
JDeodorant: Identification and Removal of Type-Checking Bad Smells

Nikolaos Tsantalis*, Theodoros Chaikalis, Alexander Chatzigeorgiou
Department of Applied Informatics, University of Macedonia

54006 Thessaloniki, Greece
{nikos, chaikalis}@java.uom.gr , achat@uom.gr

Abstract

In this demonstration, we present an Eclipse plug-in
that automatically identifies Type-Checking bad smells
in Java source code, and resolves them by applying the
“Replace Conditional with Polymorphism” or
“Replace Type Code with State/Strategy” refactorings.
To the best of our knowledge there is a lack of tools
that identify Type-Checking bad smells. Moreover,
none of the state-of-the-art IDEs support the
refactorings that resolve such kind of bad smells.

Index Terms: Software maintenance, Object oriented
programming, Software quality

1. Introduction

The use of an Object-Oriented programming
language does not always guarantee the employment of
object-oriented design principles. According to
Demeyer et al. [2], the most common problem is that
programmers who have not fully understood the
object-oriented paradigm use conditional statements to
simulate dynamic dispatch and late binding, instead of
taking advantage of polymorphism. Problems like this
may also arise when a system has been repeatedly
modified to satisfy constant requirement changes.

Generally, type-checking code is introduced in
order to select a variation of an algorithm that should
be executed, depending on the value of an attribute.
Mainly it manifests itself as complicated conditional
statements that make the code difficult to understand
and maintain. In order to solve this problem several
methodologies have been proposed [2, 4], that
eliminate type-checking conditional statements by
applying refactorings that introduce inheritance and
polymorphism. While several mechanics have been
suggested as solutions to this problem, the
identification of the problem itself is a subject that has
not been completely covered and would benefit from
further research.

2. Methodology

Our methodology consists of two parts. The first
deals with the identification of type-checking bad
smells. The second concerns their elimination by
applying appropriate refactorings.

2.1 Identification of Type-Checking bad smells

Concerning the type-checking bad smells, two cases
can be distinguished. In the first case, there is an
attribute in a class that represents state (type field).
Depending on its value, the corresponding branch of a
conditional statement is executed. If the conditional
code fragment is a switch statement, the type field (or
an invocation of its getter method) should appear in the
switch expression, while the static attributes
representing the different values that the type field may
obtain should appear in all case expressions (Table 1a).
If the conditional code fragment is an if/else if
structure, the static attributes should be compared for
equality with the type field (or an invocation of its
getter method) in all conditional expressions (Table
1b). It should be noted that a switch/if statement should
contain more than one case to be considered as a valid
type-checking candidate since a single case is usually
not regarded as a sign of possible future changes.

Table 1: Type-checking examples where an attribute

represents state
a: switch statement b: if/else if statement

class Context {
 private int type;
 public void m() {
 switch(type) {
 case VALUE_0:
 //code for case 0
 case VALUE_1:
 //code for case 1
 case …
 }
 }
}

class Context {
 private int type;
 public void m() {
 if(type == VALUE_0) {
 //code for case 0
 }
 else if(type == VALUE_1) {
 //code for case 1
 }
 else if(type ==…) {…}
 }
}

978-1-4244-2157-2/08/$25.00 © 2008 IEEE 329

Table 2: Type-checking examples performing RTTI

a: instanceof b: getClass c: The subclass type is polymorphically obtained
class Client {
 public void m(SuperType type) {
 if(type instanceof Subclass0) {
 Subclass0 s = (Subclass0)type;
 //code for case 0
 } else
 if(type instanceof Subclass1) {
 Subclass1 s = (Subclass1)type;
 //code for case 1
 }
 }
}

class Client {
 public void m(SuperType type) {
 if(type.getClass() == Subclass0.class) {
 Subclass0 s = (Subclass0)type;
 //code for case 0
 } else
 if(type.getClass() == Subclass1.class) {
 Subclass1 s = (Subclass1)type;
 //code for case 1
 }
 }

}

class Client {
 public void m(SuperType type) {
 if(type.getType() == STATIC_VALUE_0) {
 Subclass0 sub = (Subclass0)type;
 //code for case 0
 }
 else if(type.getType() == STATIC_VALUE_1) {
 Subclass1 sub = (Subclass1)type;
 //code for case 1
 }
 }

}

In the second case, there is a conditional statement

that employs RunTime Type Identification (RTTI) in
order to cast a reference from a base (superclass) type
to the actual derived (subclass) type and invoke
methods of the specific subclass. In this case the
inheritance hierarchy corresponding to these class
types already exists, but it is not exploited by using
polymorphism. RunTime Type Identification usually
appears as an if/else if statement where each
conditional expression examines whether a base type
reference actually points to a subclass type, using the
instanceof keyword (Table 2a), or the getClass method
(Table 2b), or by invoking an abstract method of the
superclass (implemented by all its subclasses) that
polymorphically returns the value of the static attribute
corresponding to each subclass (Table 2c).

2.2 Application of “Replace Type Code with
State/Strategy” refactoring

In the case where an attribute represents state (type

field) whose value determines the corresponding
branch of a conditional statement to be executed, there
is an opportunity for applying the “Replace Type Code
with State/Strategy” refactoring. Particularly, the class
containing the type field will play the Context role in
the State/Strategy pattern [3]. The conditional branches
of the type-checking code will be moved as separate
methods to the subclasses of a newly created
State/Strategy inheritance hierarchy.

Concerning the construction of the State/Strategy
inheritance hierarchy, an abstract class should be
created that will play the role of the State/Strategy. The
name of the abstract class will be the name of the type
field. An abstract method having the same name and
return type with the method containing the type-
checking code fragment should be added to the abstract
class. The number of the concrete State/Strategy
subclasses that should be created is equal to the
number of the conditional branches inside the type-
checking code. The names of the concrete subclasses

will be the names of the static attributes corresponding
to each conditional expression. The concrete subclasses
should implement the abstract method of the
State/Strategy superclass by copying the code of the
corresponding conditional branch inside the body of
the overridden method.

If at least one of the copied code fragments accesses
fields or methods of the class that it originally
belonged to (Context class), then a parameter of
Context type should be added to the signature of the
abstract method (and therefore to the signature of all
concrete methods implementing it), in order to enable
the access of these fields/methods. Furthermore, the
accessed/assigned private fields should be replaced
with invocations of their getter/setter methods and the
visibility modifier of the accessed private methods
should be changed to public. Finally, if parameters or
local variables of the method containing the type-
checking code fragment are being accessed by the
copied code fragments, they should be added as
parameters to the signature of the abstract method.

Regarding the class that will play the Context role
the main concern is the preservation of its public
interface along with its original functionality, since
client classes may be associated with it in the original
system. The type field should become a reference to
the State/Strategy abstract class. The type-checking
code fragment should be replaced with an invocation
of the State/Strategy abstract method through the type
field reference. The setter method of the type field
should be updated in order to set the value of the type
field with the appropriate instance of the State/Strategy
subclass that corresponds to the passed argument. All
the assignments of the type field in the Context class
should be replaced with an invocation of the updated
setter method. Concerning the getter method of the
type field, an abstract method having the same
signature with it should be added in the State/Strategy
superclass. The subclasses implementing it should
return the corresponding static attribute that represents
their state value. The original getter method should

330

delegate to the abstract method of the State/Strategy
class through the type field reference. All the accesses
of the type field in the Context class should be replaced
with an invocation of the updated getter method.

2.3 Application of “Replace Conditional with
Polymorphism” refactoring

In the case where the type-checking code employs
RTTI, there is an opportunity for applying the
“Replace Conditional with Polymorphism” refactoring.
In this case the inheritance hierarchy on which
polymorphism can be applied already exists. An
abstract method having the same signature with the
method containing the type-checking code fragment
should be added to the top level class of the inheritance
hierarchy. Each conditional branch should be moved as
a separate method to the subclass that it is related to.
The appropriate subclass is identified by the statement
that casts the superclass type reference to the actual
subclass type (casting statement) inside the
corresponding branch. After the move of each
conditional branch the casting statement is no longer
necessary, since subclass methods can now be invoked
directly, and thus should be removed. The type-
checking code fragment should be replaced with an
invocation of the abstract method of the top level class
through the superclass type reference.

3. Tool Overview

The tool uses the ASTParser API of Eclipse Java
Development Tools to identify switch/if statements
that exhibit type-checking bad smells, and the
ASTRewrite API to apply the appropriate refactorings
on source code. The tool can be obtained from [1].

The user selects the “Type Checking” action from
the “Bad Smells” menu item to open the corresponding
view. In order to identify the bad smells, the user
selects a project from Package Explorer and clicks the
“Identify Bad Smells” button. The “Type Checking”
view presents in table format the methods that perform
type-checking and the refactorings that should be
applied. By double-clicking a row in the table, the code
that contains the corresponding conditional statement
is automatically highlighted. A sample screenshot
highlighting an identified type-checking code fragment
is shown in Figure 1.

In order to apply the refactoring, the user should
select the row of interest and then click the "Apply
Refactoring" button. All the modified or newly created
classes will automatically open in the editor. The user
has the option to undo the refactoring by clicking the
“Undo Refactoring” button.

Figure 1: JDeodorant screenshot

4. Evaluation

The proposed tool has been evaluated on three

teaching examples found in the textbooks by Demeyer
et al. [2] and Fowler et al. [4]. The tool correctly
identified the type-checking bad smells suggested by
the authors of each example and also applied the
refactorings in the same way they have been applied in
the corresponding textbooks. A further challenge is to
perform a systematic evaluation on large-scale systems
in order to assess the precision and recall of the tool.

5. References
[1] Bad Smell Identification for Software Refactoring,

http://www.jdeodorant.org, 2007

[2] S. Demeyer, S. Ducasse, O. Nierstrasz. Object Oriented
Reengineering Patterns, Morgan Kaufman, 2002.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, Boston, MA, 1995.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,
Refactoring: Improving the Design of Existing Code,
Addison Wesley, Boston, MA, 1999.

331

