JBits: Java based interface for reconfigurable computing

Steve Guccione, Delon Levi and Prasanna Sundarargjan
Xilinx Inc.,
2100 Logic Drive
San Jose, CA 95124 (USA)
steve.guccione@xilinx.com

delon.levi @xilinx.com
prasanna.sundararajan@xilinx.com

The JBits™ software is a set of Java™ classes which provide an Application Programming Interface (API)
to access the Xilinx FPGA bitstream. The interface operates on either bitstreams generated by Xilinx
design tools, or on bitstreams read back from actual hardware. This permits all configurable resources like
Look-up tables, routing and the flip-flops in the FPGA to be individually configured under software
control.

The API has been used to construct complete circuits and to modify existing circuits. In addition, the
object-oriented support in the Java programming language has permitted a small library of parameterizable,
object oriented macro circuits or Cores to be implemented. Finally, this APl may be used as a base to
construct other tools. This includes traditional design tools for performing tasks such as circuit placement
and routing, as well as application specific tools to perform more narrowly defined tasks.

The circuits developed can be downloaded on to the Xilinx hardware and probedBoaid§cope.
BoardScope is a graphical and interactive hardware debug tool for Xilinx FPGAs. It enables a user to look
inside the chips and see the internal states and circuit configurations while the hardware is operating. The
data is sampled using the readback capabilities of the FPGAs, and then graphically displayed. The interface
to the hardware is provided bYHWF, the Xilinx standard HardWare InterFace for FPGA based
hardware.

XHWIF interface permits simple porting of baiBits and BoardScope to new hardware platforms. Once

the XHWIF interface is defined for a particular piece of hardware, tools suBoaadScope and JBits

based Java applications will run without any recompilation or modification. In additiodBitiseAP1 and

XHWIF interface can be suitably integrated to design run -time reconfigurable applications. Finally, part of
the XHWIF package is TCP/IP based remote network access support. This enables remote hardware
configuration and debugging capabilities.

Thus theJBits API along with BoardScope and XHWIF enables run-time reconfigurable application
development, hardware debugging, and remote hardware configuration capabilities.

Keywords: FPGA, Reconfiguration, Java, Remote hardware configuration, Hardware debugging

1. INTRODUCTION

The JBits Bitstream Interface is a set of Java classes which provide an Application Program Interface (API)
into the configuration bitstream for devices in the Xilinx XC4000™ and Virtex™ families. This interface
permits all configurable resources in the device to be individually programmed under software control. This
provides software support for a set of new capabilities previously unrealized in Xilinx devices.

Using the JBits interface, software can be written which produces circuits, and provides support for
dynamic reconfiguration of these circuits. In addition, because the entire system is implemented in the Java
programming language, any existing Java development environment may be uséBitwithPl. This

provides a simple alternative to existing CAD-based tools.

2. THE DESIGN FLOW

The JBits API is based on the Java Environment for Reconfigurable Computing for the XC6200 ™ family
of devices (JERC6K). JERC6K was also implemented completely in Java and provided fast compile times
and supported dynamic reconfiguration. In some selgts may be viewed as a version of JERC6K for

the XC4000 and Virtex families.

The original motivation for JBits was to support dynamic reconfiguration in the Xilinx XC4000 and Virtex
family of parts. While dynamic reconfiguration has always been possible in al the Xilinx SRAM-based
parts, very little has been done to provide software support for this capability. In general, the design flow
has been limited to static circuit design tools, with schematic capture or Hardware Description Language
(HDL) front-ends. Clearly with such static design methodol ogies, supporting reconfiguration would not be
possible.

In addition, the method used to produce configuration data from these circuits was based on automatic
placement and routing technology developed originally for production of printed circuit boards. This
approach relied on the solving of known NP-complete problems and was necessarily slow and non-
deterministic. Finally, placement agorithms usually provided a physical implementation of the circuit
which bore little resemblance to the logical circuit. This made the task of locating items for reconfiguration
difficult.

This led to some simple requirements for a software tool to support dynamic reconfiguration. The tool
would have to be as fast as possible, and provide physical information about the circuit for reconfiguration.
Thisall but ruled out traditional CAD approaches.

The solution was to supply a library which gave complete access to all of the configurable architectural
features of the device. Because the library would be pre-complied Java classes, the result would not be a
static configuration bitstream, but rather executable code. This code would execute and supply
configuration control and data to the reconfigurable logic. Figure 1 illustrates the JBits design flow.

JBits
Libraries
User Java
Java <=» Compiler = Executable

Code

Reconfigurable H/W

Fig 1. JBits Design Flow

One result of this model is that the executable is just an arbitrary piece of compiled Java code. Not only
does this make the resulting software portable across a wide variety of systems, but also it permits a tight
integration with other portions of the system. For instance, a complete GUI for the reconfigurable
application may be part of this executable. Such integration has many benefits. The largest benefit is that
information is easily shared between the host processor and the FPGA. In most other reconfigurable
computing systems, the FPGA circuit design portion of the system is completely decoupled from the host
software interface. Not only is this error prone, but it makes errors difficult to find and modifications
difficult to make. With a single integrated piece of software which does both circuit configuration and host

management, maintaining consistency between the host interface software and the FPGA circuit is greatly
simplified.

3. THE JBITSSYSTEM DESIGN

Figure 2 illustrates the JBits system design. At the center is a user-written Java program. This program
makes use of the JBits interface to manipulate FPGA family configurable resources that include the look-up
tables, routing and flip-flops. Each function call at the JBits interface level makes one or more calls to the
Bit Level Interface. At thislevel, asingle bit in the bitstream is configured or cleared. Manipulating groups
of such bits at the JBits level supplies a simpler abstraction. While individual bits may be set using the Bit
Level Interface, it isnot likely that users will ever make direct use of this low-level interface. The Bit Level
Interface is provided as a layer which provides the necessary support for all devicesin agiven family. That
is, the Bit Level Interface is responsible for knowing the bit location in the bitstream of a given bit of
configuration data for any device in the XC4000 and Virtex family. Without this layer, custom interfaces
would have to be generated for each device in a family. Finaly, the Bit Level Interface interacts with the
Bitstream class. This class manages the device bitstream and provides support for reading and writing
bitstreams from and to files.

In addition, the Bitstream class can take data read back from hardware and map it to the underlying
bitstream data format. This ability to manage readback data is necessary for dynamic reconfiguration. The
JBits APl uses the XHWIF software to download and readback from the hardware. XHWIF, in Xilinx
hardware interface discussed later in this paper.

While thisis al that is necessary to use the JBits interface, two other related pieces are included in Figure
2. Thefirst in the Core Library. Thisis a collection of Java classes which define macrocells or Cores. These
are usually parameterizable and relocatable within a device. Examples of Core are counters, adders,
multipliers, constant multipliers and other standard logic and computation functions.

Core JBits
_ User Java [
L|brary App”C&tion @ @ fllljelts
Bit-level
II Interface
XHWIF
Bitstream

Reconfigurable H/W

Fig 2. JBits System Design

A sample JBits code for the Virtex deviceisgivenin Fig 3.

/* Configure the F LUT of the Slice 0 of row, col to be XOR */
set (row, col, Slice0_FLUT, XOR);

/* CGet the value of the dock Input at row, col */
c = get(row, col, d ocklnput);

Fig 3. Sample Code

4. LIMITATIONSOF JBITS

Perhaps the largest drawback of JBits API isits manual nature. Everything must be explicitly stated in the
source code, including the routing. While this can become tedious, use of pre-constructed macrocells or
Cores can greatly reduce this burden. It should be pointed out that this is also simply a function of the
software versus the hardware model. Software requires complete specification of details, unlike automatic
CAD tools. Related to this need for explicit specification of all resources, JBits interface favors more
structured circuits. Unstructured circuits such as random logic are not well suited for direct implementation
in JBits applications.

An equaly important limitation is that JBits APl requires that the user be very familiar with the
architecture. While the Xilinx device architectures are actually completely documented in the Xilinx
databook, most users have never had the need to learn such details. It is expected that the necessary
understanding of the underlying device architecture will be the greatest barrier to the widespread
acceptance of JBitsinterface, or any tool resembling JBits interface.

In addition, because JBits interface necessarily works at the bitstream configuration level, it exists at the
most downstream end of the tool chain. While JBits APl may make use of circuits produced by standard
development tools, modification or reconfiguration of the circuit at the JBits level eliminates any possibility
of using any analysistools available to circuit designers further up the tool chain. Specifically, the ability to
do any sort of timing analysis is absent in JBits software. It is not clear, however, that tasks such as timing
analysis are even feasible in a dynamic reconfiguration environment. Small changes in the circuit
configuration may have a dramatic impact on functionality as well as timing. It is not clear that the results
of such changes to the circuit configuration can be predicted and analyzed in the general case. One tool
which appears to have at least partialy offset the lack of analysis tools is the recent development of
BoardScope discussed in the next section.

4. BOARDSCOPE, THE HARDWARE DEBUGGER

BoardScope is a tool for graphically examining the operation of FPGA circuits on any reconfigurable
computing board. Like circuit simulators, it is used to verify the design’s operation. Like in-circuit
emulators, the results are produced by the operations of actual hardware rather than from software models.
This capability provides a more accurate verification, and furthermore, it enables debugging FPGA circuits
while they are communicating with other hardware components.

BoardScope uses the JBits interface to access resources in the FPGA's bitstream. Then using XHWIF, a
portable hardware interface discussed later in the paper, the bitstreams are downloaded to configure the
FPGAS, or readback to analyze them (see Figure 4). Currently, BoardScope supports devices in the Xilinx
XC4000EX, XC4000XL and Virtex families.

BoardScope graphically displays the states of all CLB flip-flops for all computational FPGAs on the board.
Figure 5 shows the BoardScope StateView for a Pamette board with four Xilinx X C4028EX FPGAs. Each
major sguare represents the CLB array for a single FPGA. The coloration of the smaller tiles in each
square indicates the state of the X or Y CLB flip flop: blue denotes a low state, while green denotes a high
state. If the states of the FPGAS are changed, either through a reset or by incrementing the on-board clock,
the tiles are repainted to indicate the new states. The display therefore enables examination of all CLB flip
flops in one view, and further enables examination of the flips flops as they change from one state to the
next.

For a more detailed view of the circuit, the state of a Configurable Logic Block can be seen in the detailed
CLB view(see Figure 5). The CLB view shows the ook up table states, the X and Y flip-flop configuration
and states, and the CLB’s internal interconnect. Clicking on atile in the display updates the CLB Display
for the CLB. Becausethisisadetailed view, it is probably most useful to those intimately familiar with the
circuit implementation and X C4000EX/XL and Virtex architecture. The FPGAsin Figure 5 are loaded with
alinear cellular automata demonstration circuit. The unique triangle pattern produced by such automatais
visible on the display.

bit

sym <::> BoardScope files
files

XHWIF

|||||||||||||||| Reconfigurable

System

Fig 4. BoardScope Software Structure

5THE USER INPUT INTERFACE AND SAMPLE FLOW

The primary control provided by BoardScope is via the toolbar buttons across the top of the window. These
buttons control the states of the display and the states of the hardware.

The Reset button clears the configuration memories of al of the FPGAS, so that they are set to their initial
power-on state. This control should not be confused with resets that initialize the design flip-flops to their
initial state; this reset actually removes the circuits from the FPGAs. If a circuit with an illega
configuration is loaded in the FPGAS, for example one with multiple outputs driving the same line, the
Reset button can be used as a panic button to remove the circuit before serious damage occurs. This button
also clears the waveformsin the Signal View.

The Step button increments the state of the board. Pressing the button instructs the oscillator on the board
to send asingle clock pulse, which is received by the FPGAs and updates the flip-flops.

The Load Display button updates the State View display and the Signal View displays. Thisis particularly
useful for situations when the board is already in an operational state when BoardScope is started, perhaps
through another software package. BoardScope is then used to read and increment the states without re-
initializing the FPGAs.

The Zoom In button magnifies the view of the State View and Core View displays. It does not affect the

Signal View display.

BoardScope
Fie Help
. O 1 [r_oevees 3]
% :}m Zoam Stata Core »,’::_ - ALL_DEVICES B
Rasat Step Dicplays: I Dut Wi Vo Fiarr Fila

!E.!M!!H!HH'!H'!HE‘ S _ _
1"“————__________- State View.
':llllﬂi rrrrrrr S L L L L L LT LT T 13 1L LRI LT T D LR LT L 4"!:‘ I 4 Xllmx XC%ESEXS
GRS s i
GRS LR e
S R View
EIEiEIEIEIiIEIIIE E!EIEIEIEIEiEIEIF
CEN NN RN EEEEEEININISEEESEWEIEEE: SEEEEEmEEEEEEEEE = / =l
Connected to target PCI Pamette ;l F=LUT
File Loa.bit loaded.
e r Jboms o g
Loading device 1 ¥y mEmE H-LUT FF
Leading dewice 2 F4 mEME @@ TR
paad g derien s ; : Carry: OFF E:’ - %% —E
;:::1‘: :u::pped 100 eyeles. Command =LA “EE .
CLB(15,8) Gl @@ D YR
G2 - =
o e §
o ba
& _r' K —
Command: | Device (- GLB(27,26)

Fig 5 BoardScope Stateview Display

The Zoom Out button de-magnifies the view of the State View and Core View displays. It does not affect
the Signal View display.

The State View button is used to show all of the CLB and IOB FPGA flip-flopsin the Main Display.

The Core View button is used to show the layout of the JBits cores in the CLBs of the FPGAs in the Main
Display.

The Signal View button is used to show the probe waveforms in the Main Display. This button is not
enabled until a .sym file is loaded using the File button. A .sym file is a simple text file with the signal
names present in the circuit under analysis.

The File button is used to load a .bit or .sym files. Loading a .bit file programs the FPGAs with the circuit
described in the file. Loading a .sym file enables the Signal View display with the probes defined in the
file. The devices targeted by the .bit or .sym file are based on the state of the Device Selector.

The Device Selector specifies which FPGA isto be configured if a.bit file is selected using the File dialog.
If "All Devices' is showing, then all the FPGAs are configured with the selected .bit file. If a.sym fileis
selected using the File dialog, then the probe points are targeted to the device in the Device Selector (if the
Device Selector specifies all devices, then the .sym file targets the Oth device).

A secondary control for BoardScope is available through the command line, located at the bottom of the
window. This interface provides complete control over the hardware. On-line help is also available from
the command line. This gives more detailed descriptions, through the text status area above the command
line, of the available commands and their syntax.

When BoardScope is first brought up, it shows a checkered State View indicating the display’sinitial state.
Using the File button, a .bit file is selected, which configures all of the FPGAS, and updates the display
with the FPGAS' initial state. Using the Core View button, the floorplan for the JBits cores are quickly
examined. UsiAg the File button again, a .sym file is selected, which sets up a Signal Watch waveform
display. A step 1000 command is given on the command line to quickly increment the hardware to a known
state. The Step button is clicked several times, which updates the waveform display with the signal states.
The State View button is clicked, revealing that several cores in upper left corner are still in their initial
state. The bug is found and the Reset button is clicked to clear the FPGAs. BoardScope is closed using the
File >Quit menu.

6 THEXHWIFINTERFACE

XHWIF, the Xilinx HardWare InterFace standard, is a Java interface for communicating with FPGA -based
boards. It includes methods for reading and writing bitstreams to FPGAs, and methods for describing the
kinds and number of FPGASs on the board. Also included are methods for incrementing the on-board
clock, and for reading and writing to on-board memories, if they are available. Essentidly, the interface
describes the board, and enables sending data on and off the board.

The interface standardizes the way that applications communicate with hardware, so that using the same
interface, applications, like BoardScope for example, can communicate with a variety of boards. All of the
hardware specific information is hidden inside of a class that implements the XHWIF interface. Using the
Java Native Interface (JNI), which allows Java programs to interface with C programs, calls to the interface
are converted into calls to the board’s drivers. This methodology frees BoardScope, or other applications,
from communicating directly with the drivers or the bus. In fact, hiding the bus and driver specific
information in the class implementing the XHWIF interface enables applications to communicate with
boards connected through any bus or communications link, whether it be PCI, 1SA, or other standards. The
driver performs all the bus interactions. To port a new board to BoardScope, only a Java class that
implements the XHWIF interface needs to be created.

7 THE XHWIF SERVER

The XHWIF server is an application that implements the XHWIF interface (see Figure 6). It enables other
applications, like BoardScope, to communicate with reconfigurable computing boards located anywhere
across the Internet. A board can be installed thousands of miles away, and the server ill allows
applications to communicate with it. This capability enables design debug without having direct access to
the hardware, and it further enables multiple users to access the board.

BoardScope’s functionality is exactly the same whether it is using the server or talking with a locally
installed board. The only difference is that the FPGA configuration and readback times are slower. This
arises from the Internet’s limited bandwidth.

Figure 6 shows the server. If tracing is turned on, detailed statuses of the message passing are displayed.
To establish the communication link, the server is started on a machine that has a board installed locally,
and BoardScope is launched on a remote machine using the following flag: -XHWIFNet <machine name>

B <XHWIF Server Mi=] E3
Filz Helgp

Atarting serwver done. =
Connect from 149.199.7.92 at 3at Aug 14 15:39:20 PDT 1999

> Message (Set Configuration,ld?366) (0]

<=2 Message (Set Configuration,3) (0]
=» Message (2et Conficuration,3) (0)
<< Message (Set Configuration,3) (0]
== Message(Set Configuration,d)] (0]

¥ o

g oni 0 Tracing off

Fig 6 XHWIF Server

8 RUN-TIME RECONFIGURATION

Run-Time Reconfiguration (RTR) is defined as dynamically modifying the hardware circuits of the FPGA
during the execution time. Run-time reconfiguration is achieved by integrating the JBits and XHWIF API in
the JBits methodology. That is, the RTR application would make calls to JBits interface to modify the
configuration data in the bitstream and would have to make explicit XHWIF calls to interact with the
hardware. For example, the RTR application would make setConfiguration(device, data) and
getConfiguration() calls to perform download and readback of the configuration data.

Figure 7 shows a typical JBits environment, where the JBits application would use JBits API calls to
configure and modify the bitstream to specify a digital design. This design can be verified and debugged
using BoardScope. Finally, the application can integrate the JBits and XHWIF callsto achieve RTR.

; = TCP/IP
JBits Application

JBits Boardscope

XHWIFServer

XHWIF JBits Application

? ¢ JBits Boardscope

XHWIFnet
P

ReconfigUrabIe
System

XHWIF

Local
Hardware

L“. m MHIE
LI Reconfigurable

System

Networked
Hardware

Fig 7 JBits Development Environment

9 CONCLUSIONSAND FURTURE WORK

The JBits API and its associated software, BoardScope and XHWI F provide a new methodology to design,
develop, and verify digital circuits. The ability to produce circuitry in a true software development
environment, with a quick edit / compile / debug cycle promises to change the way FPGA design is done.
Large changes to designs can be made rapidly, bypassing the historically long run-times of traditional place
and route CAD tools. The unification of the FPGA and the host code has enabled the development of
dynamic run-time reconfigurable applications.

The capabilities and features of the XHWIFServer and BoardScope facilitates remote design development,
debugging and even remote design deployment.

Future work for the JBits interface include the development of a routing API that would eliminate the
manual routing. Also in plan is the development of a hardware simulator for design verification and an
extensive parameterizable cores API.

10 REFERENCES

[1] Eric Lechner and Steven A. Guccione, "The Java Environment for Reconfigurable Computing”, in
Proceedings of the 7th International Workshop on Field-Programmable Logic and Applications, FPL 1997.
Lecture Notes in Computer Science 1304", Wayne Luk and Peter Y. K. Cheung, eds., Springer-Verlag,
Berlin, September 1997, pp. 284-293.

[2] Xilinx, Inc., "XC6200 Development System Datasheet”, 1997.

[3] Xilinx, Inc., "The Programmable Logic Data Book", 1996.

[4] Delon Levi and Steven A. Guccione, "BoardScope: A Debug Tool for Reconfigurable Systems, in
Configurable Computing Technology and its use in High Performance Computing, DSP and Systems
Engineering, Proc. SPIE Photonics East, John Schewel, ed., SPIE - The International Society for Optical
Engineering, Bellingham WA, November 1998.

[5] S. A. Guccione and D. Levi, "Xilinx Bitstream Interface: A Java-based interface to FPGA hardware", in
Configurable Computing Technology and its uses in High Performance Computing, DSP and Systems
Engineering, Proc. SPIE Photonics East, J. Schewel, ed., SPIE - THE International Society for Optical
Engineering, (Bellingham, WA), November 1998.

JBits, XC4000, XC4000XL, VIRTEX, XHWIF, Xilinx Hardware Interface and XC6200 are trademarks of
Xilinx, Inc. Java is a trademark of Sun Microsystems, Inc. All other trademarks are property of their
respective owners.

