along Z. Then, the following holds: dF(Z,ZVk

) ≤ max1≤i≤k−1

dF(Z〈ui, ui+1〉 , uiui+1).
Proof. This is immediate as one can combine for i = 1, . . . , k − 1 the matchings

realizing dF(Z〈ui, ui+1〉 , viui+1) to obtain matchings of ZVk
and Z and such that the

Fréchet distance is the maximum used in any of these matchings.
Let v1, . . . , vn be the permutation of the vertices of Z as computed in the prepro-

cessing stage, and let φ(vi) denote weight of vertex vi at the time of its extraction. We
have the following three lemmas to prove that the computed permutation is universal.

Lemma 6.4. For any 1 ≤ i ≤ n, it holds that maxi≤j≤n φ(vj) ≤ 4φ(vi).
Proof. We show that the weight of a vertex at the time of extraction is at most four

times smaller than the final weight of any of the vertices extracted before this vertex.
Let vi be a vertex and let φj(vi) be the weight of this vertex at the time of extraction of
some other vertex vj with j > i. Clearly, φ(vj) = φj(vj) ≤ φj(vi), since the algorithm
extracted vj with the minimum weight at the time. If φ(vi) = φi(vi) ≥ φj(vi), then
the claim holds.

Otherwise, if φ(vi) = φi(vi) < φj(vi), then there must be a vertex which caused
the weight of vi to be updated. Let k be the minimum index such that j ≥ k > i and
φj(vi) = φk(vi). We have that φ(vi) is a 11

10 -approximation of the Fréchet distance
dF(u

iwi, Z
〈
ui, wi

〉
) for two vertices ui and wi. Similarly, we have that φk(vi) is a

11
10 -

approximation of the Fréchet distance dF(u
kwk, Z

〈
uk, wk

〉
) for two vertices uk and

wk. Observe that since the extraction of vk caused the weight of vi to be updated, it
must be that Z

〈
uk, wk

〉
is a subcurve of Z

〈
ui, wi

〉
. Hence, by Lemma 2.13, we have

that

10

11
· φk(vi) ≤ dF(u

kwk, Z
〈
uk, wk

〉
) ≤ 3dF(u

iwi, Z
〈
ui, wi

〉
) ≤ 3 · 11

10
· φ(vi).

Now it follows that φ(vj) ≤ φj(vi) = φk(vi) ≤ 4φ(vi), which proves the claim.
Lemma 6.5. For any 3 ≤ i ≤ n it holds that dF(ZVi , Z) ≤ 5φ(vi+1).
Proof. Let u1, . . . , ui be the vertices in Vi in the order in which they appear on

ZVi . Consider the mapping between Z and this spine curve, which associates every
edge ujuj+1 of ZVi with the subcurve Z〈uj , uj+1〉. Clearly, it holds that

dF(Z,ZVi) ≤ max
1≤j<i

dF(Z〈uj , uj+1〉 , ujuj+1) ≤
11

10
max
i<j≤n

φ(vj).

Indeed, if uj+1 is the successor of uj on Z; then dF(Z〈uj, uj+1〉 , ujuj+1) = 0; oth-
erwise, there must be a vertex which appears on Z between uj and uj+1, which is
contained in Vn \ Vi, and the weight of this vertex is the approximation of this dis-
tance at the time of extraction. Now it follows by Lemma 6.4 that dF(Z,ZVi) ≤
5φ(vi+1).
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Lemma 6.6. For any 2 ≤ k ≤ n/2 − 1, let Y ∗
k be the curve with the smallest

Fréchet distance from Z with k vertices. (Note that Y ∗
k is not restricted to having its

vertices lying on Z.) We have that dF(Z, Y
∗
k ) ≥ (5/11)φ(vK+1), where K = 2k − 1.

Proof. Let f : Y ∗
k → Z be the mapping realizing the Fréchet distance between

Y ∗
k and Z. Let Vi = 〈v1, . . . , vi〉 for i = 1, . . . , n.

Since Y ∗
k has only k vertices, it breaks Z into k − 1 subcurves. Since, K ≥

2(k − 1) + 1, there must be three consecutive vertices ui, ui+1, ui+2 on ZVK and two
vertices wj , wj+1 of Y ∗

k , such that the vertices ui, ui+1, ui+2 appear on the subcurve
Z ′ = Z〈f(wj), f(wj+1)〉:

Y ∗
k

Z

wj

wj+1

ui

ui+1 ui+2

f(wj)

f(wj+1)
f−1(ui)

f−1(ui+2)

Now, f−1(ui)f
−1(ui+2) ⊆ wjwj+1 and by Lemma 5.2, we have

dF(Z, Y
∗
k ) ≥ dF(Z〈f(wj), f(wj+1)〉 , wjwj+1) ≥ dF(Z〈ui, ui+2〉 , f−1(ui)f

−1(ui+2))

≥ dF(Z〈ui, ui+2〉 , f−1(ui)f
−1(ui+2))

≥ 1

2
dF(Z〈ui, ui+2〉 , spine(Z〈ui, ui+2〉))

≥ 1

2
· 10
11
φK+1(ui+1) ≥

5

11
φK+1(vK+1) =

5

11
φ(vK+1),

as the simplification algorithm removed the minimum weight vertex at time K + 1
(i.e., vK+1).

6.1.3. The result.

Theorem 6.7. Given a polygonal curve Z with n edges, we can preprocess it
using O(n) space and O(n log2 n) time such that, given a parameter k ∈ �, we can
output in O(k) time a (2k − 1)-spine curve Z ′ of Z and a value δ, such that

(i) δ/11 ≤ dF(Y
∗
k , Z) and

(ii) dF(Z
′, Z) ≤ δ,

where Y ∗
k is the polygonal curve with k vertices with minimal Fréchet distance from Z.

(For k ≥ n/2 we output Z and δ = 0.)

Proof. The algorithm computing the universal vertex permutation and its asso-
ciated data structure is described above for K = 2k − 1. Specifically, it returns the
spine curve Z ′ = ZVK as the required approximation with the value δ = 5φ(vK+1).
Computing Z ′ takes O(k) time. By Lemmas 6.5 and 6.6, we have that Z ′ and δ satisfy
the claim.

Building the data structure takes O(n log2 n) time, and it uses O(n) space using
ε = 1/10. Each query to this data structure takes O(log n log logn) time. We perform
a constant number of these queries to the data structure per extraction from the heap,
thus getting the claimed preprocessing time.

6.2. Extending the data structure for Fréchet-distance queries. We use
the universal vertex permutation described in the previous section to extend our data
structure of section 5.2 to support queries with more than one segment.
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6.2.1. The data structure. The input is a polygonal curve Z ∈ �d with n
vertices.

Preprocessing. Similar to the algorithm of section 5.2, build a balanced binary tree
T on Z. For every internal node ν of T construct the data structure of Theorem 6.7
for cr(ν), denoted by Dν , and store it at ν.

Answering a query. Given any two vertices u and v of Z, and a query polygonal
curve Q with k segments, the task is to approximate dF(Q, Z〈u, v〉). We initially
proceed as in section 5.2, computing in O(log n) time m = O(log n) nodes ν1, . . . , νm
of T such that Z〈u, v〉 = cr(ν1)⊕ cr(ν2)⊕· · ·⊕ cr(νk). Now, extract a simplified curve
with K vertices from Dνi , denoted by simplK(νi), for i = 1, . . . ,m, where K = 2k−1.
For i = 1, . . . ,m, let δi denote the simplification error (as returned by Dνi), where
dF(simplK(νi), cr(νi)) ≤ δi and δi/11 is a lower bound to the Fréchet distance of any
curve with at most k vertices from cr(νi) for i = 1, . . . ,m (see Theorem 6.7).

Next, compute the polygonal curve S = simplK(ν1) ⊕ · · · ⊕ simplK(νm) and its
Fréchet distance from Q; that is, d = dF(S,Q). We return

Δ = d+
m

max
1≤i

δi(6.1)

as the approximate distance between Q and Z〈u, v〉.

6.2.2. Analysis.
Query time. Extracting the m = O(log n) relevant nodes takes O(log n) time.

Querying these m data structures for the simplification of the respective subcurves,
takes O(km) overall by Theorem 6.7. Computing the Fréchet distance between
the resulting simplification S of Z〈u, v〉, which has O(mk) edges, and Q takes time
O(k2m log(k2m)) [6]. Thus the overall time used for answering a query is

O(m+ km+ k2m log(k2m)) = O(k2m log(km)) = O(k2 logn log(k logn)).

Preprocessing time and space. Building the initial tree T takes O(n) time and
it requires O(n) space. Let l(ν) denote the number of vertices of cr(ν). For each
node ν, computing the additional information and storing it requires O(l(ν)) space
and O(l(ν) log2 l(ν)) time. Recall that T is a balanced binary tree and for the nodes
ν1, . . . , νt contained in one level of the tree it holds that

∑t
1≤i l(νi) = n. Thus,

computing and storing the additional information takes an additional O(n log3 n)
time and O(n logn) space by Theorem 6.7.

Quality of approximation. By the following lemma the data structure achieves a
constant factor approximation.

Lemma 6.8. Given a polygonal curve Z and a query curve Q with k segments,
the value Δ (see (6.1)) returned by the above data structure is a constant factor
approximation to dF(Q, Z〈u, v〉).

Proof. Clearly, Δ bounds the required distance from above, as one can extract a
matching of Q and Z〈u, v〉 realizing Δ. As such, we need to prove that Δ = O(r),
where r = dF(Q, Z〈u, v〉).

So, let f : Q → Z〈u, v〉 be the mapping realizing r = dF(Q, Z〈u, v〉), and let
Qi = f−1(cr(νi)) for i = 1, . . . ,m. Clearly, r = maxi dF(Qi, cr(νi)). Since Qi has at
most k vertices, by Theorem 6.7 we have

δi
11

≤ dF(Qi, cr(νi)) ≤ r and dF(simplK(νi), cr(νi)) ≤ δi(6.2)
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for i = 1, . . . ,m. In particular, we have δi ≤ 11r. Now, by the triangle inequality, we
have that

dF(simplK(νi),Qi) ≤ dF(simplK(νi), cr(νi)) + dF(cr(νi),Qi) ≤ δi + r ≤ 12r.

As such, d = dF(S,Q) ≤ maxi dF(simplK(νi),Qi) ≤ 12r. Now, Δ = d + maxi δi ≤
12r + 11r = 23r.

The result. Putting the above together, we get the following result. We emphasize
that k is being specified together with the query curve, and the data structure works
for any value of k.

Theorem 6.9. Given a polygonal curve Z with n edges, we can preprocess it in
O(n log3 n) time and O(n logn) space such that, given a query specified by

(i) a pair of points u and v on the curve Z,
(ii) the edges containing these two points, and
(iii) a query curve Q with k segments,

one can approximate dF(Q, Z〈u, v〉) up to a constant factor in O(k2 logn log(k logn))
time.

Proof. The preprocessing is described and analyzed above. The query procedure
needs to be modified slightly since the u and v are not necessarily vertices of Z. How-
ever, this can be done the same way as for the initial data structure in Theorem 5.6.
Let u′, v′ be the first and last vertices of Z contained in Z〈u, v〉. We now extract the
m = O(log n) nodes ν1, . . . , νm of T such that

X = uu′ ⊕ cr(ν1)⊕ . . .⊕ cr(νm)⊕ v′v = Z〈u, v〉 .

We continue with the procedure as described above using this node set. The analysis
of Lemma 6.8 applies with minor modifications.

7. Conclusions. In this paper, we presented algorithms for approximating the
Fréchet distance when one is allowed to perform shortcuts on the original curves.
More specifically the presented algorithms approximate the directed vertex-restricted
shortcut Fréchet distance. Surprisingly, for c-packed curves it is possible to compute a
constant factor approximation in a running time which is near linear in the complexity
of the input curves.

We also presented a way to compute an ordering of the vertices of the curve such
that any prefix of this ordering serves as a good approximation to the curve in the
Fréchet distance, and it is optimal up to constant factors. We used this universal
vertex permutation to develop a data structure that can quickly approximate (up to
a constant factor) the (regular) Fréchet distance between a query curve and the input
curve. Surprisingly, the query time is logarithmic in the complexity of the original
curve (and near quadratic in the complexity of the query curve).

There are many open questions for further research. The most immediate ques-
tions are how to extend our result to the other definitions of a shortcut Fréchet
distance mentioned in the introduction and how to improve the approximation factor.
The work in this paper is a step toward solving these more difficult questions.

As for exact computations, it is easy to see that one can obtain polynomial-
time algorithms by modifying the algorithms presented in this paper even for general
polygonal curves; see also [22]. Surprisingly, a more recent result shows that if the
requirement that shortcuts have to start and end at input vertices is dropped, the
problem of computing the shortcut Fréchet distance becomes NP-hard [16, 22].
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the discrete fréchet distance, in Proceedings of the 8th Latin American Symposium on
Theoretical Informatics, 2008, pp. 630–641.

[9] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, On map-matching vehicle tracking
data, in Proceedings of the 31st VLDB Conference, 2005, pp. 853–864.

[10] K. Buchin, M. Buchin, and J. Gudmundsson, Detecting single file movement, in Proceed-
ings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2008, pp. 288–297.

[11] K. Buchin, M. Buchin, J. Gudmundsson, Maarten L., and J. Luo, Detecting commuting
patterns by clustering subtrajectories, in Proceedings of the 19th Annual International
Symposium on Algorithms and Computation, 2008, pp. 644–655.

[12] K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk, How difficult is it to walk the
dog?, in Proceedings of the 23rd European Workshop on Computational Geometry, 2007,
pp. 170–173.

[13] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer, Four Soviets Walk the Dog—With
an Application to Alt’s Conjecture, arXiv:1209.4403, 2012.

[14] K. Buchin, M. Buchin, and Y. Wang, Exact algorithms for partial curve matching via the
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22nd Annual International Symposium on Algorithms and Computation, 2011.

[33] A. Maheshwari, J.-R. Sack, K. Shahbaz, and H. Zarrabi-Zadeh, Fréchet distance with
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