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Abstract

Motivation: A complex disease is usually driven by a number of genes interwoven into networks,

rather than a single gene product. Network comparison or differential network analysis has be-

come an important means of revealing the underlying mechanism of pathogenesis and identifying

clinical biomarkers for disease classification. Most studies, however, are limited to network correl-

ations that mainly capture the linear relationship among genes, or rely on the assumption of a

parametric probability distribution of gene measurements. They are restrictive in real application.

Results: We propose a new Joint density based non-parametric Differential Interaction Network

Analysis and Classification (JDINAC) method to identify differential interaction patterns of network

activation between two groups. At the same time, JDINAC uses the network biomarkers to build a

classification model. The novelty of JDINAC lies in its potential to capture non-linear relations be-

tween molecular interactions using high-dimensional sparse data as well as to adjust confounding

factors, without the need of the assumption of a parametric probability distribution of gene meas-

urements. Simulation studies demonstrate that JDINAC provides more accurate differential net-

work estimation and lower classification error than that achieved by other state-of-the-art methods.

We apply JDINAC to a Breast Invasive Carcinoma dataset, which includes 114 patients who have

both tumor and matched normal samples. The hub genes and differential interaction patterns iden-

tified were consistent with existing experimental studies. Furthermore, JDINAC discriminated the

tumor and normal sample with high accuracy by virtue of the identified biomarkers. JDINAC pro-

vides a general framework for feature selection and classification using high-dimensional sparse

omics data.

Availability and implementation: R scripts available at https://github.com/jijiadong/JDINAC

Contact: lxie@iscb.org

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

It is well known that a complex biological process, such as the devel-

opment and progression of cancer, is seldom attributed to a single

molecule. Numerous cellular constituents, such as proteins, DNA,

RNA and small molecules do not function in isolation, but rather

interact with one another to fulfill particular biological functional-

ity. In the view of network biology (Yoshimura et al., 1998; Zhou

et al., 2011), a cellular function is a contextual attribute of quantifi-

able patterns of interactions between myriad of cellular constituents.

Such interactions are not static processes, instead they are dynamic

in response to changing genetic, epigenetic and environmental fac-

tors (Bandyopadhyay et al., 2010; Califano, 2011). The molecular

interactions can be effectively abstracted as a network. In the biolo-

gical networks, the nodes represent biomolecules (e.g. genes), and

the edges represent functional, causal, or physical interactions be-

tween the nodes. Differential network analysis aims to identify the

difference between the networks under two conditions. Each of the

edges in the differential network indicates a change in the connec-

tion between two nodes across the two conditions. Thus, differential

network analysis becomes an important tool to understand the roles

of different modules in complex biological processes, and draws tre-

mendous attention. Typically, differential genetic interactions are a

reflection of which cellular processes are differentially important

under the studied condition (de la Fuente A, 2010; Ideker and

Krogan, 2012).

In the past decade, many methods have been proposed to detect

the differential network connection patterns between two condition-

specific groups (e.g. patients and health controls). Gambardella

et al. (2013) introduced DINA procedure to identify whether a

known pathway is differentially co-regulated between different con-

ditions. Yates and Mukhopadhyay (2013) provided a dissimilarity

measure that incorporates nearby neighborhood information for

biological network hypothesis tests. Recently, Ruan et al. (2015) de-

veloped the dGHD algorithm for detecting differential interaction

patterns in two-network comparisons. All of the aforementioned

methods endeavor to identify whether the global network topology

changed significantly between two groups. However, it will be of

benefit to reveal critical pairwise molecular or genetic interactions

that are responsible for the different physiological or pathological

states of an organism in many applications. The identification of

such interactions may help us to illuminate the underlying genetic

mechanisms of complex diseases (e.g. cancer), to predict drug off-

target effects (Evangelidis and Xie, 2014), to develop multi-target

anti-cancer therapy (Xie and Bourne, 2015), and to discover clinical

biomarkers for disease classification.

To this end, the primary focus in this article is to identify pair-

wise differential interactions among genes that are most closely

related to a certain disease status. Most of such studies first require

to divide the data into two separate groups according to the factor

of interest. Besides, a specific correlations matrix is often involved to

represent the strength of pairwise interaction between nodes in the

network. The existing methods mainly fall into two categories. The

first category is to compare topological characteristics, such as de-

gree, clustering coefficient of vertices within the network, of the con-

structed sparse network on grouping specific data (Reverter et al.,

2006; Zhang et al., 2009). The main challenge of this approach lies

in how to select appropriate threshold for constructing sparse net-

work, although there have been miscellaneous methods proposed to

address this challenge (Carter et al., 2004; Elo et al., 2007). To the

best of our knowledge, no commonly feasible approach has been

available yet. Approaches in the second category normally handle

weighted group-specific network to further construct the differential

network. In one manner such approach can only concentrate on

edge-level to construct edge-difference based differential network

(Hudson et al., 2009; Liu et al., 2010; Tesson et al., 2010). On the

other hand, it could focus more on finding gene sets and identify

correlation pattern’s difference between groups. For example, the

CoXpress (Watson, 2006) first performs hierarchical clustering with

correlation matrix obtained from normal samples (or disease sam-

ple), then applies statistical test to determine whether the average

correlation within one cluster is higher (or lower) than expected by

chance and thus finally identifies the differentially co-expressed gene

groups. Similarly, DiffCorr (Fukushima, 2013) identifies the first

principal component based ‘eigen-molecules’ in the correlation

matrices constructed from the grouped dataset, then performs Fisher

z-test between the two groups to discover differential correlation. In

addition, Zhao et al. (2014) proposed a direct estimation method

(DEDN), which models each condition-specific network using the

precision matrix under Gaussian assumption. However, most of the

methods mentioned earlier are based on marginal or partial correl-

ation. It can only capture the linear relationship among genes, which

could be restrictive in real applications. It is often the case that non-

linear relationships exist between genes. Another critical but inad-

equately addressed issue is how to adjust the confounding factors in

the differential network analysis. For instance, the condition-specific

label is the length of the survival time of cancer patients, one group

are patients with longer survival time and the other group are those

with short survival time. Then the age of the patients is a potential

confounding factor which needs to be adjusted. If the patients’ ages

are different between two groups, it’s hard to know whether the

identified differential network is associated with the survival time or

the age. Furthermore, how to use the identified network biomarkers

to achieve classification still poses great challenge in discriminant

analysis especially in high-dimensional settings (He et al, 2016).

To address the challenges in differential network analysis and

classification mentioned above using high-dimensional sparse omics

data, we propose a Joint density based non-parametric Differential

Interaction Network Analysis and Classification (JDINAC) method

to identify differential patterns of network activation between

condition-specific groups (e.g. patients and health controls). The

contribution of our work lies in that we can not only deal with the

non-linear relationship between the genes but also adjust the con-

founding factors in the differential network analysis. Furthermore,

JDINAC is free of the assumption of a parametric probability distri-

bution of gene measurements. We compare the ability of identifying

differential network of our methods with DiffCorr (Fukushima,

2013), DEDN (Zhao et al., 2014) and Lasso based method. By inte-

grating the logistic regression into our method, our method is cap-

able of accurate classification using high-dimensional sparse data.

We also compared the classification performance of our method

with Random Forest (RF) (Breiman, 2001), Naive Bayes (NB) and

Lasso based methods in both simulation studies and real data

example.

2 Materials and methods

Network differential analysis and classification using high-

dimensional sparse omics data face several challenges. First, the

number of data points n is often much smaller than the number of

features p, e.g. p � n problem. Second, the relationship between

two biological variables is often non-linear. Third, confounding fac-

tors often need to be adjusted in the differential network analysis
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and classification. Finally, the underlying distribution of biological

variable may not follow Gaussian or other probability distribution

on which many algorithms are based. JDINAC is proposed to ad-

dress these problems.

JDINAC assumes that the network-level difference between two

biological states comes from the collective effect of differential pair-

wise gene–gene interactions that can be characterized by conditional

joint density of two genes. Formally, assume that we have observed

gene-level activities (such as mRNA, methylation or copy number) for

p genes measured over individuals. For individual l (l ¼ 1, 2, � � �, n),

the binary response variable is denoted as Yl ¼
0 l 2 class 0

1 l 2 class 1

(
and

the expression level of ith gene is denoted as xli. Let Y¼
ðY1;Y2; ... ;YnÞT and X¼ðX1;X2; ...;XnÞT , Xl¼ðxl1;xl2; ... ;xlpÞT ,

(l ¼ 1, 2,���,n). X is a n�p matrix, p is the total number of genes, and

Xl denotes the gene features for individual l. Let P denotes the prob-

ability Pr(Y ¼ 1), i.e. P ¼ Pr(Y ¼ 1), and Gi is the ith gene. The

JDINAC approach based on the logistic regression model can be con-

structed as,

logitðPÞ¼a0þ
XK

k¼1
akZk

þ
Xp

i¼1

Xp

j>1
bijln

fijðGi;GjÞ
gijðGi;GjÞ

;
Xp

i¼1

Xp

j>1
jbijj � c; c>0;

where Zk (k¼1; . . . ;K) denote the covariates (e.g. age and gender). fij

and gij denote the class conditional joint density of Gi and Gj for

class 1 and class 0, respectively, i.e., ððGi;GjÞjY¼1Þ� fij and

ððGi;GjÞjY¼0Þ�gij. The conditional joint densities fijðGi;GjÞ can

indicate the strength of association between Gi and Gj in class 1.

Since the number of pairs ðGi;GjÞ can be larger than the sample size,

the L1 penalty (Tibshirani, 1996) was adopted in this high-

dimensional setting. Note that the above formulation can be viewed

as an extension of the FANS approach (Fan et al., 2016). Parameters

bij 6¼0 indicate differential dependency patterns between condition-

specific groups.

L1 regularized estimate for b:

bb¼ argmin
k

nXn

l¼1
ðð1� YlÞðaTZl þ bTClÞ

þ lnð1þ exp ð�aTZl2bTClÞÞÞ þ kkbk1

o
where a ¼ ða0; a1; . . . ; aKÞT , Zl ¼ ð1;Z1; . . . ;ZKÞT , b ¼ vecðbijÞj>i,

Cl ¼ vec ln
fijðxli ;xljÞ
gijðxli ;xljÞ

� �
j>i

. kk1 denotes L1 norm and the oper-

ator vecðAÞj>i stacks the columns of the upper triangular position of

matrix A excluding the diagonal elements to a vector (e.g. A

¼ ðaijÞ4�4 is a matrix with four rows and four columns, vecðaijÞj>i ¼
ða12; a13; a23; a14; a24; a34ÞT ).

The advantages of the JDINAC approach over existing methods

lie in the following aspects: (i) it can achieve differential network

analysis and classification simultaneously; (ii) it can adjust con-

founding factors in the differential network analysis, for example, if

the samples are from cancer patients with different length of survival

time, then the age of the patient is a potential confounding factor

which needs to be adjusted. (iii) it is a non-parametric approach and

can identify the non-linear relationship among variables. Besides, it

does not require any conditions on the distribution of the data,

which makes it more robust.

JDINAC can be implemented as follows with its workflow

shown in Figure 1.

Step 1. Given the data of n observations D ¼ fðYl;XlÞ;
l ¼ 1; . . . ; ng. Randomly split the data into two parts: D ¼ ðD1;D2Þ.

Step 2. On part D1, estimate the joint kernel density functions bf ij

and bgij, i; j ¼ 1; . . . ; p, j > i.

Step 3. On part D2, fit an L1 penalized logistic regression

logitðPÞ¼a0þ
PK

k¼1 akZkþ
Pp

i¼1

Pp
j>1 bijlnðbf ijðGi;GjÞ=bgijðGi;GjÞÞ,

using cross validation to get the best penalty parameter.

Step 4. Repeat Steps 1– 3 T times, on tth repetition obtain pre-

dicted probability bPt and coefficient bbij;t, t ¼ 1; 2; . . . ;T.

Step 5. Calculate the average prediction bP ¼ T�1
PT

t¼1
bPt as the

final prediction for classification. Calculate the differential depend-

ency weight of each pair ðGi;GjÞ between two groups,

wij ¼
PT

t¼1 Iðbbij;t 6¼ 0Þ, i; j ¼ 1; . . . ; p, j > i; where Ið Þ is the indicator

function. A differential network is inferred by connecting the pairs

with high differential dependency weights through their shared genes.

2.1 Simulation studies
Four simulation scenarios were designed for assessing the perform-

ances of differential network analysis and classification accuracy. In

scenarios 1 and 2, the difference of association strength between

pairs of genes in a network is caused by the different correlation

(Fig. 2a and b). In scenario 3, the differential pairs have the same

correlation structure between condition-specific groups but different

Fig. 1. Workflow of JDINAC

Fig. 2. The scenarios of simulation studies. The blue square and red triangle

represents the scatter plots for the two variables in class 0 and class 1 re-

spectively, (a) scenario 1, the two variables is negatively correlated in class 0

and positively correlated in class 1, (b) scenario 2, the two variables are corre-

lated in one group and are independent in the other, (c) scenario 3, the two

variables are equally correlated but with different density in the two groups,

(d) scenario 4, the two variables are independent in one group and have non-

linear relationship in the other group
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joint density (Fig. 2c). In scenario 4, the differential strength of asso-

ciation between pairs of genes in a network is caused by the non-lin-

ear dependence (Fig. 2d). The differential networks of four

simulation scenarios are shown in the Supplementary Figures S1–S4.

For scenarios 1–3, we generated 100 pairs of datasets, each repre-

senting the case (class 1) and the control (class 0) conditions. Each

dataset contains 300 observations with p variables drawn from the

multivariate normal distribution with mean 0 and covariance matrix

R, that is, X � Npð0;RÞ. R consists of 3 blocks along the diagonal,

R ¼ diagðR1;R2;R3Þ, R1 ¼ ðrijÞm�m, for i; j ¼ 1; . . . ;m; m ¼ 80;

R2 ¼ R3 ¼ ðr�ijÞ10�10.

Scenario 1: In class 0, p ¼ 100, q ¼ 0:5, r�ii ¼ 1 for i ¼ 1; . . . ;10,

r�ij ¼ ð�1Þji�jj � 0:5 for i 6¼ j; in class 1, p ¼ 100,

q ¼ 0:5, r�ii ¼ 1 for i ¼ 1; . . . ;10, r�ij ¼ 0:5 for i 6¼ j.

Scenario 2: In class 0, p ¼ 100, q ¼ 0:5, r�ii ¼ 1 for i ¼ 1; . . . ;10, r�ij
¼ 0 for i 6¼ j; in class 1, p ¼ 100, q ¼ 0:5, r�ii ¼ 1 for

i ¼ 1; . . . ;10, r�ij ¼ 0:7 for i 6¼ j.

Scenario 3: In class 0, p ¼ 100, q ¼ 0:5, r�ii ¼ 1 for i ¼ 1; . . . ;10, r�ij
¼ 0:6 for i 6¼ j; in class 1, p ¼ 100, q ¼ 0:5, r�ii ¼ 5 for

i ¼ 1; . . . ;10, r�ij ¼ 3 for i 6¼ j.

Scenario 4: In class 0, generate data Xð0Þ ¼ ðXð0Þ1 ; . . . ;X
ð0Þ
p Þ, where

X
ð0Þ
j ¼u2

j þvj , j¼1;... ;p=2, uj�Unif ð�2;2Þ and vj�
Nð�4=3;1=4Þ; X

ð0Þ
j ¼uj, j¼p=2þ1; ...;p, p¼100. In

class 1, generate data Xð1Þ ¼ ðXð1Þ1 ; ... ;X
ð1Þ
p Þ, where

X
ð1Þ
j ¼u2

jþp=2þvj, j¼1; ... ;p=2, uj�Unif ð�2;2Þ and

vj�Nð�4=3;1=4Þ; X
ð1Þ
j ¼uj, j¼p=2þ1; ... ;p, p¼100.

We compared JDINAC with several existing state-of-the-art

methods under the aforementioned four scenarios in differential net-

work analysis and classification. Additional simulation studies are

detailed in Supplementary Methods.

2.2 Differential network analysis
We compare the performance of JDINAC in terms of differential

network estimation with DiffCorr (Fukushima, 2013), DEDN

(Zhao et al., 2014) and cross-product penalized logistic regression

(cPLR). The cPLR is defined as

logitðPÞ ¼ b0 þ
Xp

i¼1

Xp

j>1
bijGiGj:

The L1 penalty function was used to optimize the parameters, which

is the same for JDINAC. Parameters bij 6¼ 0 indicate differential de-

pendency patterns between two groups.

True discovery rate (TDR; Precision), true positive rate (TPR;

Recall) and true negative rate (TNR) are used to evaluate the perform-

ance of different methods. TDR, TPR, and TNR are defined as follows,

TDR¼ TPP
i 6¼jIðbd ij 6¼0Þ

;TPR¼ TPP
i6¼jIðdij 6¼0Þ ;TNR¼ TNP

i 6¼jIðdij¼0Þ ;

where TP and TN are the numbers of true positives and true negatives

respectively, which are defined as TP¼
P

i 6¼jIðdij
bd ij 6¼0Þ, TN¼

P
i 6¼jfIð

dij¼0ÞIðbd ij¼0Þg respectively. ðdijÞp�p is the differential adjacency ma-

trix, dij 6¼0 indicate the pair ðGi;GjÞ are differential dependency between

two groups; ðbd ijÞp�p is the estimated differential adjacency matrix.

2.3 Classification and evaluation
We compare the classification performance of JDINAC with RF,

NB, cPLR and original penalized logistic regression (oPLR). The

oPLR is defined as

logitðPÞ ¼ b0 þ b1G1 þ � � � þ bpGp:

Similarly, the L1 penalty function was used to optimize the param-

eters for high-dimensional data. Both cPLR and oPLR are Lasso

based methods.

Receiver operating characteristic (ROC) curve and classification

error are used to assess the accuracy of four methods.

2.4 Evaluation of computational complexity
We carried out additional simulations to estimate the computing

time under various numbers of genes with sample size 100 for each

group, using a single core node with 2.00 GHz Intel(R) Xeon(R)

CPU E5-2430L.

2.5 Application
Breast Invasive Carcinoma (BRCA) is the most common type of

breast cancer. This subtype of breast cancer is able to spread to

other parts of the body through the lymphatic system and blood-

stream, which makes BRCA potentially a highly lethal killer. Most

of the genome-wide studies for BRCA focus on identifying differen-

tially expressed genes. However, BRCA is largely determined by a

number of genes that interact in a complex network, rather than a

single gene perturbed (gene mutation, expression and methylation

etc.). A key but inadequately addressed issue is how to identify the

underlying molecular interaction mechanisms. The TCGA BRCA

study include 1098 patients, along with their matched mRNA, copy

number, methylation and microRNA data. The RNASeq Version 2

expression data and clinical data were downloaded from TCGA

through TCGA-Assembler (Zhu et al., 2014). In this study, we select

114 patients who have both tumor and matched normal samples as

our training subjects. The proposed method was applied to identify

differential patterns of network activation between the tumor group

and the control group. We focus on the 397 genes listed in the can-

cer pathway (hsa05200) of KEGG as our candidate gene sets. After

filtering those genes which include >30% of zero gene expression

values in the training data, we have 373 genes as our final candidate

genes. To evaluate the performances of classification, we randomly

choose 50 of 114 individuals in each group as our test data set.

More detailed data description and processing are provided in

Supplementary Methods.

3 Results

3.1 Simulation
We calculate the TDR, TPR and TNR of identifying the differential

network that corresponds to a given threshold by varying thresholds

from 1 to 20 (number of random split was set to be 20 in the Step

4). We average those measures over 100 datasets in each of the four

scenarios.

Table 1 presents the TPR, TNR and TDR of the JDINAC,

DiffCorr, DEDN and cPLR under different scenarios. It shows that

JDINAC significantly outperforms all the other three methods.

Although DiffCorr was set to control the false discovery rate (FDR)

< 0.1, the FDR tended to be significantly inflated. In particular,

JDINAC performs quite well in scenario 4. The TDR, TPR and

TNR of JDINAC are close to 1, but the TDR and TPR of the other

three methods are close to 0. It indicates that JDINAC can indeed

capture the perturbation of non-linear dependence in the network.

By using repeated procedure, JDINAC allows us to assign a

weight to each selected pair of genes, which is the frequency as a

pair of genes is selected. Thus we can use the precision-recall curve

(PRC) to evaluate the performance of JDINAC under various weight

cutoff, and to obtain the differential network by controlling the
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trade-off of precision and recall. Figure 3 illustrates the PRC of

JDINAC under different scenarios. The JDINAC has high PRC in all

scenarios. The PRC is not included for DiffCorr, DEDN and cPLR,

because they cannot report the same weights as JDINAC.

The average ROC curves over 100 replications for the classifica-

tion using five methods under different scenarios (Fig. 4) show that

JDINAC performs the best among the five methods. The fractions of

votes were used as the continuous predictions for RF models. After

getting the continuous prediction, we used 0.5 as the cutoff of pre-

diction to obtain the classification errors (Table 2). JDINAC is

much more accurate than other methods.

To further evaluate the performance of JDINAC, we have simu-

lated other non-linear relationship pattern. The two variables are in-

dependent in one group and have exponential relationship in the

other group (see Supplementary Fig. S5). Supplementary Figure S6

illustrates the ROC curves in this non-linear scenario. JDINAC still

performs the best among the five methods.

We also evaluate how the variance of data distribution affects

the performance of JDINAC. As shown in Supplementary Figure S7,

the ROC of all five methods goes down when the variance increases.

Again, the proposed method JDINAC still has more robust perform-

ance than the other four.

Furthermore, we conducted the simulation study for the case

with multidimensional outliers. Five percent variables in one group

are randomly chosen to be missed. Then for each missing variable

5% samples are randomly chosen to be missed (see Supplementary

Methods S2). The results of classification are shown in

Supplementary Figure S8. It indicates that the proposed JDINAC

has the best performance. Supplementary Table S1 presents the

TPR, TNR and TDR of the JDINAC, DiffCorr, DEDN and cPLR. It

shows that JDINAC has the highest TDR and TPR, and acceptable

TPR. The results indicate that JDINAC indeed performs well in the

case with multidimensional outliers.

As we have balanced number of cases and controls in this study,

we used 0.5 as the cutoff of prediction to assign two classes in the

classification. However, the optimal cutoff value may depend on

ratio of case/control in the training data and application. We con-

ducted another simulation study in imbalanced case/control setting

(see Supplementary Fig. S9 and Table S2). The sample size was de-

signed to be 100 for class 0 and 500 for class 1, another scenario is

200 for class 0 and 400 for class 1. The maximum value of Youden

index (also called Youden’s J statistic, J ¼ Sensitivity þ Specificity

�1) was used as a criterion for selecting the optimum cutoff value.

Supplementary Table S2 shows the optimal cutoff point for all meth-

ods, as expected, 0.5 is not the optimal cutoff point. Different crite-

ria can lead to different optimal cut off in real world scenario,

Youden index puts equal weights to the sensitivity and specificity. In

some special diagnostic tests, sensitivity is more important than

Table 1. The TPR, TNR and TDR of different methods

Scenario JDINACa DiffCorrb DEDN cPLR

TDR TPR TNR TDR TPR TNR TDR TPR TNR TDR TPR TNR

1 93.7 81.6 99.9 81.3 100 99.8 33.5 96.7 99 19.8 64.9 97.3

2 95.6 74.5 99.9 85 100 99.7 16.5 89.1 94.3 25.6 49.8 97.1

3 88.3 69.5 99.3 7.5 0.2 99.8 2.1 10.1 81.6 53.6 23.6 98.1

4 99.9 99.8 100 3.8 0.4 99.9 5.0 0.2 100 0.7 0.3 99.8

Average of 100 replications, %, the best performance is highlighted in bold.
aPair ðGi;GjÞ was taken as differential edge in the network for JDINAC, when the differential dependency weight wij 	 4.
bSet to control the FDR ¼ 0.1.

Fig. 3. PRC for JDINAC for differential network analysis under scenario1 (a),

scenario 2 (b), scenario 3 (c), scenario 4 (d). The differential dependency

weights wij were used as the differential adjacency matrix, ðbd ij Þp�p ¼
Iðwij 	 tÞ, t ¼ 1; . . . ; 20

Fig. 4. ROC curves of 5 methods for the classification under scenario 1 (a),

scenario 2 (b), scenario 3 (c) and scenario 4 (d). The asterisk indicates the lo-

cation where the cutoff of prediction was set to 0.5
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specificity, or vice versa. Larger weight should be given to sensitivity

or specificity.

Table 3 presents the measured computing time in a single core

machine. The time complexity of JDINAC is sub-linear. It is slower

than DiffCorr but much faster than DEDN for the differential net-

work analysis. The bottleneck of JDINAC mainly comes from the

estimation of the pairwise kernel density and the resampling proced-

ure. As these computations can be easily divided into independent

processes, parallel computation with multiple cores and nodes can

be employed when the datasets become relatively large.

3.2 Application
Figure 5 depicts the BRCA differential network estimated by

JDINAC, DiffCorr, DEDN and cPLR. Only genes connected with at

least one other gene were included in the figure. The top 10 differen-

tial dependency pairs identified by JDINAC ordered by weight are

shown in Table 4. Figure 6 presents the Venn diagram for the edges

in the differential networks identified by different methods

JDINAC, DiffCorr, cPLR, and DEDN. There are few overlaps of

predicted differential interactions (edges in the network) among

these methods. Thus, JDINAC may identify complementary infor-

mation to the existing methods. The overlapped edges between

JDINAC and DiffCorr, JDINAC and cPLR and DiffCorr and cPLR

are shown in Supplementary Table S3.

Although there are no common edges shared by all of these

methods, several common Gene Ontology (Ashburner et al., 2000)

terms and a KEGG pathway (Kanehisa and Goto, 2000) are en-

riched by JDINAC, DiffCorr, and cPLR, as identified by R package

‘clusterProfiler’ (Yu et al., 2012) when inspecting the differential

network as a whole (Supplementary Table S4). The common biolo-

gical process and pathway suggest that the change of hemidesmo-

some assembly and ECM-receptor interaction are important in the

etiology of invasive breast cancer. These predictions are supported

by the literatures (Bergstraesser et al., 1995; Oskarsson, 2013); both

of these processes are the hallmark of invasive breast cancer. It is

noted that DEDN does not have enriched terms in the pathway en-

richment analysis. Although common individual gene pairs could be

missed by different methods due to the multigenic nature of complex

diseases such as BRCA, and stochastic process of underlying algo-

rithms, our result suggests that a differential network view may pro-

vide more robust biological meaningful signals.

No gold standard is available for evaluating differential network

analysis in the real dataset since the true underlying dependence re-

lationships are unknown. We found there are experimental supports

for the top ranked pairs by JDINAC. For example, F2R (PAR1) is a

G-protein coupled receptor that binds and regulates G-protein. It

contributes to tumor progression and metastasis in breast cancer

(Shi et al., 2004). Meanwhile, GNG11 is a G-protein, plays a role in

the transmembrane signaling system. It implies that the molecular

role of F2R in the breast cancer progression and metastasis origins

from the altered F2R-GNG11 interaction. In other cases, dysregu-

lated pairs may not have direct physical interactions, but strong

functional associations. The matrix form of fibronectin (FN1) is

Table 2. Average classification errors (%)

Scenario JDINAC RF NB cPLR oPLR

1 12.3 (1.4) 49.7 (1.9) 40.4 (2.2) 14.5 (1.6) 50.1 (1.0)

2 6.5 (1.2) 29.6 (2.8) 39.5 (2.1) 23.4 (2.0) 49.9 (1.4)

3 7.0 (1.0) 6.6 (1.1) 8.3 (1.2) 26.1 (1.6) 49.8 (1.5)

4 0.1 (0.1) 3.4 (1.3) 40.7 (2.1) 50.0 (1.4) 50.1 (1.3)

Standard errors are in the parentheses. The best performance is highlighted

as bold.

Table 3. Average computing time (seconds) of different methods

with p genes

p JDINAC RF NB oPLR DiffCorr DEDN cPLR

40 30.1 2.1 1.3 0.1 0.002 29.7 0.7

60 65.7 4.7 2.9 0.2 0.003 297.6 1.1

80 114.2 8.2 5.2 0.6 0.003 2138.5 1.7

100 176.8 12.7 8.2 1.7 0.004 9519.5 2.5

RF, NB, cPLR are based on p� p features.

Fig. 5. The differential network of cancer pathway between BRCA tumor sam-

ples and controls. An edge presented in the differential network means the

dependency of corresponding pair genes is different between two condition-

specific groups. The red nodes stand for hub genes. (a) Differential network

estimated by JDINAC; The orange edges indicate the top 10 differential de-

pendency pairs. (b) Differential network estimated by DiffCorr; (c) Differential

network estimated by DEDN; (d) Differential network estimated by cPLR

Table 4. Top 10 differential dependency pairs identified by JDINAC

Gene 1 Gene 2 w1;2 Gene 1 Gene 2 w1;2

GNG11 F2R (PAR1) 18 LAMA3 ADCY4 12

FN1 FGF1 17 EGFR AR 10

LAMB3 FGF2 17 DAPK2 ARNT2 10

TPM3 RAC3 17 FGF2 ARNT2 10

FGF1 ADCY4 13 LAMC2 CBLC 10

Fig. 6. Summary of the number of edges in the differential networks for the

four methods
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believed to support cell adhesion, tumor growth, and inflammation.

Fibroblast growth factors (FGF1, FGF2) are important factors regu-

lating expression of FN1 and LAMB3 (Kashpur et al., 2013; Tang

et al., 2007). RAC3 is a GTPase which is related to the cell growth

and the activation of protein kinases. Rac GTPase activity and paxil-

lin phosphorylation are elevated in cells from the TPM3 tropomy-

osin gene deleted mice (Lees et al., 2013).

Supplementary Table S5 presents the hub genes and the corres-

ponding number of neighbor genes identified by JDINAC. The hub

genes are the ones that have at least three neighbor genes in the differ-

ential networks. FGF1 and TGFB3 have the largest number of neigh-

bor genes in the differential networks of BRCA data. FGF1 plays an

important role in a variety of biological processes involved in embry-

onic development, cell growth and differentiation, morphogenesis,

tumor growth and invasion (Zhou et al., 2011). The expression of

FGF1 is dysregulated in breast cancer and contributes to the prolifer-

ation of breast cancer cells (Yoshimura et al., 1998; Zhou et al.,

2011). Laverty et al. (Ghellal et al., 2000) reviewed numerous litera-

tures and reported TGFB3 is associated with the progression of breast

cancer. PDGFA is confirmed to be one of the progesterone target

genes on breast cancer cells (Soares et al., 2007). FOXO1 contributes

to multiple physiological and pathological processes including cancer,

and targeting of FOXO1 by microRNAs may promote the transform-

ation or maintenance of an oncogenic state in breast cancer cells (Fu

and Tindall, 2008; Guttilla and White, 2009). Moreover, FOXO1 is

regulated by AKT (Tzivion et al., 2011), and PDGFA is the upstream

gene of AKT. Indeed, we identified an edge between PDGFA and

FOXO1 (Fig. 5a). Wendt et al. (2015) demonstrated that EGFR is a

critical gene in primary breast cancer initiation, growth and dissemin-

ation. FZD7 plays a critical role in cell proliferation in triple negative

breast cancer (TNBC) via Wnt signaling pathway and was considered

to be a potential therapeutic target for TNBC (Yang et al., 2011). An

edge between FZD7 and CTBR2 was identified by JDINAC (Fig. 5a).

Actually, CTBP2 is a key gene in Wnt pathway. The identified differ-

ential network provides new insight into the underlying genetic mech-

anisms of BRCA, and testable hypothesis for further experimental

validations. The differential interaction patterns and hub genes may

serve as biomarkers for early diagnosis or drug targets.

It is quite difficult to quantify the non-linear relationship in real

world scenario. We randomly selected 10 genes from the BRCA

data, and described the pairwise scatterplot matrix (Supplementary

Fig. S10). Overall, there are clear non-linear relationships among

these genes. Thus it is necessary to develop methods that can capture

the non-linear relationship in the differential network analysis as

exampled by JDINAC.

Next, we study the classification performances of methods

JDINAC, RF, NB, cPLR and oPLR. The classification errors are

shown in Table 5. The classification accuracy of JDINAC is the

same with oPLR that uses single genes as features, but better than

RF, NB and cPLR, all of which use the pair of genes for the classifi-

cation. The low error rate of JDINAC implies that the identified dif-

ferential network could be biological meaningful to distinguish the

disease state with the normal one.

To further verify the predictive ability of JDINAC, we carried out

Y-randomization experiments. Firstly, 20% of the data as the hold-out

test set was randomly select, and the left 80% as training data.

Secondly, response variable Y with the training data was randomly per-

muted 1000 times; a JDINAC model was trained using each permutated

data set; and the performance of the trained model over the hold-out

data was measured. Finally, the statistical significance of performance

measure of JDINAC from the non-permutated data was determined

based on the distribution of performance measures from permutated

models. As shown in Supplementary Figure S11, JDINAC predictive

model performs significantly better than the randomized model, with

estimated P-values of 3.47 � 10�3, 2.89 � 10�3 and 5.31 � 10�3 for

AUROC (Area Under the ROC curve), AUPR (Area Under Precision-

Recall curve) and accuracy, respectively.

4 Discussion

A complex disease phenotype (e.g. cancer) is rarely a consequence of

an abnormality in a single gene, but reflects various pathobiological

processes that interact in a network (Barabasi et al., 2011). Network

comparison or differential network analysis has become an important

means of revealing the underlying mechanism of pathogenesis. The

identified differential interaction patterns between two group-specific

biological networks can be taken as candidate biomarkers, and have

extensive biomedical and clinical applications (Ji et al., 2015, 2016;

Laenen et al., 2013; Yang et al., 2013). Although numerous differen-

tial network analysis methods (Fukushima, 2013; Ha et al., 2015;

Watson, 2006; Yates and Mukhopadhyay, 2013; Zhao et al., 2014)

have been proposed, most of the methods rely on marginal or partial

correlation to measure the strength of connection between pairs of

nodes in a network. They usually cannot capture the non-linear rela-

tionship among genes, which could be ubiquitous in real applications.

We propose a joint kernel density based method, JDINAC, for

identifying differential interaction patterns of networks between

condition-specific groups and conducting discriminant analysis simul-

taneously. A multiple splitting and prediction averaging procedure

were employed in the algorithm of JDINAC. It can not only make the

approach more robust and accurate, but also make more efficient use

of limited data (Fan et al., 2016). Moreover, the non-parametric kernel

method was used to estimate the joint density, which does not require

any conditions on the distribution of the data; this also makes JDINAC

more robust and has the ability to capture the non-linear relationship

among genes. Extensive simulations were conducted to assess the per-

formances of differential network analysis and classification accuracy.

It indicated that JDINAC has high reliability (Fig. 3) and significantly

outperforms other state-of-the-art methods, DiffCorr, DEDN and

cPLR, especially in scenarios 3 and 4 for the differential network ana-

lysis (Table 1). One advantage for JDINAC is that it can achieve classi-

fication simultaneously, making it more attractive in practical

applications. Figure 4 and Table 2 further highlighted that JDINAC is

much more accurate in classification than other methods.

Although JDINAC can in principle be applied to genome-wide

data sets, such application may be limited due to high computational

costs. In this study, we focus on identifying the differential inter-

action patterns between genes in a given pathway (or a candidate

gene set). JDINAC can be directly used in most cases, since >95%

pathways from KEGG database contain <150 genes. Under the

scenario when the pathway is too large or in the case of genome-

wide study, prior knowledge or screening method can be used to

shrink the candidate gene pair numbers before applying JDINAC.

Although the proposed JDINAC method was applied to gene net-

work differential network analysis in this article, it can be used to in-

corporate other biological networks, such as metabolic network and

brain functional connectivity network. It can also be generalized to

identify of between pathway interactions.

Table 5. Classification errors on application test data set (%)

Dataset JDINAC RF NB cPLR oPLR

BRCA 1 19 2 17 1
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The freely available JDINAC software is available as R script at

https://github.com/jijiadong/JDINAC.
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