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Abstract— Recently, the coronavirus disease 2019 (COVID-19)
has caused a pandemic disease in over 200 countries, influencing
billions of humans. To control the infection, identifying and
separating the infected people is the most crucial step. The main
diagnostic tool is the Reverse Transcription Polymerase Chain
Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR
test is not high enough to effectively prevent the pandemic.
The chest CT scan test provides a valuable complementary tool
to the RT-PCR test, and it can identify the patients in the
early-stage with high sensitivity. However, the chest CT scan
test is usually time-consuming, requiring about 21.5 minutes
per case. This paper develops a novel Joint Classification and
Segmentation (JCS) system to perform real-time and explain-
able COVID-19 chest CT diagnosis. To train our JCS system,
we construct a large scale COVID-19 Classification and Seg-
mentation (COVID-CS) dataset, with 144,167 chest CT images
of 400 COVID-19 patients and 350 uninfected cases. 3,855 chest
CT images of 200 patients are annotated with fine-grained
pixel-level labels of opacifications, which are increased attenu-
ation of the lung parenchyma. We also have annotated lesion
counts, opacification areas, and locations and thus benefit various
diagnosis aspects. Extensive experiments demonstrate that the
proposed JCS diagnosis system is very efficient for COVID-19
classification and segmentation. It obtains an average sensitivity
of 95.0% and a specificity of 93.0% on the classification test
set, and 78.5% Dice score on the segmentation test set of our
COVID-CS dataset. The COVID-CS dataset and code are avail-
able at https://github.com/yuhuan-wu/JCS.

Index Terms— COVID-19, joint diagnosis, CT classification,
CT segmentation, COVID-19 dataset.

I. INTRODUCTION

CORONAVIRUS disease 2019, or COVID-19, is an

epidemic disease caused by the Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2). It outbreaks around
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the world in a short period and has caused 1,914,916 confirmed

cases and 123,010 confirmed deaths as of April 15th, 2020.

COVID-19 pushes the health systems of over 200 countries to

the brink of collapse due to the lack of medical supplies and

staff and thus has been declared as a pandemic by the World

Health Organization [1]. The current main diagnostic tool

for COVID-19 is via the Reverse Transcription Polymerase

Chain Reaction (RT-PCR) test [2]. However, the sensitivity

of the RT-PCR test is not high enough to effectively prevent

the pandemic [3], [4]. So the false-negative cases of RT-PCR

tests are a potential threat to public wellness, and missing any

COVID-19 cases will probably cause secondary infections of

large areas.

To hinder the terrific infection of COVID-19, medical

radiology imaging is employed as a complementary tool for

the RT-PCR test [5]. This is based on the fact that the

clinical signs of chest X-rays for most COVID-19 patients

indicate lung infection [6]. The works of [3], [4] show that

CT scan tests are with high sensitivity. Besides, a CT scan

test is necessary for monitoring the severity of the illness [7].

However, the diagnosis duration is the major limitation of

CT scan tests: even experienced radiologists need about

21.5 minutes [8] to analyze the test results of each case. The

experienced radiologists are severely lack during the pandemic

outbreak, posting difficulties identifying potentially infected

patients in time. Thus, automatic diagnosis systems are highly

desired.

Thanks to the powerful discriminative ability of deep con-

volutional neural networks (CNNs), artificial intelligence (AI)

technologies are reforming the medical imaging community.

Deep CNNs are usually trained on large scale datasets to

demonstrate their capability. However, most of the existing

CT scan datasets for COVID-19 [9]–[12] could not meet this

demand, as they contain at most hundreds of CT images

from tens of cases. Besides, most of the current COVID-19

datasets only provide the patient-level labels (i.e., class labels)

indicating whether the person is infected and lacks fine-grained

pixel-level annotations. Thus, CNN models trained with these

datasets usually neglect the valuable information for explain-

ing the final predictions. Despite several CT scan diagnosis

systems [4], [13]–[17] have been established for testing the

suspected COVID-19 cases, most of them suffer from two

drawbacks: 1) they are trained on small scale datasets and

thus not robust enough for versatile COVID-19 infections;

2) they perform classification based on the black box CNNs

while lacking the explainable transparency to assist the doctors

during the medical diagnosis.
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Fig. 1. Illustration of our JCS diagnosis system for COVID-19. Our JCS
system will perform the segmentation diagnosis only if the classification
branch reports positive COVID-19 predictions.

To alleviate the drawbacks mentioned above, in this work,

we 1) construct a large scale COVID-CS dataset with both

patient-level and pixel-level annotations and 2) propose a

Joint Classification and Segmentation (JCS) based diagnosis

system to provide explainable diagnosis results for med-

ical staffs fighting with COVID-19. Specifically, we utilize

the collected COVID-CS dataset that contains thousands of

CT images from hundreds of COVID-19 cases to train our

JCS system for better diagnosis performance. As illustrated

in Figure 1, our JCS diagnosis system first identifies the

suspected COVID-19 patients by a classification branch and

provides diagnosis explanations via activation mapping tech-

niques [20]. Our system is then feasible to discover the

locations and areas of the COVID-19 infection in lung

radiography via fine-grained image segmentation techniques.

With the explainable classification results and corresponding

fine-grained lesion segmentation, our JCS system largely sim-

plifies and accelerates the diagnosis process for radiologists or

other medical experts. As shown in Table II, our JCS system

needs only 22.0 seconds for each infected case or 1 second

for each uninfected case, much faster than the RT-PCR tests

and CT scan analysis by experienced radiologists. With the

assistance of our JCS system, experienced radiologists only

cost 54.4 (32.4 for radiologists and 22.0 for JCS) seconds

for each infected case or 1.0 second for each uninfected

case, keeping the same high specificity and sensitivity. Hence,

the speed and effectiveness of assistance have shown the

superiority of our JCS system.

In summary, our contributions are mainly three-fold:

• We construct a new large scale COVID-19 dataset,

called COVID-CS, which contains 3,855 fine-grained

pixel-level labeled CT images from 200 COVID-19

patients, 64,771 patient-level annotated CT images from

200 other COVID-19 patients, and 75,541 CT images

of 350 uninfected cases.

• We develop a novel COVID-19 diagnosis system to

perform explainable Joint Classification and accurate

TABLE I

SUMMARY OF DIFFERENT DATASETS (UPDATED ON 2020/4/10)

TABLE II

AVERAGE TIME OF COVID-19 DIAGNOSIS BY DIFFERENT METHODS.
“CT R.” INDICATES CT RADIOLOGIST AND “CT R. + JCS” IS CT

RADIOLOGIST DIAGNOSIS WITH THE ASSISTANCE OF JCS

lesion Segmentation (JCS), showing clear superiority over

previous systems.

• On our COVID-CS dataset, our JCS system achieves

95.0% sensitivity and 93.0% specificity on COVID-19

classification, and 78.5% Dice score on segmenta-

tion, surpassing previous state-of-the-art segmentation

methods.
The remaining paper is organized as follows. In §II,

we briefly summarize the related works. In §III, we intro-

duce the developed diagnosis system for recognizing and

analyzing the COVID-19 cases. In §IV, we present our

COVID-CS dataset with our labeling procedures in detail.

Extensive experiments are conducted in §V to evaluate the

performance of our system on COVID-19 recognition, with

in-depth analysis. §VI concludes this work.

II. RELATED WORKS

A. Existing Accessible COVID-19 Datasets

As of April 15th, 1,914,916 people are infected by

COVID-19. But their CT scans are usually private and could

not be publicly accessed. To facilitate the development of

diagnostic systems, several COVID-19 related datasets are

publicly released by researchers around the world. A summary

of these datasets is provided in Table I.

One X-ray dataset from Cohen et al. [9] contains over-

all 122 frontal view X-rays, including 100 images of

COVID-19 cases, 11 SARS images, and 11 other pneumonia

images. The COVID-CT dataset from [10] has 746 CT scan

images, 349 images from COVID-19 patients and 397 from

non-COVID-19 cases. All the images in these datasets are

collected from public websites and/or COVID-19 related

papers on medRxiv, bioRxiv, and journals, etc. CTs con-

taining COVID-19 abnormalities are selected by reading the

figure captions in the papers. Some other resources of the

COVID-19 dataset are PLXR [11] and CTSeg [12], which
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contains 98 and 110 CT scan images cases, respectively. These

datasets are on a small scale and lack diversity since they

often contain less than hundreds of images from tens of cases.

To fully exploit the power of deep CNNs, it is essential to

construct a large scale dataset to train deep CNNs in accurate

and robust COVID-19 systems.

B. Manual COVID-19 Diagnosis

The most crucial step of preventing the spread of the

COVID-19 is immediately identifying every patient from nor-

mal people. Missing any patient will probably cause secondary

COVID-19 infections in large areas. Currently, the main

manual diagnostic tool is the RT-PCR test [22]. However,

the sensitivity of the RT-PCR test is not high enough to

effectively prevent the pandemic [3], [4]. As widely available

in many hospitals, the CT scan provides a valuable com-

plementary tool to the RT-PCR test. However, some special

cases with the RT-PCR test confirmed positive have normal

CTs [15], [23], [24]. Such a combination allows maximally

to identify potentially infected people, as it can identify

COVID-19 patients in the early-stage with high sensitivity [3],

[4], [25]. The CT scan is also necessary for monitoring the

severity of the illness [7]. During the pandemic outbreak,

experienced medical staff is severely lacking, posting diffi-

culties identifying potentially infected patients in time. Thus,

automatic diagnosis systems are highly desired.

C. Automatic COVID-19 Diagnosis Systems

Most current medical imaging systems are developed for

common diseases that exist for many years, e.g., tuberculo-

sis [26]. These developed systems can be directly modified

to attenuate the COVID-19 outbreak. The doctors find that

the chest X-rays of COVID-19 patients exhibiting certain

abnormalities in the radiography. Based on ResNet-50 [27],

COVID-ResNet [28] is proposed to differentiate three types

of COVID-19 infections from normal pneumonia individuals.

On 1531 chest X-ray images, Zhang et al. proposed a deep

anomaly detection system for COVID-19 screening, achieving

96.0% sensitivity and 70.65% specificity. Yang et al. [29]

proposed a system to evaluate the images of 102 volunteers,

with a sensitivity of 83.3% and specificity of 94.0%. The

system developed by Li et al. [30] identifies 78 COVID-19

patients with a sensitivity of 82.6% and a specificity of 100.0%

by using the axial and coronal-view of lung CT severity

index (CTSI). Chung et al. [14] confirmed via collected

from 21 patients that visual inspection helps identify the

COVID-19 cases and predict the severity via the overall

lung total severity score (LTSS). Bernheim et al. [15] ana-

lyzed the 121 COVID-19 patients and carried on a visual

check by the experienced radiologist to categorize them as

early, intermediate and late cases. Wang et al. [16] found

that the COVID-19 disease will be severe during 6-11 days

from the infection, based on a study on 366 CT scans

of 90 patients. Shi et al. [17] developed an imaging-assisted

diagnosis procedure to detect the COVID-19 caused pneumo-

nia. Fang et al. [4] examined 81 patients by a procedure based

on the CTSI and obtained a sensitivity of 98.0%, in contrast

to the sensitivity of 71.0% by RT-PCR. Zhou et al. [31]

implemented the examination using the non-contrast CTSI

of 62 COVID-19 patients, confirming that the CT-assisted

evaluation shows better detection accuracy in the progressive

stage confirmed to the early-stage. Despite their success on a

small set of samples, these COVID-19 diagnosis systems have

not been tested by large scale samples. They could not provide

useful diagnostic evidence during their diagnostic inference.

More works can refer to the reviews of [18], [19], [32].

As far as we know, only two works extract infected regions

via pixel-level segmentation. Rajinikanth et al. [33] performed

the segmentation via the watershed transform techniques [34]

with coarse results and limited accuracy. Zhou et al. [35]

developed a U-Net with an attention mechanism and obtained a

Dice score of 69.1% on CTSeg [12] dataset, but its training and

test split have only 88 and 22 images. In this work, we propose

a diagnosis system by integrating learning-based classification

and segmentation networks to provide explainable diagnostic

evidence for doctors and improve the user-interactive aspects

of the diagnosis process.

D. Deep Classification and Segmentation Methods

Ever since the release of the ImageNet dataset [36], deep

convolutional neural networks (CNNs) have become the work-

horse for image classification tasks with improving perfor-

mance. Representative deep classifiers, e.g., AlexNet [37],

VGGNet [38], ResNet [27], DenseNet [39], and Res2Net [40],

have been widely employed as the feature extractors for

other computer vision tasks, such as image segmenta-

tion [41]–[43], salient object detection [44], face recogni-

tion [45], aerial images analysis [46], style transfer [47],

feature matching [48], crowd counting [49], and image restora-

tion [50], etc. Despite impressive representation ability of these

classifiers, the classification process does not explain clearly

the predicted results.

Image segmentation tackles the problem of pixel-level pre-

dictions. Semantic segmentation aims to classify the semantic

label for each pixel on a natural image [51]. Representative

works in this area include FCN [52] and DeepLab [53].

Instance segmentation focuses on discriminating each semantic

instance with a unique instance label and pixel-level mask

in the image [54]–[56]. Panoptic segmentation [57] integrates

semantic segmentation and instance segmentation, and it does

semantic segmentation on non-objects (sky, water, grass, etc.)

and instance segmentation on objects (cat, dog, bus, etc.).

U-Net [58] is a widely employed network for medical image

segmentation analysis. It is further extended to 3D U-Net [59],

TernausNet [60], and U-Net++ [61] with promising perfor-

mance on versatile image segmentation tasks. In this work,

we develop a novel COVID-19 diagnosis system by integrating

deep image classification and segmentation techniques.

III. OUR COVID-19 DIAGNOSIS SYSTEM

The opacification is the basic CT feature of COVID-19

patients [62], and it is defined as the increased attenuation

of the lung parenchyma [63]. Our JCS system consists of an

explainable classification branch to identify the COVID-19
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opacifications and a segmentation branch to discover the

opacification areas. The classifier is trained on many images

with low-cost patient-level annotations and some images with

pixel-level annotations for better activation mapping. And the

segmentation branch is trained with accurately annotated CT

images, performing fine-grained lesion segmentation. By inte-

grating the two models, our JCS system provides informative

diagnosis results for COVID-19.

A. Explainable Classification

Owing to the strong representation ability of CNNs,

the COVID-19 infections can be predicted through only

patient-level supervised training. To this end, we build a

classification branch that consists of the proposed classification

model to endow our JCS diagnosis system with the capability

of discriminating the COVID-19 patients.

1) Diagnosing COVID-19 via Classification: Predicting

whether the suspected patient is COVID-19 positive or not is

a binary classification task based on his/her CT scan images.

Since designing the novel classification model is not our focus,

we build our classifier based on the Res2Net network [40].

As a powerful network, Res2Net has a stronger multi-scale

representation ability than ResNet [40]. The last layer is

modified as a fully-connected layer with two channels to

output the probability of COVID-19 infection or not. If the

probability of the infected channel is larger than that of the

uninfected one, the patient is diagnosed as COVID-19 positive,

or vice versa. For each patient, the CT images are sent to the

classification model one by one. If the number of infected

CT images is above a threshold, the patient is diagnosed as

COVID-19 positive.

2) Explanation by Activation Mapping: As the diagnosis

process of CNN classification is in a black box, we employ

the activation mapping [20] to increase the explainable trans-

parency of our COVID-19 diagnosis system on its predictions.

The last convolutional layer of the classification network is

followed by a global average pooling (GAP) layer and a

fully-connected layer. Through the GAP layer, our classifi-

cation model down-samples the feature size from (H, W ) to

(1, 1), and thus lost the spatial representation ability. Through

activation mapping [20], our system finds the response region

of the prediction result. The hypothesis is that the gradient

of regions in features before the GAP layer is consistent

with the prediction evidence. The feature map before the

GAP layer contains both high-level semantic and location

information. Each channel corresponds to the activation of

different semantic cues. The activation mapping is obtained

through the gradients of the predicted probability of the feature

map. Specifically, given the prediction of COVID-19 branch

yp and the feature map X before GAP, the weight for the k-th

channel of X is calculated as:

wk =
1

H W

H∑

i=1

W∑

j=1

∂yp

∂ Xk
i, j

, (1)

where Xk
i, j is the value at position (i, j) in the k-th channel of

feature map X . Larger gradients in Eqn. (1) produce a larger

weight of the activation mapping for a certain channel. The

activation mapping for a COVID-19 case is computed as:

AMp =
∑

k

ReLU(wk Xk). (2)

As shown in Fig. 9, the activation mapping accurately locates

the opacification areas of COVID-19 patients, providing

explainable results for the prediction of our JCS system.

3) Alleviating Data Bias by Image Mixing: By utilizing our

explainable classification model, our system can be trained

only with patient-level annotation. However, since CT images

are from multiple sources, the classifier may be trained to

overfit unwanted areas (e.g., the area outside the lesion), as

observed via the activation mapping. Therefore, we propose to

utilize the image mixing technique [64] and help the classifier

focus on the lesion areas of COVID-19 cases. The CT images

from different sources and the corresponding patient-level

annotations are mixed during training. Specifically, for two

randomly sampled CT images xi and x j (i 6= j ) and corre-

sponding labels ŷi and ŷ j , the newly mixed sample and the

corresponding label are written as:

xm
i j = λxi + (1 − λ)x j ,

ŷm
i j = λŷi + (1 − λ)ŷ j ,

(3)

where λ ∈ [0, 1] is a random number generated in Beta

distribution, i.e., λ ∼ Beta(α, α). With mixed samples, our

classification model is trained to focus more on the decisive

lesion areas of COVID-19 cases, rather than the bias in the

data source. Also, the mixing process weakens the confidence

of labels, and thus alleviating our system from overfitting.

4) Pixel-Level Supervision for Activation Mapping: Tra-

ditional classification models only utilize image labels for

training. The activation mapping of them may be inaccurate

as these models automatically learn the differences of images

of different classes. In our proposed dataset, there are thou-

sands of images with pixel-level annotations for the specific

opacification areas, and they can be the direct supervision of

the activation mapping. Motivated by the above observations

and the work of [65], during the training network, we apply

a segmentation loss Lseg for the activation mapping of the

COVID-19 class channel:

Lseg =
1

H W
kAMnorm

p,c − Sk2, (4)

where AMnorm
p,c is the activation mapping of the COVID-19

class channel normalized to (0, 1), S is the binary ground

truth pixel-level annotation map, k · k2 denotes the `2 norms.

Lseg will not be computed if images have no ground truth

pixel-level annotations. After applying the segmentation loss

Lseg , Fig. 9 shows that the activation mapping significantly

improves in locating opacifications.

B. Accurate Segmentation

Our segmentation branch aims at discovering the exact

lesion areas from the CT images of COVID-19 patients. Fig. 2

shows the architecture of our segmentation branch with or

without the combination of the segmentation and classification

models. The details of such a combination are illustrated in

Fig. 4.
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Fig. 2. The architecture of our segmentation branch. EFM indicates the Enhanced Feature Module (§III-B.2). AFF refers to the Attentive Feature Fusion

strategy (§III-B.3). If not combined with the classification model, M1
E ∼ M5

E will be fed into the decoder; otherwise, the combined N1
E ∼ N5

E will be fed
into the decoder (Fig. 4, §III-B.4). We apply deep supervision to train our segmentation branch (§III-B.5).

1) Encoder-Decoder Architecture: Our segmentation model

consists of an encoder and a decoder.

Encoder. The encoder is based on the VGG-16 [38] back-

bone, without the last two fully-connected layers. It has five

VGG blocks defined as {E1, E2, E3, E4, E5}, respectively.

The VGG-16 backbone is first fed with the CT images and

produces multi-scale feature maps from the last layers of

the five VGG blocks. To downsize the input feature map

by half, the front of each block (except the first one) is

a max pooling function with a stride of 2. The feature

map produced by the block E1 contains the finest features

with the highest resolution, while the feature map by the

block E5 is coarsest with the lowest resolution. To achieve

better performance, we propose an Enhanced Feature Module

(EFM, which will be introduced in §III-B.2) for our encoder

to improve its representational power. The EFM module is

added after the last layer conv5_3 in the block E5. It consists

of two Grouped Atrous Modules (GAM) to extract stronger

feature maps with larger receptive fields. The GAM module

generates an extra smaller feature map, half size compared

to the coarsest feature map of the VGG-16 backbone. It also

enhances the representational power of the feature map pro-

duced by the block E5. Hence, our encoder produces six

levels of feature maps {M1
E , M2

E , M3
E , M4

E , M5
E , M6

E }, with

strides of {1, 2, 4, 8, 16, 32}, respectively. As we employ a

U-shape encoder-decoder architecture [58], all these six fea-

ture maps will be used in the decoder, as will be introduced

later.

Decoder. Our decoder has five side-outputs with 5 different

sizes. Here, we do not predict the side-output from the coarsest

feature map with a stride of 32, and thus no side-output

matches the size of the coarsest feature map M6
E . In our

decoder, we propose an Attentive Feature Fusion (AFF, which

will be introduced in §III-B.3) strategy to aggregate the

feature maps from different stages and predict the side-output

Fig. 3. Proposed (a) GAM and (b) AFF for the segmentation network. In AFF,

M
i+1
D will be replaced with M6

E if i = 5. Cubes represent three-dimensional
feature maps, while rectangles mean feature vectors.

of each stage. Our AFF emphasizes the significance of the

top-level feature map and utilizes the attention mechanism to

filter useful features from the bottom feature map. The last

output with the same resolution of the CT image input will be

chosen as the final prediction.

2) Enhanced Feature Module: The proposed EFM mod-

ule is added after the last layer of E5 in the VGG-16

encoder. It consists of two sequential GAM modules and a

max pooling function between them. As shown in Fig. 3 (a),
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the first layer of the GAM module is a 1×1 convolution layer

to expand the channels of the feature map. Then the feature

map is equally divided into 4 groups. Unlike the trivial group

convolution, we deploy atrous convolution [53] with different

atrous rates to the 4 groups to derive a more abundant feature

map with various receptive fields. Atrous convolution can

greatly enlarge the perceptive field of convolutional filters and

keep the same computational cost with normal convolution.

In 2D cases, atrous convolution with 3 × 3 kernel size can be

simply formulated as below:

q[i, j ] = bias +

+1∑

k=−1

+1∑

l=−1

(x[i + k · n, j

+l · n] · w[k + 1, l + 1]), (5)

where n indicates the atrous rate, w is the convolution weight

of which the size is 3×3, q and x are output and input feature

map, respectively, i and j are the feature map location. Note

that n = 1 is the special case for normal convolution. To fully

exploit useful features, we adopt the Squeeze-Excitation (SE)

block [66] in our network, that is, using the attention mech-

anism for re-calibrating channel-wise convolutional feature

responses. More specifically, each channel of the input feature

map will be multiplied by a channel factor calculated by a SE

block. The SE block consists of two linear layers, followed by

a sigmoid function. The input feature map after global average

pooling will be fed into this block and we can derive a channel

factor ranging (0, 1) for each input feature channel. We set

the reduction rate in the SE block as 4, which means we set

the output number of the first linear layer as the 1/4 number

of the input channels. To reduce the output channels by half,

we add a 1 × 1 convolution layer after the SE block.

At last, we use a 3 × 3 convolution layer, in which the

number of channels equals that of the input feature map, as the

transition layer to the next module.

3) Attentive Feature Fusion: Traditional fusion strategy of

top-down decoders [58], [67] treats the input feature maps

equally. To better aggregate the feature maps, we propose an

Attentive Feature Fusion (AFF) strategy. In our AFF fusion

strategy, the feature map with a smaller size is more valued.

As shown in Fig. 3 (b), the input feature maps M i
E and

M i+1
D in the current stage are reduced to half size via 1 × 1

convolution layers. Then the reduced M i+1
D is up-sampled by

bilinear interpolation to output a double-sized feature map.

We concatenate the two outputs and apply the SE block (also

used in GAM) to produce an enhanced feature map. This

feature map is then concatenated with the feature map of

doubly up-sampled output in the previous stage. After the

concatenation, we use another SE block to enhance the feature

map again. After each SE block, we use a 3 × 3 convolution

layer, with the same number of channels as the input, as the

transition layer. A 1×1 convolution layer with a single neuron

will be used to predict one feature map as the side-output of

the current stage.

4) Combination With the Classification Model: As

described above, we have designed two models, one for

COVID-19 classification and the other one for COVID-19

opacification segmentation. However, they are separately

Fig. 4. Combination of the segmentation and classification models. We com-
bine the encoder features of the segmentation model with the backbone
features of the classification model.

working on the diagnosis system, and there might be a way

to combine them together for better performance. Inspired by

this, we leverage the features of the classification model to

enhance the features of the segmentation model. As shown

in Fig. 4, we merge the feature maps of each stage from the

encoder of the segmentation model and the backbone of the

classification model together. The feature maps of the encoder

of the segmentation model are M1
E , M2

E , M3
E , M4

E , M5
E

as defined in §III-B.1. The Res2Net [40] backbone of the

classification model has five stages and we use the last feature

maps Ak of stage k ∈ [1, 5] for the feature combination.

In merging the features of stage k, we have two feature

maps Ak, Mk
E for the merge. We first resize the smaller

one Ak , making it the same size as the larger one Mk
E , and

concatenate them together. Then, we apply a simple 1 × 1

convolution layer for the feature channel reduction, making

the output feature maps the same number of channels as Mk
E .

Such 1 × 1 convolution layer is followed by a SE block with

a reduction rate of 4. At last we use a 3 × 3 convolution

layer of the same number of input and output channels as

the transition layer. The output Nk
E will be regarded as the

enhanced encoder features and be fed into the decoder of the

segmentation model (Fig. 2). Then results are predicted as

introduced in §III-B.1.

5) Deep Supervision Loss: Although the final prediction

is only from the last side-output, we apply the deep super-

vision strategy [68] to all side-outputs with different sizes.

For each side-output, we up-sample it to the size of the

ground-truth map, and compute the sum of the standard binary

cross-entropy loss and the Dice loss [69] as follows:

L = BC E(P, G) + 1 −
P · G

kPk1 + kGk1
, (6)

where the binary cross-entropy (BCE) loss is averaged among

all H × W pixels, pi, j is the confidence score at pixel (i, j)

calculated by a sigmoid function, and “·” means the dot

product. P and G are predicted map and ground-truth map,
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Fig. 5. Examples of our COVID-CS dataset, including CT scan images and labels of a normal person (1st column), two community-acquired pneumonia (CAP)

cases (2nd and 3rd columns), and three COVID-19 patients from mild to severe (4th ∼ 6th columns).

respectively, while kPk1 and kGk1 denote the corresponding

`1 norms.

C. Joint Diagnosis

An explainable classifier or accurate segmentation model

itself could not fully implement comprehensive functions for

COVID-19 diagnosis. Comparing to the segmentation model,

our classifier is trained with CT images from both COVID-19

infected and uninfected cases, benefiting from more training

data with lower annotation costs. Although our classifier can

provide explainable lesion location of COVID-19 through

activation mapping techniques, it cannot perform accurate and

complete lesion segmentation. To this end, our segmentation

model further provides complementary analysis by discovering

the complete lesions in the lung and estimate the severity of the

COVID-19 patients. But annotating vast segmentation labels

by experienced radiologists is prohibitively expensive. To inte-

grate their advantages for better application, we develop a

diagnosis system for COVID-19 via joint explainable classifi-

cation and segmentation models. In practice, our classification

model will first predict whether the CT images of a suspected

case to be COVID-19 positive or not. If the prediction is

positive, the suspected case is very likely to be infected by

COVID-19. Our segmentation model will then be performed

on the CT images for in-depth analysis and to discover the

whole opacification areas in each CT image.

IV. OUR COVID-CSDATASET

Data plays an essential role in the deep learning-based AI

diagnosis systems. Currently, there are few publicly avail-

able COVID-19 datasets with either large scale samples or

fine-grained pixel-level labeling. To fill in this gap, we con-

struct a new COVID-19 Classification and Segmentation

Fig. 6. Illustration of diverse information about opacification areas (in pixels),
location (x0,y0), position (left, up), and width/height of opacification areas in
our COVID-CS dataset.

(COVID-CS) dataset. In this section, we present the data

collection, professional labeling, and statistics of our dataset.

Fig. 5 shows some examples of our COVID-CS dataset (normal

case and COVID-19 cases) and examples of CAP patients.

Fig. 6 presents diverse information in the segmentation set of

our COVID-CS dataset.

A. Data Collection

To protect the patients’ privacy, we omit their personal infor-

mation in our dataset construction. We collected 144,167 CT

scan images from 750 cases, 400 of which are positive cases of

COVID-19, and the other 350 cases are negative, all confirmed

by RT-PCR tests. As previous studies [70] did, we do not take

community-acquired pneumonia (CAP) patients (see Fig. 5)

into consideration. Although CAP patients may be diagnosed

as COVID-19 positive with our proposed diagnosis system

since CT images of CAP patients also have similar opacifica-

tions, the threat of CAP is much less than that of COVID-19.

And our purpose is to quickly develop an automatic diagnosis

system and diagnose suspected cases as soon as possible.

Besides, CAP patients can be simply diagnosed as COVID-19
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Fig. 7. The age, gender, and slice thickness distribution of the COVID-19 patients in our COVID-CS dataset. Zoom in for details.

Fig. 8. Statistics of the segmentation set (200 COVID-19 cases) in our COVID-CS dataset. (a) Lesion count distribution. (b) The distribution of width &
height of the opacification areas. (c) The relationship between the opacification areas and their locations.

TABLE III

THE CT SCANNERS AND NUMBERS OF POSITIVE CASES

negative with the help of the CAP/COVID-19 classifier [70],

RT-PCR test, and the experience of doctors.

All involved patients underwent standard chest CT scans.

Each case has 250 ∼ 400 CT images, and the number of

CT images in each case is only determined by the type

of the CT scanner and its scan settings. The CT scanners

include BrightSpeed, Discovery CT750 HD, LightSpeed VCT,

LightSpeed16, Revolution CT from GE Medical Systems,

Aquilion ONE from Toshiba, and uCT 780 from United Imag-

ing Healthcare. The numbers of cases from different scanners

are summarized in Table III. The thickness of reconstructed

CT slices ranges from 0.75mm to 1.25mm (Fig. 7 for more

details).

B. Professional Labeling

We provide two aspects of labels for the collected CT

scan images in our COVID-CS dataset, so as to implement

joint classification and segmentation tasks. As mentioned

above, our dataset is divided into 400 COVID-19 cases and

350 uninfected cases. For the segmentation task, we perform

professional labeling through the following strategies:
• In order to save their labeling time, the radiologists

only select at most 30 discrete CT scan images for

each patient, in which the infections are observed for

further annotation. In this step, our goal is to label every

opacification area with pixel-level annotations.

• To generate high-quality annotations, we first invite a

radiologist to mark as many opacification areas as possi-

ble based on his/her clinical experience. Then we invite

another senior radiologist to refine the labeling marks

several times for cross-validation. Some inaccurate labels

are fixed after this step.
By implementing the above annotation procedures,

we finally obtain 3,855 pixel-level labeled CT scan images

of 200 COVID-19 patients with a resolution of 512 × 512.

64,771 CT images of the other 200 COVID-19 patients

are without pixel-level annotation due to the shortage of

radiologists, but such data will be used in classification tests.

As can be seen in the last three columns of Fig. 5, our

COVID-CS dataset covers different levels, i.e., mild, medium,

and severe, of COVID-19 cases.

C. Dataset Statistics

Age. The 400 COVID-19 patients (175 males and 225 females)

range from 14 to 89 years, with an average age of 48.9 years.

Fig. 7 shows the distribution of ages, the counts of samples

in age ranges, and the gender percentages.



WU et al.: JCS: AN EXPLAINABLE COVID-19 DIAGNOSIS SYSTEM BY JCS 3121

Lesion count. As shown in Fig. 8 (a), we illustrate the

distribution of lesion counts. We observe that the lesion count

distributes from 1 to 10 in each CT scan image.

Opacification areas. We plot the widths and heights of the

opacification areas in Fig. 8 (b). The ranges of width and

height are 7 ∼ 191 and 8 ∼ 271, respectively, showing diverse

distributions.

Location. We also show the relationship between each opaci-

fication area and the corresponding central location (x0, y0)

in Fig. 8 (c). As can be seen, the normalized opacification

areas range from the smallest size (35/28452 pixels) to the

largest size (28452/28452 pixels). It also shows that, in our

COVID-CS dataset, the opacification areas are evenly distrib-

uted in diverse locations, which are also evenly distributed in

the lungs.

V. EXPERIMENTS

A. Experimental Settings

Training/Test Protocol. For the segmentation task, our train-

ing set contains 2,794 images from 150 COVID-19 patients

and the test set has 1,061 images from the other 50 COVID-19

cases. For the classification task, the training set contains the

2,794 images from the 150 COVID-19 infected cases in the

segmentation set. In addition, we randomly pick 150 unin-

fected cases with 7,500 CT images as negative cases for

training. The test set contains the 64,711 images of the other

randomly selected 200 infected cases and the 68,041 images

from 200 uninfected cases.

Evaluation Metrics. For the classification task, we adopt the

widely used metrics of specificity and sensitivity as suggested

by [26]. For the segmentation task, we use two standard met-

rics, i.e., Dice score [71] and Intersection over Union (IoU).

To provide a more comprehensive evaluation, we further use

the widely used metric enhanced alignment measure (Eφ) [72].

Comparison methods. On the classification task, we compare

our classification model with or without the image mixing

technique [64]. On the segmentation task, to provide an

in-depth evaluation of our JCS model, we compare it with

versatile cutting-edge models, i.e., the U-Net [58] for medical

imaging and the DSS [73], PoolNet [74], and EGNet [75] for

saliency detection.

B. Implementation Details

In our JCS system, the classification and segmentation

models are trained separately. For the classification model,

we train it with a batch-size of 256 on 4 GPUs. The CT images

are resized into 224 × 224 for computational efficiency.

We adopt the SGD optimizer with the initial learning rate

of 0.1, divided by 10 in every 30 epochs. The classifier is

trained with 100 epochs. For data augmentation, we use the

random horizontal flip and random crop, and the image mixing

technique [64] to alleviate the data bias. The α in the Beta

distribution of image mixing is set as 0.5.

For the segmentation model, the number of CT images

in each mini-batch is always 4, and the size of the input

CT images is unchanged as 512 × 512. The backbone of

our segmentation model is pretrained on ImageNet [36].

The atrous rates of four atrous convolutions in two sequential

GAMs are {1, 3, 6, 9} and {1, 2, 3, 4}, respectively. The initial

learning rate is 2.5 × 10−5. We adopt the poly learning

rate policy that the actual learning rate will be multiplied

by a factor (1 − cur_iter
max_iter

)power , where the power is 0.9.

The segmentation model is trained with 21000 iterations.

We employ the Adam [76] optimizer and set β1, β2 as

0.9 and 0.999, respectively. For data augmentation, we use

random horizontal flip and random crop. When combined with

the classification model, the classification model has been

pretrained on our classification training set with pixel-level

annotations.

C. Results

Activation mapping on explainable classification. Fig. 9

shows the visualization of activation mapping (AM) of our

classification branch trained with or without image mix-

ing [64]. At first, we train our classification model and

achieve good performance in terms of sensitivity and speci-

ficity. But we find that The AM of our classification model

initially trained with random horizontal flip and random crop

(Fig. 9 (a)) not only covers the lesion areas, but also presents

unrelated areas. If this problem is not solved, an automatic

diagnosis system with an overfitted classification network is

very harmful to clinical diagnosis. To solve this problem,

we investigated and identified that the image mixing technique

could solve this problem. By introducing the image mixing

technique [64], the AM of our classification model provides

more accurate locations of the opacification areas as shown in

Fig. 9 (b). Moreover, Fig. 9 (c) indicates the AM of models

trained with the help of pixel-level supervision (segmentation

loss Lseg as introduced in §III-A.4). The AM of models

becomes more accurate and specific in locating the opacifica-

tions. However, the improvements of adding segmentation loss

Lseg in classification performance can be ignored, potentially

due to saturated classification accuracy (No.3, Table IV).

Performance on explainable classification. During the infer-

ence, AM assists the medical experts using our JCS system

to judge whether the prediction is correct or not. For each

patient, opacifications can be found in some of its CT images

and many images may have no opacifications. So we set

a threshold for the classification. When the number of CT

images from a suspected patient is larger than a threshold,

the patient is diagnosed as COVID-19 positive. Changing the

threshold enables our model to achieve a trade-off between

sensitivity and specificity. Table IV shows the results of the

classification model under different thresholds on the test set

of our COVID-CS dataset. One can see that our model is very

robust to the changing of thresholds, and achieves a sensitivity

of 95.0% and a specificity of 93.0% when the threshold is 25.

However, AM could not provide accurate segmentation of

opacification areas (if any exist). Subsequently, we further

employ our segmentation model to discover the opacification

areas in the CT images of COVID-19 patients.

Ablation study on our EFM and AFF in the segmentation

branch. In §III-B we introduced two novel modules named

EFM and AFF for the segmentation. EFM is designed to
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Fig. 9. Visualizations of activation mapping (AM). AM origin (mixing) means the AM of models trained without (with) image mixing technique [64]. Seg
guiding means the AM of models trained with the segmentation loss Lseg .

TABLE IV

SENSITIVITY AND SPECIFICITY OF OUR CLASSIFICATION MODEL UNDER

DIFFERENT THRESHOLDS. WE SET THE THRESHOLD AS 25
(THE GRAY ROW) IN THE FINAL SETTING

TABLE V

ABLATION STUDY FOR THE PROPOSED EFM AND AFF IN THE

SEGMENTATION MODEL. THE BASELINE IS THE VGG16-BASED

SEGMENTATION MODEL WITHOUT EFM&AFF (NO. 1). WE

ADD EFM AND AFF SEPARATELY AND SHOW THE

EFFECTIVENESS OF THEM (NO. 2 AND NO. 3).
THE NO. 4 RESULT IS THE COMPLETE

VERSION OF THE SEGMENTATION MODEL

enhance the representation power of our encoder in the seg-

mentation branch. In the feature fusion stage, AFF is applied

and the feature map with a smaller size is more valued while

the traditional fusion strategy treats the input feature maps

equally. The ablation studies for the proposed EFM and AFF

are shown in Table V. The No.1 result is the baseline perfor-

mance without EFM and AFM. After applying the proposed

TABLE VI

ABLATION STUDY FOR THE COMBINATION BETWEEN THE

SEGMENTATION MODEL AND THE CLASSIFICATION

MODEL. THE BASELINE SEGMENTATION RESULTS

ARE GENERATED USING THE SEGMENTATION

MODEL ONLY (NO.1). AFTER ADDITIONALLY

ADDING FEATURES FROM THE CLASSIFICATION

MODEL, WE ACHIEVE 1.0% IMPROVEMENT IN

TERMS OF THE DICE METRIC (NO.2)

EFM and AFF separately to the baseline, the performance has

3.3% and 4.9% improvement in terms of the Dice metric. So

both EFM and AFF are very helpful for the segmentation

branch. When combining EFM with AFF, we achieve 6.5%

higher results in terms of the Dice metric. The improvement

in terms of the IoU and E-measure [72] metric is similar to

that of the Dice metric. Hence, the proposed EFM and AFF

are very beneficial for the segmentation model.

Ablation study on the combination between the segmenta-

tion model and classification model. As introduced in §III-

B.4, we combine the classification model with the segmenta-

tion model for deriving more abundant features. To verify such

a choice, we run the experiments as shown in Table VI. The

baseline is the single segmentation model (No.1, Table VI).

But we also observe that the choice of the combination of the

classification model and segmentation model (No.2, Table VI)

has 1.0% improvement in terms of the Dice metric, and shows
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Fig. 10. Qualitative comparisons of different methods on our segmentation test set. The first, second, and third rows show the comparison results on CT
images with different lesion areas from the mild, medium, and severe COVID-19 patients, respectively.

TABLE VII

QUANTITATIVE RESULTS ON OUR SEGMENTATION TEST SET

features of the classification model can certainly help the

segmentation model predict better results.

Comparison of segmentation performance. Table VII lists

the quantitative comparisons of 4 cutting-edge methods and

our model on segmentation. It can be seen that the proposed

model achieves the best result on all three metrics. It obtains

improvements of 8.8%, 10.5%, and 8.8% on Dice score,

IoU, and Eφ over the second-best PoolNet [74], respectively.

Besides, PoolNet [74] and EGNet [75] obtain comparable

results on the three metrics. U-Net [58] performs better than

DSS [73] in terms of IoU, though they are comparable on the

Dice score. Fig. 10 shows the qualitative results of the compar-

ison methods. One can see that the other competitors produce

inaccurate or even wrong predictions of the lesion areas in the

CT images of mild, medium, and severe COVID-19 infections.

But our segmentation model correctly discovers the whole

lesion areas on all levels of COVID-19 infections.

To further study its stability, we perform a statistical analysis

of our segmentation model on our segmentation test set.

Fig. 11 (a) shows the correlation between the Dice score of

our model and the opacification areas of CT images. Note that

the CT images with the opacification area ≥ 8000mm2 are not

plotted in Fig. 11 (a) since they only occupy 1.0% of all CT

images in terms of quantity. We observe that 95.9% of CT

Fig. 11. Statistical analysis for our segmentation model on our segmentation
test set. (a) The relationship between the opacification area of each CT image
and the corresponding Dice score. (b) The relationship between the lesion
count and the corresponding probability distribution of the Dice score.

images have the Dice scores in [0.6, 1], while the other 3.3%

of CT images are with Dice scores between [0.1, 0.6) and

recognized as bad cases. Only 0.8% of CT images suffer from

Dice scores of less than 0.1, and they are taken as failure cases.

We also explore the relationship between the lesion count of

each slice and the Dice score from a different perspective.

As shown in Fig. 11 (b), the probability distribution of the

Dice score is little affected by the number of lesion counts

in a CT image. The medium dice score is above 0.8 for

4 different cases of lesion counts, and the 95.0% confidence

interval lies in [0.5, 1]. We also observe that the lesion count of

failure cases is ≤ 2. The consistently promising performance

on segmenting lesion areas and the low probability (0.8%) of

failure confirm the stability of our segmentation model.

Diagnosis of time. The speed test of the JCS system is on

a single RTX 2080Ti. Assuming each suspected case has

300 CT images, the classification model in JCS only costs
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about 1.0 second to ensure whether infected. If infected, The

segmentation model will spend 21.0 seconds on fine-grained

lesion segmentation. Hence, the JCS system costs 22.0 seconds

for each infected case or 1.0 second for each uninfected

case. Note that the complete RT-PCR test and radiologist CT

diagnosis cost about 4 hours and 21.5 minutes, respectively,

no matter the cases are infected or not.

VI. CONCLUSION

To facilitate the training of strong CNN models for

COVID-19 diagnosis, in this paper, we systematically con-

structed a large scale COVID-19 Classification and Seg-

mentation (COVID-CS) dataset. We also developed a Joint

Classification and Segmentation (JCS) system for COVID-19

diagnosis. In our system, the classification model identified

whether the suspected patient is COVID-19 positive or not,

along with convincing visual explanations. It obtained a 95.0%

sensitivity and 93.0% specificity on the classification test set of

our COVID-CS dataset. To provide complementary pixel-level

prediction, we implemented a segmentation model to discover

fine-grained lesion areas in the CT images of COVID-19

patients. Comparing to the competing methods, e.g., Pool-

Net [74], our segmentation model achieved an improvement

of 8.8% on the Dice metric. Our JCS system is also very

stable. On our segmentation test set, it failed only on 0.8%

images and obtained Dice scores between [0.6, 1] for 95.9%

of images. The online demo of our JCS diagnosis system for

COVID-19 will be available soon.
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