
JBIG2 - THE ULTIMATE BI-LEVEL IMAGE CODING STANDARD

Fumitaka Ono (Tokyo Institute of Polytechnics, JAPAN)
William Rucklid e (Intelli ent Markets, USA)

Ronald A r p s (IBM &den kesearch Center, USA)
Cornel Constantinescu (IBM Almaden Research Center, USA)

ABSTRACT

JBIG2 is a new standard for lossy and lossless
compression of bi-level images. It exploits model-based
coding for text and halftones; as well as nearby
neighbor based coding for generic bi-level images. It
can achieve compression ratios of up to three times
those of existing standards for lossless textual image
compression. BIG2 also allows loss to be introduced
while maintaining "visually lossless" quality for textual
images, for which it can yield compression ratios of up
to eight times those of existing standards. It produces
even greater compression ratios when exploiting
similarities between multiple pages and efficiently codes
and integrates both scanned and generated bi-level
images. JBIG2 was developed for applications having
widely differing requirements such as facsimile,
document storage and archiving, Web image coding,
wireless data transmission, print spooling, and even
teleconferencing. Accordingly, JBIG2 is structured as a
"toolkit" of alternate capabilities to be selected based on
the requirements of such applications

\

1. INTRODUCTION

The Joint Bi-level Image Experts Group (JBIG), an
international study group affiliated with ISO/IEC JTC
l/SC29/WGl and ITU-T SG8, has developed a new
standard, informally referred to as JBIG2, for lossy,
lossless, and lossy-to-lossless compression of bilevel
(two-color) images. Compression of this type of image
data is also addressed by existing facsimile standards,
such as ITU-T Recommendations T.4 (MH, MR), T.6
(MMR, commonly called "Group 4"), and
T.821ISO/IEC 11544 (called B I G or JBIG1).

JBIGl, which was the first coding standard
produced by the JBIG committee in 1993, provided for
lossless and progressive (lossy-to-lossless) coding.
Though it also has a capability for lossy coding, the
lossy images produced by JBIGl have significantly
lower quality than their original images because the

number of pixels in the lossy image cannot exceed one
quarter of those in the original image.

In contrast, JBIG2 was explicitly prepared for lossy,
lossless, and lossy-to-lossless image compression. Its
design goals were to attain lossless compression
performance better than that of the existing standards,
and to include lossy compression with almost no visible
degradation of quality and much higher compression
ratios than the lossless ratios obtained with existing
standards.

BIG2 achieved these goals and added a capability
for content-progressive coding, (successively adding
different types of image data, for example, first text and
then halftones). Such content-based decomposition is
very desirable especially in interactive multimedia
applications. JBIG2 completed formal standardization
this year as ISO/IEC Standard 14492 and ITU-T
Recommendation T. 88.

2. TECHNICAL FEATURES OF JBIG2

2.1. Overview

A typical BIG2 encoder decomposes the input bi-level
image into several regions and encodes each of the
regions separately using a different coding method.
Figure 1 shows the block diagram of a JBIG2 decoder.
In this figure, thick lines and arrows show the
procedures that decode data, and how these procedures
invoke one another. Thin lines and arrows show the
data storage elements used by the decoder, and how
decoded data flows through the system. Not shown on
the figure is the control decoding procedure, which
controls the flow of encoded data.

JBIG2 utilizes model based coding to take
advantage of our knowledge that typical bi-level images
contain significant amounts of textual and halftone
image data, and that in textual and halftone data, the
same basic shapes appear repeatedly. In the model, no
assumptions about particular character sets (Latin,
Kanji, etc.) or about particular halftone types (periodic

0-7803-6297-7/00/$10.00 0 2000 IEEE
140

Text region Symbol dictionary

procedure procedure
4 decoding 4 decoding

Refinement
region decoding

Symbol memory

Halftone region Halftone dictionary
4 decoding decoding

procedure procedure

dither, error diffusion, etc.) are necessary. This
provides flexible and robust compression performance
over a wide variety of unanticipated data. JBIG2 has
several coding modes, which are designed for these
typical types of data found in bi-level images. Textual
image data is coded by pattern matching and
substitution [l], with possibly one or more additional
"refinement" steps [2]. Other bi-level image data such
as line art is coded using a pure bitmap "generic" coder.
Halftone data may also be coded by pattern matching
and substitution using pseudo-characters, or with the
generic coder.

One of the functions in a maximally efficient
system using JBIG2 is to segment a page into text,
halftone and generic regions. Such segmentation
techniques are not described in the normative part of the
standard, because they are preprocessing decisions that
don't affect compatibility with the specification. JBIG2
also has a capability that facilitates efficient multiple-
page processing by allowing the decoder to make use of
information, such as the dictionaries of character
shapes, gathered from other pages. For entropy coding,
all of the above methods can use either arithmetic
coding (the MQ-coder) or Huffman coding (including
MMR coding of bitmaps). JBIG2 also facilitates
transformation of entire lossy images into lossless ones;
by providing an image refinement capability; it also
provides a character-by-character refinement capability.

Halftone pattern
memory

JBIG2 allows lossy compression due to pre-
processing of the original image, which may consist of
flyspeck noise removal and text filtering to still be
visually lossless [3], or even complex halftone image
processing algorithms based on rate-distortion theory
[4]. BIG2 also permits the lossy compression that
results from pattern matching and substitution in the
encoder. The permissible level of such losses is not
specified in the standard. The decoder is only
guaranteed to be lossless with respect to information
provided to the entropy encoders, but not necessarily
with respect to the original image. However, if desired,
lossy image representations may be followed by
refinement data to decrease loss in any amount,
including perfect reconstruction of the original image.

2.2. Text coding

In bi-level textual data, two instances of the same
characters may not exactly match pixel by pixel in a
scanned image. But they are usually close enough that
a human observer can tell that they are the same. So
instead of coding all the individual bitmaps of each
occurrence of the same character, we code the bitmap of
one representative instance (or a synthetic instance,
usually built by averaging) of that character and put it
into a "symbol dictionary." Then for each character
instance on the page, we code both an index of the
corresponding representative bitmap in the dictionary,

141

and the position of the character instance, usually
relative to another previously coded character instance
[l]. The bitmaps in the dictionary, the indices and the
position information may be coded using either context-
based arithmetic coding or Huffman coding.

The method of “pattern matching and substitution”
allows excellent compression, but substitution errors are
possible, especially at low resolutions. For cases where
such errors are unacceptable JBIG2 supports a
technique called soft pattern matching [3], which
combines judicious preprocessing with efficient lossless
restoration of all matched characters. In soft pattern
matching, in addition to an index of the dictionary and
position information, refinement data is also sent to
restore the current character instance as was produced
after careful preprocessing. This refinement data is the
coded data of the current character instance, using both
the causal pixels of current character instance and the
entire bitmap of the matched character in the dictionary.
Since the current character instance is highly correlated
with the matched character (after all, that is the basis
for the declaration of a match) the resulting predictions
and compression factors are excellent for this visually
lossless result..

Coding bitmaps for the characters in a dictionary is
done either by a nearby neighbor based Markov model
using arithmetic coding, similar to JBIGl, or by MMR
coding as specified in ITU-T T.6. The’ main differences
between the JBIG2 arithmetic bitmap coder and that of
JBIGl are that that the arithmetic coder is slightly
different (MQ rather than QM), and that the number of
pixels in the template can be larger (10, 13 or 16 pixels
rather than 10 pixels). The character refinement coding
required by soft pattern matching must use arithmetic
coding.

Since most characters appear on every page of a
document, JBIG2 allows symbol dictionaries to be used
by multiple pages.

2.3 Halftone coding

In JBIG2, halftones can be compressed in two ways.
The first uses the arithmetic form of generic coding,
exploiting adaptively positioned template pixels to
capture correlations between adjacent halftone dots [4].
The MMR form of generic coding can also be used but
it does not exploit such correlations and its compression
will not be as good. The second method involves
descreening the halftone image (converting it back to
grayscale) and encoding the grayscale values. The
grayscale values are used as indices into a halftone
pattern dictionary, containing fixed-size tiny images
representing the indicated grayscale values in halftone
form. The decoder can then render a halftone image

without needing explicit position or pattern size
information, by simply drawing indexed dictionary
images in accordance with a sequence of grayscale
values at locations specified by the halftone grid.

For either method of coding halftoned images it
may make sense to post-process the image in order to
make it more visually acceptable, perhaps by tuning it
for a particular output device. Such post-processing is
outside of the scope of the standard.

2.4 Generic and refinement coding for image regions

The same selection of Huffman and arithmetic methods
used for coding dictionary bitmaps or patterns are also
used for coding the generic parts of a bi-level image that
do not utilize the textual or halftone coding models.
Similarly, BIG2 provides for refinement of a lossy
image region using the same coding method as used in
character refinement. The lossy image is refined using
a two-plane bitmap coder, making use of information
from pixels in the lossy image already sent and causal
pixels from the target (usually lossless) image region to
be reconstructed. Again, only arithmetic coding is used
for the region refinement coding method.

2.5 Arithmetic entropy coding

JBIG2 uses the MQ coder for its arithmetic coder. The
MQ coder is an adaptive binary arithmetic coder, which
is characterized by multiplier-free approximation and
renormalization-driven update of probability estimator,
and bit-stuffing introduced by the Q-coder [5], enhanced
by the conditional exchange derived from MELCODE
[6], and the state transition table known as PEG-FA [7].

At any given point in the general arithmetic coding
process, the string of symbols which have been observed
so far, is mapped to a unique subinterval, [c, c+a]
represented by

where C and A are integers and N is the total number of
normalization shifts which have been employed to
ensure that 2M-’ <=A<2M, where M is the width of the
A register.

Upon completion, the compressed bit-stream is C,
but C can be terminated to less than or equal to N+2
bits, depending on encoder and decoder termination
rules.

In the multiplier-free approximation, the interval
width after LPS (Less Probable Symbol) is
approximated to AL = b.p instead of a p , where b is
about 0.71.2M , and p is the estimated probability. The
interval width after M P S (More Probable Symbol) is
approximated to AM =A- b-p

C S . 2-M-N and a=A-2-M-N

142

Document Pages
FO4-300 1
Technical report 23
Book 512

Table 1: JBIGZ

MMR JBIGl Lossless JBIG2 Lossy BIG2
95,879 71,642 13,422 14,234

1,260,357 926,229 842,9 18 184,470
45,719,356 34,614,283 2,633,911 NIA

The adoption of conditional exchange improves the
approximation of the interval length, and the adoption
of PEG-FA reduces the learning time.

Carry propagation is a well-known common
problem of arithmetic coders and in the MQ coder; it is
solved by a bit-stuffing process.

2.6. Profiles

Since JBIG2 is a tool-kit for various applications, it is
expected that different applications will use different
subsets, or profiles, of JBIG2. The standard currently
provides seven such profiles. Two of these profiles,
designed for low-memory applications, are intended to
be basic starting points, suitable for many applications.

3. PERFORMANCE

This section shows some typical numbers using JBIG2
coding, on three sample documents. All file sizes are
given in bytes.

The first document is one of the sample pages used
to test MMR coding. It is scanned at a resolution of
300dpi. Lossy JBIG2 clearly outperforms MMR and
JBIG1, while lossless JBIG2 is somewhat better than
JBIG1. The second document is a 23-page scanned
technical report, scanned at 600dpi. For this document,
lossless JBIG2 is significantly smaller than JBIG1,
while lossy JI3IG2 is five times smaller than JBIGl.
The third document is a 512-page book whose page
images were produced by a PostScript interpreter, and
thus contain no scanner noise. For such generated
documents, pattern matching and substitution offers
lossless coding without any refinement coding being
necessary. Also, for such a long document, the savings
due to sharing symbol dictionary between pages are
enormous. Lossless JBIG2 thus outperforms MMR and
JBIGl by a large factor.

4. CONCLUSION

The JBIG2 specification was approved this year as
an International Standard in ISO/IEC and a formal
Recommendation in ITU-T. Its pattern matching and
substitution foundation is considered to be the most
efficient coding method for textual image documents in

Performance

the current art. For generic coding, the optimum
number of contexts in template-based coding can be
matched, in accordance with the number of pixels to be
coded in a page. Compared to JBIGl we can now better
adaptively compress very high resolution documents, by
using up to 16 nearby neighbor pixels in the
compression models. The ability of JBIG2 to exploit the
repetition of shapes across different pages offers
unprecedented compression.

The toolkit design of JBIG2 allows for the most
appropriate coding method to be selected for different
regions of each page in a document. Also, differing
applications can choose different parts of the JI3IG2
toolkit to either (1) achieve the best possible
compression using the arithmetic coding options, or (2)
achieve extremely high decoding speeds (over 1
gigapixel per second in software) using the Huffman
and MMR coding options. We believe that JBIG2 can
now provide the best compression performance or
fastest decoding speeds for all applications involving
scanned or generated bi-level images.

5. REFERENCES

13 R.N. Ascher & G. Nagy, “A Means for Achieving a High
Degree of Compaction on Scan-Digitized Printed Text,” IEEE
Trans. on Computers, C-23, pp.1174-I 179, Nov. 1974.
[2] K. Mohiuddin, J.J. Rissanen, & R. Arps, “Lossless Binary
Image Compression Based on Pattern Matching”, Proceedings
of International Conference on Computers, Systems, and
Signal Processing, Bangalore, India, pp.447-45 13, 1984.
[3] P.G. Howard, ‘Text Image Compression Using Soft
Pattern Matching”, Computer Journal, 40:2, 1997.
[4] B. Martins & S. Forchhammer, “Losslessbssy
Compression of Bi-level Images”, Proceedings of IS&T/SPIE
Symposium on Electronic Imaging: Science and Technology,
SPIE,3018, pp.38-49, 1997.
[5] W. Pennebaker, J. Mitchell, G. Langdon, and R. Arps
“An overview of the basic principles of the Q-coder- adaptive
binary arithmetic coder,’’ IBM J. Res. Develop., Vo1.36,

[6] F. Ono et al, “Bi-level Image Coding with MELCODE-
Comparison of Block Type code and Arithmetic Type Codes”
7.6.1-6, Globecom 89, Nov. 1989
[7] W.Pennebaker, and J. Mitchell, “JPEG: still image data
compression standard,” Van Nostrand Reinhold, NY, 1992.

pp.717-726, NOV. 1988

143

