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Abstract In this paper we describe JCLEC, a Java

software system for the development of evolutionary com-

putation applications. This system has been designed as a

framework, applying design patterns to maximize its reus-

ability and adaptability to new paradigms with a minimum

of programming effort. JCLEC architecture comprises three

main modules: the core contains all abstract type definitions

and their implementation; experiments runner is a scripting

environment to run algorithms in batch mode; finally, Gen-

Lab is a graphical user interface that allows users to config-

ure an algorithm, to execute it interactively and to visualize

the results obtained. The use of JCLEC system is illustrated

though the analysis of one case study: the resolution of the

0/1 knapsack problem by means of evolutionary algorithms.

Keywords Evolutionary computation software tools ·

Framework · Java · Object oriented design

1 Introduction

The use of evolutionary computation (EC) algorithms for

problem solving is a widespread practice. Examples such as
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industrial design (Benedetti et al. 2006), the identification of

biochemical networks (Cho et al. 2006), the learning of bool-

ean queries (Cordón et al. 2006), the learning of controllers

in robotics (Mucientes et al. 2006) or the improvement of

e-learning systems (Romero et al. 2004) show their suitabil-

ity as problem solvers in a wide range of scientific fields.

Although evolutionary algorithms (EAs) are powerful for

solving a wide range of scientific problems, their use requires

certain programming expertise along with considerable time

and effort in order to write a computer program for imple-

menting the often sophisticated algorithm according to user

needs. This work can be tedious and needs to be done before

users can start the task they really should be working on.

A simple solution is to get a ready-to-use EC software sys-

tem, which is often developed for general purposes but has

the potential to be applied to any specific application. By

doing this, user removes the tedious job of having to cod-

ify the commonalities himself and he can concentrate on his

specific needs, such as specialized functions for fitness eval-

uation, reproductional operators, or high-performance repre-

sentations.

For the last few years, a large number of EC software

tools have been developed. Some of them are specialized in

a concrete EC flavor: genetic algorithms (GA)(Chuang 2000;

Jin et al. 2005), memetic algorithms (Krasnogor and Smith

2000), genetic programming (GP) (Punch and Zongker 1998,

2005), distributed EAs (Tan et al. 2003), parameter control

in EAs (Liu et al. 2004), evolutionary multiobjective opti-

mization (Tan et al. 2001) and learning classifier systems

(Meyer and Hufschlag 2006). Others are generic tools, that

is, they can be used both to develop a variety of EAs and to be

applied to different problems. This category of tools includes

ECJ (Luke et al. 2006), one of the most popular tools at

present. Its open architecture allows a great variety of EAs

to be represented. However, standard distribution does not
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provide a variety of ready-to-use components (algorithms or

genetic operators). Evolvica (Rummler 2006; Rummler and

Scarbata 2001) is another interesting EC tool. This system

has a graphical user interface (GUI), that lets users spec-

ify EAs by manipulating program elements graphically. This

visual model allows EC models to be developed quickly, but

its use is found to be complicated by non-experts in the EC

field. Other interesting tools are Open Beagle (Gagné and

Parizeau 2006b) and EO (Keijzer et al. 2001), both coded in

C++. The first has an architecture that resembles ECJ, and can

be used in the same applications, but it does not have a GUI

to configure algorithms and visualize results. The system EO

has components which makes algorithm configuration easier

(Collet et al. 2000), although is difficult to extend.

As we can see, there are numerous EC tools, but most of

them are mainly meant for people experienced in the EC field.

Furthemore, although there are excellent generic tools, most

of them do not have a variety of ready-to-use components

which allows the EC researchers to carry out the comparison

between their own algorithms and others reported in the bib-

liography. Finally, with the exception of PPCea system (Liu

et al. 2004), there do not seem to be any systems that deal

with experimental studies in EC.

This paper presents the JCLEC system which was devel-

oped to address some of the previously mentioned problems

involved in the design of an EC tool. This system can be used

by people who are inexperienced in the EC field, because it

has a GUI which eases such tasks as the configuration, exe-

cution and verification of results, and it has a great variety of

EAs and ready-to-use representations. Also, this system can

be used by EC researchers, because it is easy to extend and

allows test suites to be defined. The objective of this article

is to present its design principles and system characteristics,

as well as to show several examples of how this application

can be used both by people unfamiliar with EC as well as by

experts in the field.

We have organized this paper as follows. In the next sec-

tion, we will analyze some considerations about the design

of an EC software system. Then, we will present JCLEC, its

architectonic principles and the subsystems that comprise it.

After this presentation, we will illustrate some of the previ-

ously discussed ideas by means of one example: the 0/1 knap-

sack problem. We will finalize exposing conclusions and the

improvements foreseen for the tool.

2 Design of an EC software system

The design of a generic EC software system is not an easy

task. First, EC is a diverse paradigm and the system should

take on all its variants [GA, GP, evolution strategies (ES),

evolutionary programming (EP)]. The system should also

make possible the addition of other new paradigms. Further-

more, if the system is used by EC expert researchers, it has to

allow the realization of experimental studies and the devel-

opment of reports in a flexible and configurable way. On the

other hand, if the system is used by less experienced research-

ers in the EC field, it is more appropriate to have a GUI, where

the algorithm configuration can be done easily and a visual

monitoring of the evolutionary process can be carried out.

Finally, the system’s components should be available in a

library so that they can be used for developing self-reliant

applications.

In spite of being an important issue, there are too few

publications about the design of an EC software system. The

papers of Cona (1995) and Keith and Martin (1994) analyze

different ways of coding the representation of genetic pro-

grams. More recently, Lenaers and Manderick (1998) make

an in depth analysis of the development of a GP framework.

Also, the work of Krasnogor and Smith (2000) discusses the

use of design patterns in the development of a memetic algo-

rithm framework. Finally, the work of Gagné and Parizeau

(2006a) explains the design principles which should be a

generic EC framework.

In this section we analyze the application of object ori-

ented programming (OOP) ideas in the development of EC

software systems. First, we introduce the framework term

and how this concept fits the idea of a robust, reusable and

extensible software for EC. Then, we will analyze how the

design patterns can help to make an EC framework in a

flexible way.

2.1 Framework design

From an OOP perspective, an EA can be seen as an abstract

class of algorithms, and its different flavors such as GA, GP,

ES or EP can be seen as some of its concrete instantiations

(Gagné and Parizeau 2006a). Building a robust and reusable

design for this model is a difficult task, because there are

multiple aspects to take into account: representation of indi-

viduals, mating selection procedure, crossover and mutation

operators and survivor selection procedure. Certain types of

operations can be applied to all individuals while others, like

crossover and mutation are specifically characteristic of the

representation used. Also, to guarantee software reusability,

different EA elements must be uncoupled as much as possi-

ble. Finally, our system should be easy to extend, that is, the

incorporation of new features must be able to be performed

without requiring important system modifications. From the

software engineering point of view, the best way of modeling

it is in the form of a framework (Gagné and Parizeau 2006a;

Krasnogor and Smith 2000).

The term framework can be defined as a set of co-oper-

ating classes that make up a reusable design for a specific

software domain (Gamma et al. 1994). The framework dic-

tates the architecture of the application, i.e., it defines the

overall structure, its partitioning into classes and objects, its
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key responsibilities and collaborations, and the thread of con-

trol. In other words, it filters out what parts are common in

the domain and which are problem dependent. A framework

can be considered as a puzzle which is almost finished where

you still have to put in the remaining pieces to complete the

puzzle although the resulting image can vary depending on

which pieces you use.

As we can see, this kind of framework-based design

resolves some of the issues mentioned with respect to the

designing of an EC software system. First, we will define

objects that represent individuals evolving in the system and

their components (genotypes, phenotypes, and fitnesses). On

the other hand, we define the EA control flow. This second

part provides hooks for problem-specific or specialized func-

tions and operators. The user must provide the system with

all operators and functions necessary to perform the evolu-

tionary process. The framework will take care of the func-

tions’ points of entry (where they are called and executed on

the aggregate objects), and will describe the interface (how

certain parts can be extended or reused) of all the variable

parts. For example, the implementation of crossover or muta-

tion is not hard-coded in a specific class in the algorithm. The

user implements a reproduction operator creating a new class

which satisfies a number of interface prerequisites and con-

nects it to the framework. When the application is executed

the framework will instantiate the operator and apply it.

2.2 Design patterns

The design of an EC framework can be greatly improved

using design patterns (Gamma et al. 1994; Grand 1998). A

design pattern is a description of communicating objects and

classes that is customized to solve a general design problem

in a specific context. Each pattern represents a common and

recurring design solution which can be applied over and over

again in different problem-specific contexts.

Patterns provide the designer with: (1) abstract templates

on how to make specific parts of a framework more flexible

towards changes (2) a mechanism to document the architec-

ture of a framework using a high abstraction level vocabu-

lary and (3) a mechanism to impose rules on how to reuse

or extend the framework, i.e., outline a specific interface on

how to incorporate extensions. On the other hand, they pro-

vide the user with (1) a higher level of documentation for

a complex framework consisting of numerous heavily inter-

connected classes and objects and (2) a guidance on how to

extend the framework with new variations and whether or

not the extensions can be made.

There are several design patterns that can be used in the

design of an EC framework. In the following, we explain pat-

terns that have been used in the development of several exist-

ing frameworks (Gagné and Parizeau 2006b; Krasnogor and

Smith 2000; Lenaers and Manderick 1998; Luke et al. 2006):

– Singleton is used to restrict instantiation of a class to one

object. This is useful when exactly one object is needed

to coordinate actions across the system.

– Abstract factory provides an interface for creating fam-

ilies of related objects without specifying their concrete

implementations. In this way one can guarantee that the

system is independent with respect to how specific objects

are defined, created or manipulated.

– Factory method defines an interface for creating an object,

but lets subclasses decide which class to instantiate. This

pattern allows a class to defer instantiation to subclasses.

– Builder allows a user to separate the construction of an

aggregated object from its representation. This allows the

user to use the same construction process to build differ-

ent representations.

– Prototype is used when the type of objects to be created

is determined by a prototypical instance, which is cloned

to produce new objects. This is useful when the inherent

cost of creating a new object in the standard way (e.g.,

using the ‘new’ keyword) is prohibitively expensive for

a given application.

– Flyweight allows a user to avoid the expense of multiple

instances that contain the same information by sharing

one instance.

– Strategy defines a family of algorithms, encapsulates each

one, and makes them interchangeable. Strategy lets the

algorithm vary independently of the clients that use it.

– Template method defines the skeleton of an algorithm in

an operation, deferring some steps to subclasses. This

pattern lets subclasses redefine certain steps of an algo-

rithm without changing the algorithm.

– Visitor represents an operation to be performed on the ele-

ments of an object’s structure. Visitor lets you define new

operations without changing the classes of the elements

where it will operate.

3 JCLEC

JCLEC is an EC framework developed in the Java program-

ming language. The project started as a class library in 1999

(Ventura et al. 2002). In the years 2003–2004 the software

has been completely re-written in order to resolve some fun-

damental problems in the architecture and today it is in its

third major version. It has been released with the GNU gen-

eral public licence (GPL) and it is hosted as a free software

project in the SourceForge page.1

Three layers comprise the JCLEC architecture [see the

UML package diagram (Fowler 2003) in Fig. 1]. The sys-

tem core is in the lowest layer. It has the definition of the

abstract types, its base implementations and some software

modules that provide all the functionality to the system. The

1 http://jclec.sourceforge.net/.
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Tool implementations
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Report generation

GenLab

Interactive execution of EAs

Batch−jobs editor

Experiments

Runner

Core

JCLEC

Abstract types definition
Base implementations

Software utilities

EAs execution

Fig. 1 JCLEC architecture

experiments runner system is built on the base of the core

layer. It reads a specification file that contains the configura-

tion of one or several algorithm executions and, after check-

ing its correctness, create the necessary objects, executes the

algorithms and saves the results in one or several report files.

Finally, GenLab is a GUI for EC built on experiments runner

and core subsystems. This interface allows the user to config-

ure an algorithm, execute it and visualize the results on-line.

The system can also be used to define experiments that will

be executed by the experiments runner module. Next, we are

going to describe the main features of each subsystem.

3.1 JCLEC core

The JCLEC core defines the data types that define the func-

tionality of the framework. This section discusses class

hierarchy and design patterns used as well as the package

structure in order to get an overview of this tool’s capabili-

ties.

3.1.1 Class hierarchy

Figure 2 is a UML class diagram (Fowler 2003) that shows

the interfaces that define the functionality of the JCLEC sys-

tem. As can be seen, there are objects related to individu-

als (IIndividual and IFitness), their commonalities (ISpecies

and IEvaluator), the evolutionary system (ISystem), actions

performed in the course of evolution (IProvider, ISelector,

IRecombinator and IMutator) and the EA itself (IAlgorithm).

The IIndividual interface represents one of the individu-

als that lives in a system in evolution. This interface does not

declare methods related to the individual’s genotype or to

its phenotype, granted that this functionality is defined in the

lower classes of the hierarchy. In fact, JCLEC’s core contains

several implementations of the interface IIndividual that are

distinguished in the genotype that they present (bit string, int

or double arrays, expression trees or syntax trees). Such clas-

ses can be used directly in the implementation of EAs or they

can be extended by the user (defining the phenotype that maps

to a given genotype). Obviously, the user can also define new

types of individuals associated with new representations. As

a matter of fact, if a class implements the IIndividual inter-

face, then integration with the other system components is

taken for granted. All the IIndividual instances contain an

object that implements the interface IFitness, which denotes

the individual’s fitness. There are several implementations

for this interface, that represent fitness in single-objective

and multi-objective problems.

The ISystem interface represents an evolutionary system

(for example, a population) in an abstract way. This class

will contain, among other things, the beings that inhabit the

system and the current generation, as well as information

on the individuals. The information on the individuals is not

encoded directly in the class ISystem or in its subclases, but

rather it is delegated to the classes ISpecies and IEvalua-

tor. This allows the use of the same subclass of ISystem to

represent systems that only differ in the type of individuals

that inhabit the system. The interfaces that extend to ISpecies

define methods that provide information on the structure of

the individuals (for example, the length of the chromosome

and the schema in the case of linear genotypes or the maxi-

mum size of tree and the token set in GP). These methods will

be used by the genetic operators to handle individuals cor-

rectly. These interfaces also define a method to create new

instances of the IIndividual subclass they represent, given

their genotype. This use of the abstract factory and factory

method patterns allow genetic operators to create instances

of a specific class without having to know what class it is. On

the other hand, IEvaluator defines the method evaluate(List)

that performs the evaluation of the individuals, that is, it com-

putes and assigns their fitness. As we will see in Sect. 4, in

order to solve a problem with JCLEC, it is necessary for

the user to implement a class that extends to this interface,

providing the system with a way to obtain the individuals’

fitness.

Elementary operations performed in the course of the evo-

lution are represented by the ITool interface. As we can see in

Fig. 2, there are several interfaces that extend ITool: IProvid-

er represents the action of creating new individuals, ISelector

is a selection procedure, IRecombinator is a recombination

method and IMutator represent a mutation operation. ITool

interface defines the method contextualize, that associates an

object ITool with an object ISystem (its execution context).

This association relationship allows the object ITool to access

information that is contained in the object ISystem and which

is necessary to carry out its work correctly.

The IAlgorithm interface represents EAs in an abstract

way. This class has a reference to an ISystem object (the sys-

tem that experiences evolution) as well as some references to
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Fig. 2 Abstract types in JCLEC core hierarchy

ITool objects. These references are defined generically, and

they should be set just before the algorithm is ready to be exe-

cuted. With this type of design, the same IAlgorithm class can

represent variants of an algorithm, that differs in the type of

individuals that exist in the system or in the genetic operators

employed, (but not in the course of evolution, which is imple-

mented or codified directly within the class). As we can see,

we again use the delegation pattern to make our implementa-

tion as generic as possible. The IAlgorithm interface applies

also the strategy pattern to define the control flow of any

EA in a generic way. This interface contains three methods

related to the execution of an EA: doInit, that initializes the

algorithm, doIterate that makes an iteration and isFinished

that checks when an algorithm has finished. A user only has

to know these methods to run an algorithm, without specific

knowledge about their implementation. This design pattern

has also been applied in the case of the populational algo-

rithms, that extend to the PopulationAlgorithm abstract class.

This class implements the doIterate method based on four

abstract methods: doSelection, that performs parents selec-

tion, doGeneration, that produces new individuals from the

parents, doReplacement, that decides which individuals must

be replaced and doUpdate, that updates population.2 The

PopulationAlgorithm subclasses will implement these four

methods to define the concrete algorithm flow.

3.1.2 System configuration

As we have already seen, before an algorithm is ready to

run, it is necessary to carry out a set-up process in which the

elements that have been defined in a generic way (for exam-

2 These four steps in which each iteration of the algorithm is divided

have been proposed by Deb (2005).

ple, the genetic operators that will apply) are setup. Other

objects such as ISpecies, IEvaluator and some subclasses of

ITool also need to be configured before their use. JCLEC

implements two alternative configuration mechanisms: one

is based on the interpretation of a configuration file, and the

other is based on the concept of Java Beans (Rodrigues 1998).

The file configuration mechanism is based on the use of the

interface IConfigure. This interface defines the method con-

figure, that set up an object from the information contained

in a Configuration3 object. The advantage of this approach is

that it avoids interaction with the user during the set-up pro-

cess, carrying this process out more quickly. Other systems,

such as OpenBeagle (Gagné and Parizeau 2006b) or ECJ

(Luke et al. 2006) have configuration mechanisms similar to

this.

Besides the file configuration mechanism, all JCLEC

objects that present configurable fields implement accessor

methods (getXXX and setXXX) that give read-and-write

access to these fields. This allows the establishment of an

interactive setup process, in which the application requests

the user to give the configuration values, and it does not allow

an algorithm to run until the system has been configured cor-

rectly. This mechanism, used in the GenLab system, is similar

to the one that other graphic applications present as Evolvica

(Rummler 2006).

3.1.3 Algorithms listeners and events

In order to obtain information about the execution of an evo-

lutionary process we have defined a listeners system similar

to the one used in the management of events in Java. This

3 This object is defined in the Jakarta Commons Configuration class

library (Apache Software Foundation 2006).
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system consists of the IAlgorithmListener interface and the

AlgorithmEvent class. The IAlgorithmListener objects take

charge of picking up all the events related to an algorithm exe-

cution (algorithm started, iteration completed and algorithm

finished) and react depending on the events. The Algorithm-

Event represents the events that happen during an algorithm

execution. This class has a reference to the algorithm in order

to access the current state and to react according to the object

it has been created for.

3.1.4 Package structure

The structure of JCLEC core is organized in packages, that is,

sets of classes and interfaces grouped by a specific criterion.

In this section we are going to describe the main packages.

We do not describe them exhaustively but instead deal with

the functionality of each of them in order to get an overview

of the system.

net.sf.jclec This package is the root of the JCLEC hierarchy,

containing all abstract datatypes described in the previous

section. It also defines the IConfigure interface, that allows

to initialize the JCLEC objects from a configuration file.

net.sf.jclec.base This package contains base implementa-

tions (abstract classes) for all the interfaces defined in the

org.jclec package and other generic classes largely used in

the EA library.

net.sf.jclec.fitness This package contains several implemen-

tations of the IFitness interface. The package contains also

the definition for several classes that establish ordering rela-

tionships between IFitness objects (they implement the java.util.

Comparator interface). Such objects are used to sort individ-

uals in different algorithm phases like, for instance, parents

selection or system update.

net.sf.jclec.selector This package has implementations for

several selection methods (implementations for the ISelector

interface). At the present time, we have implementations for

the following methods: roulette selection, Boltzmann selec-

tion, stochastic remaining selection, universal stochastic

selection, range selection, tournament selection, NAM selec-

tion and UFS selection.

net.sf.jclec.binarray This package defines the classes needed

to implement binary encoded GA (Goldberg 1989). For

instance, the BinArrayIndividual class defines individuals

with a bits array as genotype. On the other hand, the BinAr-

raySpecies class defines the structure of BinArrayIndividuals

(its length and the schema that represent them). The pack-

age also has implementations for operators that work selec-

tively over individuals with binary lineal genotype: one point,

two points and uniform crossovers, one allele and uniform

mutations.

net.sf.jclec.intarray This package defines the IntArrayIndi-

vidual class that represents an individual with a list of integer

values as genotype, and the IntArrayIndividualSpecies class,

that represents this kind of individuals. It also contains the

implementation for several operators that work with this type

of individuals: one point, two points and uniform crossovers

and one allele and uniform mutators.

net.sf.jclec.realarray This package contains the necessary

classes to implement a real coded genetic algorithm. It has

the RealArrayIndividual class that represents an individual

with a vector of real values as genotype. It also has the Real-

ArrayIndividualSpecies class that defines the structure of a

set of real encoded individuals (number of alleles and range

of allowed values for each allele).

The package has some operators (creation of new individ-

uals, crossover and mutation) that work specifically over this

type of individuals. It has two-arided recombination opera-

tors [arithmetic, BGA linear, BLX-α, fuzzy, extended lin-

ear, extended fuzzy, SBX, UNDX and others (Herrera et

al. 1998)] and mutation operators [random, not uniform,

modal continuous, modal discrete and Muhlenbein mutation

(Herrera et al. 1998)]. It also has some multi-parent cross-

over operators (panmitic discrete, intermediate generalized,

recombination of a set of genes, recombination by mixing

m-tuples, majority mix, half mix, uniform crossover, cross-

over based on occurrences and aptitude, diagonal crossover,

mass center crossover, seed crossover, UNDX-n crossover)

and crossover based on confidence intervals (CIXL1 and

CIXL2) (Hervás and Ortiz 2005).

net.sf.jclec.exprtree This package defines a type of individ-

ual, called ExprTreeIndividual, that can be used in conven-

tional (Koza 1992) and strongly typed (Montana 1995) GP

algorithms. The package also defines the ExprTreeIndivid-

ualSpecies class that defines the structure of a set of indi-

viduals of this type and operators to manipulate them in a

consistent way: the branch crossover and branch mutation

operators. Also, the package contains other mutation oper-

ators (one node, all nodes, expand branch, truncate branch,

promote node, demote node and gaussian) used in the imple-

mentation of EP algorithms (Chellapilla 1997).

net.sf.jclec.syntaxtree This package has an implementation

for Grammar Based GP (Ratle and Sebag 2001; Wong 2005).

In this paradigm, individuals have a syntactic tree (that

belongs to a user-defined grammar) as genotype. This gram-

mar contributes to have a better control over the structure

of individuals and over genetic operators. It lets incorporate

knowledge about the problem domain and to bias the search
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toward the most appropriate regions of the search space. The

package has implementations for typical operators (selective

crossover, selective mutator and directed mutation) and oth-

ers proposed that have shown its utility in the resolution of

some problems of symbolic regression.

net.sf.jclec.gep This package has an implementation for

Gene Expression Programming (Ferreira 2002). In this par-

adigm, individuals present an integer lineal genotype that

maps to an expression tree. This tree will be used in the eval-

uation of individuals. The package has the typical operators

for the following paradigms: mutation, one point and two

points recombination, gene recombination, gene transposi-

tion, IS transposition and RIS transposition.

net.sf.jclec.ge This package contains an implementation for

Grammatical Evolution (O’Neill and Ryan 2003). In this par-

adigm, individuals contain a binary array as genotype that

maps to a sequence of productions of a context-free gram-

mar. The phenotype is obtained starting from the terminal

symbol of the grammar and applying the change defined by

the individual genotype. The package also has the typical

genetic operators for this paradigm.

net.sf.jclec.algorithms and related packages. This package

has an abstract implementation for the IAlgorithm interface

and final implementations for several types of EAs. In the

current version of JCLEC, the implemented algorithms are:

– Classic algorithms: simple generational, steady state and

CHC (Eshelman 1990).

– Multi-objective algorithms: NSGA-II and SPEA2 (Coello

et al. 2002; Deb 2002).

– Memetic algorithms: generational and steady state

(Krasnogor and Smith 2005).

– Scatter search algorithm (Laguna et al. 2002).

– Niching algorithms: clearing, sequential and fitness shar-

ing (Sareni and Krähenbuhl 1998).

3.2 JCLEC experiments runner

The JCLEC experiments runner (JER) can be seen as a sim-

ple EA scripting environment. This application reads an EA

script file in XML format and executes all the indicated algo-

rithms, generating one or several report files as output.

The internal operation in JER can be seen as a use case

of the application programming interface (API) provided by

the IAlgorithm and IConfiguration interfaces. First, the appli-

cation extracts one or several process elements of the input

file. For each process element, it extracts a subelement algo-

rithm and a subelement listeners. The first one is used to

create and configure an instance of an IAlgorithm subclass.

The second one consists of one or several listener elements,

used to create and configure instances of IAlgorithmListener.

Object creation and configuration is accomplished by means

of the Java reflection mechanism (Forman and Forman 2004)

and the configure method, respectively. Once the IAlgorithm

object is created and the IAlgorithmListeners are attached to

their respective algorithm, the system performs the algorithm

execution phase. To do that, experiments runner uses the API

provided by the IAlgorithm, that is, the doInit, doIterate and

isFinished methods.

The main advantage of JER is that we can define several

runs in a single experiment file. This allows experimental

studies to be carried out easily. Also, as user interaction is not

required, the experiments can be planned outside the work-

hours, taking advantage of the moments when the servers

have less activity. The disadvantage is that the structure of

the configuration files is not very user friendly. This problem

can be partially solved by using the graphical editor GenLab.

3.3 GenLab: a graphical user interface for EC

GenLab is a graphical user application included in the JCLEC

distribution. Its main objectives are (1) to interactively exe-

cute EAs and (2) to edit experiment files used by the JER.

Figure 3 (at the left) shows the main window of the Gen-

Lab application when we have selected the interactive mode,

that is, executing only one algorithm and visualizing the

results in execution time. As we can see, we have the typical

operations in the main menu (for example, to create a new

application or to save the current execution in a file) as well

as an input data area with three different zones:

– Algorithm selection. In this zone, the user chooses one

algorithm from among all the available algorithms in the

system.

– Algorithm configuration. This zone is different for each

available algorithm. In this zone the user sets the algo-

rithm configuration parameters.

– Visualization results. In this area the user can select some

items to be visualized. Each of these items is associated

with a listener that will gather and visualize the informa-

tion during the algorithm execution.

When the algorithm is configured the user can choose

either to save the configuration in a XML file or to execute

it. If the user chooses to execute it, then the system will show

several auxiliary windows with the results obtained during

the execution. Figure 3 (at the right) shows two charts: one

with the fitness of the best individual for each generation and

the other with the average fitness in the whole evolutionary

process.

The look of the experiments edition window is basically

the same as the previous interactive mode, but now there

is a different window for each algorithm. In this mode, the
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Fig. 3 Algorithms run window (SGA view)

system provides tools to copy and paste the algorithm con-

figurations in order to ease the configurations of experiments

with several executions.

4 Case study: the 0|1 Knapsack problem

The 0/1 knapsack problem (Martello and Toth 1990) is a

classic problem in combinatorial optimization. It derives its

name from the maximization problem of choosing possible

essentials that can fit into one bag (of maximum weight) to

be carried on a trip. A similar problem very often appears

in business, combinatorics, complexity theory, cryptography

and applied mathematics. Given a set of items, each with a

cost and a value, the number of each item is then determined

to be included in a collection so that the total cost is less than

some given cost and the total value is as great as possible.

This problem is NP-hard, and it has been solved with

dynamic programming techniques, although it can also be

solved with EC algorithms. In this section, we are going to

show how to use JCLEC to solve this problem from two

different view points of view: a classic viewpoint in which

the fitness function is the total value of the knapsack (and

we have to deal with the restriction of the maximum weight)

and a multi-objective viewpoint (Steuer 1989; Zitzler and

Thiele 1998) with two confronted objectives (the value and

the weight of the knapsack).

4.1 First solving approach

The most common way to solve the above problem is to use a

binary encoding scheme. In this scheme, the individual con-

tains a binary genotype with many genes as different items

that we can lump together in the knapsack. The meaning of

value 1 for the i th gene is that the i th item has been put in the

knapsack, and the meaning of value 0 is the opposite. The

fitness of the individual can be calculated very easily. We

only have to add the values of the items whose associated bit

is 1. And if we want to use the weight restriction, we have

to apply the same fitness function only if the total knapsack

weight (calculated as the addition of the individual weights)

does not surpass the maximum weight established.

As we have seen previously, the JCLEC system has a pack-

age to represent binary individuals with crossover and muta-

tor genetic operators. So, we only have to write the source

code to evaluate the fitness of the individual (IEvaluator

object). Figure 4 shows the corresponding code of this class

denominated KnapsackEvaluator to solve the problem with

30 items.

As we can see, the class implements two methods. The

first one is the evaluate() method that sets the fitness value of

individuals which is received as an argument. This method

uses 30 bits as the length of the individual and it uses a Simple-

ValueFitness object that is assigned to the individual in exe-

cution. The second method is getComparator() and it returns

123



JCLEC: a Java framework for evolutionary computation

Fig. 4 Simple evaluator used in the 0|1 knapsack problem

an object which establishes an ordering relation between

the IFitness objects produced during the evaluation process

(ValueFitnessComparator object). This object is used to sort

individuals in several algorithm parts. The SimpleValueFit-

ness and ValueFitnessComparator classes are defined in the

system, so the user only has to know their meaning and to

use them whenever he needs them.

Once the evaluator of the problem is defined (Knapsack-

Evaluator object in our case) we can resolve the problem

without it being necessary to write more source code. Indeed,

we can execute a simple generational algorithm (SGA), a

steady state algorithm (SSA) or a CHC algorithm. For each

of them, we can also choose among different selection meth-

ods, crossover operators (one-point, two point and uniform)

and mutation operators (one locus or uniform). We can use the

GenLab application if we want to do an interactive execution

or we can write a JER configuration file to execute a batch of

executions. Figure 5 shows the configuration file of a SGA

algorithm with a population of 50 individuals, a selection

scheme by means of tournament of size 2, and it uses as

genetic operators the one point crossover operator (with a

probability of 0.8) and the one locus mutation operator (with

a probability of 0.1). The algorithm will be iterated during

100 generations. With respect to the listener, we have used a

basic report generator that produces a file with the best, worst

and median individuals, the average fitness and its variance,

every five generations. In Fig. 6 we can see a fragment of the

generated report to the 15th generation of the evolutionary

process.

4.2 Second solving approach

We can also solve the knapsack problem using a multi-objec-

tive perspective (Steuer 1989; Zitzler and Thiele 1998). In

this case, there are two confronted objectives: the knapsack

value to maximize and the knapsack weight to minimize.

Obviously, these two objectives are conflicting and cannot

be optimized at the same time: maximizing the overall profit

means putting as many items as possible in the knapsack and

minimum weight is achieved when no item is in the knapsack.

There is a trade-off between profit and weight. Thus, in con-

trast to the single-objective 0/1 knapsack problem, there is

not a single optimal solution but rather a set of optimal trade-

offs which consists of all solutions that cannot be improved in

one criterion without degrading another. The corresponding

set is denoted as Pareto-optimal set.

Mathematically, the concept of Pareto optimality can be

defined in terms of a dominance relation (with regard to the

0/1 knapsack problem):

– Given a set of solutions and two members A,B of the set.

A is said to dominate B if and only if the profit of A is

equal or greater than the profit of B and the weight of A is

equal or less than the weight of B; and A is better in one

objective, i.e., either the profit is greater or the weight is

less.

– A solution A is denoted as nondominated regarding a

given set if and only if no member of the set dominates

A.

– Those solutions that are nondominated regarding the

entire search space are called Pareto optimal.

Therefore, the optimization goal of the multiobjective 0/1

knapsack problem is to find the set of Pareto-optimal solu-

tions. In this case, we can also use the binary representa-

tion described above, but the evaluation process is different

because it has to calculate a multi-objective fitness. This pro-

cess is performed by the KnapsackMultiObjectiveEvaluator

class, whose code is shown in Fig. 7. As can be seen, this
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Fig. 5 Configuration for a

SGA run

Fig. 6 Fragment of a report file

obtained in a SGA run

class also implements the evaluate and the getComparator

methods but, in this case, the methods return objects from

the CompositeFitness and ParetoComparator classes respec-

tively. The first of these classes represents a fitness that is

formed by several ISimpleFitness objects. In our case, the

class stores two SimpleValueFitness objects (the two objec-

tives to optimize) that have been generated when applying the

evaluate0 and evaluate1 methods on the individual’s geno-

type (see Fig. 7). The ParetoComparator class implements

the dominance relation previously discussed.

Finally, in order to solve the problem, we can use one of

the multiobjective algorithms provided by the system (in our

case, SPEA2, NSGA-II or MOGLS algorithms) or imple-

ment our own multiobjective algorithms. As the experiment

file for any of these experiments is very similar to the one

shown in Fig. 5, it is not repeated here.

5 Conclusions and future work

In this work we have described JCLEC, a Java framework

for Evolutionary Computing. We have shown its main fea-

tures: a modular architecture, that is very easy to extend and

that implements a lot of EC paradigms. We have analyzed

the development of applications using JCLEC components

and the GenLab tool that executes algorithms defined by an

XML configuration file. We have also shown an example

about how to use JCLEC as a tool to resolve a problem using

two different approaches.

The JCLEC system is continuously updated and improved.

At the moment, we are working on the development of a

real optimization toolkit with the following algorithms: ES

(Beyer 2001), differential evolution (Storn and Price 1997),

minimal generation gap (Higuchi et al. 2000) and general-

ized generation gap (Deb 2005; Deb et al. 2002) algorithms.

We are also developing new GP algorithms such as the Token

Competition algorithm (Wong 2005) used to discover classi-

fication rules with GP and improving the JER and the GenLab

tools in order to be able to execute concurrently several EAs

using the Java Threads API (Lewis and Berg 2000). In the

case of JER, we will use parallel architecture to speed up the

execution of batch-jobs and, in the case of GenLab, we will do

a simultaneous pursuit of several algorithms. Finally, we are

working on the development of a native version of JCLEC,

using the compiler GCJ of GNU (Free Software Foundation

2006). This version aims to resolve problems that are heav-

ily demanding from a computational point of view, and it

will allow the performance of the JCLEC applications to be
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Fig. 7 Multiobjective evaluator used in the 0|1 knapsack problem

comparable to that of others developed in C++ systems (for

example, Open BEAGLE or EO). The preliminary results are

very promising (the increases in speed have reached up to ten

times those of the pure Java version), although there are still

many other questions to be resolved. These improvements

will be incorporated into the future versions of the system.
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