
Eur. Phys. J. C (2020) 80:58

https://doi.org/10.1140/epjc/s10052-020-7608-4

Regular Article - Experimental Physics

JEDI-net: a jet identification algorithm based on interaction
networks

Eric A. Moreno1, Olmo Cerri1, Javier M. Duarte2,3,a, Harvey B. Newman1, Thong Q. Nguyen1, Avikar Periwal1,

Maurizio Pierini4, Aidana Serikova1, Maria Spiropulu1, Jean-Roch Vlimant1

1 California Institute of Technology, Pasadena, CA 91125, USA
2 Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA
3 University of California San Diego, La Jolla, CA 92093, USA
4 European Center for Nuclear Research (CERN), 1211 Geneva, Switzerland

Received: 10 September 2019 / Accepted: 3 January 2020 / Published online: 25 January 2020

© The Author(s) 2020

Abstract We investigate the performance of a jet identifi-

cation algorithm based on interaction networks (JEDI-net) to

identify all-hadronic decays of high-momentum heavy parti-

cles produced at the LHC and distinguish them from ordinary

jets originating from the hadronization of quarks and gluons.

The jet dynamics are described as a set of one-to-one interac-

tions between the jet constituents. Based on a representation

learned from these interactions, the jet is associated to one

of the considered categories. Unlike other architectures, the

JEDI-net models achieve their performance without special

handling of the sparse input jet representation, extensive pre-

processing, particle ordering, or specific assumptions regard-

ing the underlying detector geometry. The presented models

give better results with less model parameters, offering inter-

esting prospects for LHC applications.

1 Introduction

Jets are collimated cascades of particles produced at parti-

cle accelerators. Quarks and gluons originating from hadron

collisions, such as the proton-proton collisions at the CERN

Large Hadron Collider (LHC), generate a cascade of other

particles (mainly other quarks or gluons) that then arrange

themselves into hadrons. The stable and unstable hadrons’

decay products are observed by large particle detectors,

reconstructed by algorithms that combine the information

from different detector components, and then clustered into

jets, using physics-motivated sequential recombination algo-

rithms such as those described in Refs. [1–3]. Jet identifi-

cation, or tagging, algorithms are designed to identify the

nature of the particle that initiated a given cascade, inferring

a e-mail: javier.mauricio.duarte@cern.ch

it from the collective features of the particles generated in

the cascade.

Traditionally, jet tagging was meant to distinguish three

classes of jets: light flavor quarks q = u, d, s, c, gluons g,

or bottom quarks (b). At the LHC, due to the large collision

energy, new jet topologies emerge. When heavy particles, e.g.

W, Z, or Higgs (H) bosons or the top quark, are produced

with large momentum and decay to all-quark final states, the

resulting jets are contained in a small solid angle. A single

jet emerges from the overlap of two (for bosons) or three

(for the top quark) jets, as illustrated in Fig. 1. These jets

are characterized by a large invariant mass (computed from

the sum of the four-momenta of their constituents) and they

differ from ordinary quark and gluon jets, due to their peculiar

momentum flow around the jet axis.

Several techniques have been proposed to identify these

jets by using physics-motivated quantities, collectively

referred to as “jet substructure” variables. A review of the

different techniques can be found in Ref. [4]. As discussed

in the review, approaches based on deep learning (DL) have

been extensively investigated (see also Sect. 2), processing

sets of physics-motivated quantities with dense layers or raw

data representations (e.g. jet images or particle feature lists)

with more complex architectures (e.g. convolutional or recur-

rent networks).

In this work, we compare the typical performance of

some of these approaches to what is achievable with a novel

jet identification algorithm based on an interaction network

(JEDI-net). Interaction networks [5] (INs) were designed to

decompose complex systems into distinct objects and rela-

tions, and reason about their interactions and dynamics. One

of the first uses of INs was to predict the evolution of physical

systems under the influence of internal and external forces,

for example, to emulate the effect of gravitational interactions

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-7608-4&domain=pdf
mailto:javier.mauricio.duarte@cern.ch


58 Page 2 of 15 Eur. Phys. J. C (2020) 80 :58

Fig. 1 Pictorial representations of the different jet categories consid-

ered in this paper. Left: jets originating from quarks or gluons produce

one cluster of particles, approximately cone-shaped, developing along

the flight direction of the quark or gluon that started the cascade. Cen-

ter: when produced with large momentum, a heavy boson decaying to

quarks would result in a single jet, made of 2 particle clusters (usually

referred to as prongs). Right: a high-momentum t → Wb → qq′b
decay chain results in a jet composed of three prongs

in n-body systems. The n-body system is represented as a set

of objects subject to one-on-one interactions. The n bodies

are embedded in a graph and these one-on-one interaction

functions, expressed as trainable neural networks, are used

to predict the post-interaction status of the n-body system. We

study whether this type of network generalizes to a novel con-

text in high energy physics. In particular, we represent a jet as

a set of particles, each of which is represented by its momen-

tum and embedded as a vertex in a fully-connected graph.

We use neural networks to learn a representation of each

one-on-one particle interaction1 in the jet, which we then

use to define jet-related high-level features (HLFs). Based

on these features, a classifier associates each jet to one of the

five categories shown in Fig. 1.

For comparison, we consider other classifiers based on

different architectures: a dense neural network (DNN) [6]

receiving a set of jet-substructure quantities, a convolutional

neural network (CNN) [7–9] receiving an image represen-

tation of the transverse momentum (pT) flow in the jet,2

and a recurrent neural network (RNN) with gated recur-

rent units [10] (GRUs), which process a list of particle fea-

tures. These models can achieve state-of-the-art performance

although they require additional ingredients: the DNN model

requires processing the constituent particles to pre-compute

HLFs, the GRU model assumes an ordering criterion for the

input particle feature list, and the CNN model requires rep-

resenting the jet as a rectangular, regular, pixelated image.

1 Here, we refer to the abstract message-passing interaction represented

by the edges of the graph and not the physical interactions due to quan-

tum chromodynamics, which occur before the jet constituents emerge

from the hadronization process.

2 We use a Cartesian coordinate system with the z axis oriented along

the beam axis, the x axis on the horizontal plane, and the y axis oriented

upward. The x and y axes define the transverse plane, while the z axis

identifies the longitudinal direction. The azimuthal angle φ is computed

from the x axis. The polar angle θ is used to compute the pseudorapidity

η = − log(tan(θ/2)). We use natural units such that c = h̄ = 1 and we

express energy in units of electronVolt (eV) and its prefix multipliers.

Any of these aspects can be handled in a reasonable way

(e.g. one can use a jet clustering metric to order the particles),

sometimes sacrificing some detector performance (e.g., with

coarser image pixels than realistic tracking angular resolu-

tion, in the case of many models based on CNN). It is then

worth exploring alternative solutions that could reach state-

of-the-art performance without making these assumptions.

In particular, it is interesting to consider architectures that

directly takes as input jet constituents and are invariant for

their permutation. This motivated the study of jet taggers

based on recursive [11], graph networks [12,13], and energy

flow networks [14]. In this context, we aim to investigate the

potential of INs.

This paper is structured as follows: we provide a list of

related works in Sect. 2. In Sect. 3, we describe the utilized

data set. The structure of the JEDI-net model is discussed in

Sect. 4 together with the alternative architectures considered

for comparison. Results are shown in Sect. 5. Sections 6 and 7

discuss what the JEDI-net learns when processing the graph

and quantify the amount of resources needed by the tagger,

respectively. We conclude with a discussion and outlook for

this work in Sect. 8. “Appendix A” describes the design and

optimization of the alternative models.

2 Related work

Jet tagging is one of the most popular LHC-related tasks

to which DL solutions have been applied. Several classi-

fication algorithms have been studied in the context of jet

tagging at the LHC [15–22] using DNNs, CNNs, or physics-

inspired architectures. Recurrent and recursive layers have

been used to construct jet classifiers starting from a list of

reconstructed particle momenta [11–13]. Recently, these dif-

ferent approaches, applied to the specific case of top quark jet

identification, have been compared in Ref. [23]. While many

of these studies focus on data analysis, work is underway

123



Eur. Phys. J. C (2020) 80 :58 Page 3 of 15 58

to apply these algorithms in the early stages of LHC real-

time event processing, i.e. the trigger system. For example,

Ref. [24] focuses on converting these models into firmware

for field programmable gate arrays (FPGAs) optimized for

low latency (less than 1 µs). If successful, such a program

could allow for a more resource-efficient and effective event

selection for future LHC runs.

Graph neural networks have also been considered as jet

tagging algorithms [25,26] as a way to circumvent the spar-

sity of image-based representations of jets. These approaches

demonstrate remarkable categorization performance. Moti-

vated by the early results of Ref. [25], graph networks have

been also applied to other high energy physics tasks, such

as event topology classification [27,28], particle tracking in

a collider detector [29], pileup subtraction at the LHC [30],

and particle reconstruction in irregular calorimeters [31].

3 Data set description

This study is based on a data set consisting of simulated jets

with an energy of pT ≈ 1 TeV, originating from light quarks

q, gluons g, W and Z bosons, and top quarks produced in√
s = 13 TeV proton-proton collisions. The data set was

created using the configuration and parametric description of

an LHC detector described in Refs. [24,32], and is available

on the Zenodo platform [33–36].

Jets are clustered from individual reconstructed particles,

using the anti-kT algorithm [3,37] with jet-size parameter

R = 0.8. Three different jet representations are considered:

– A list of 16 HLFs, described in Ref. [24], given as input

to a DNN. The 16 distributions are shown in Fig. 2 for

the five jet classes.

– An image representation of the jet, derived by consid-

ering a square with pseudorapidity and azimut distances

Δη = Δφ = 2R, centered along the jet axis. The image

is binned into 100 × 100 pixels. Such a pixel size is

comparable to the cell of a typical LHC electromagnetic

calorimeter, but much coarser than the typical angular

resolution of a tracking device for the pT values relevant

to this task. Each pixel is filled with the scalar sum of

the pT of the particles in that region. These images are

obtained by considering the 150 highest-pT constituents

for each jet. This jet representation is used to train a CNN

classifier. The average jet images for the five jet classes

are shown in Fig. 3. For comparison, a randomly chosen

set of images is shown in Fig. 4.

– A constituent list for up to 150 particles, in which each

particle is represented by 16 features, computed from the

particle four-momenta: the three Cartesian coordinates

of the momentum (px , py , and pz), the absolute energy

E , pT, the pseudorapidity η, the azimuthal angle φ, the

distance ΔR =
√

Δη2 + Δφ2 from the jet center, the rel-

ative energy E rel = Eparticle/E jet and relative transverse

momentum prel
T = p

particle
T /p

jet
T defined as the ratio of the

particle quantity and the jet quantity, the relative coordi-

nates ηrel = ηparticle − ηjet and φrel = φparticle − φjet

defined with respect to the jet axis, cos θ and cos θ rel

where θ rel = θparticle − θ jet is defined with respect to the

jet axis, and the relative η and φ coordinates of the parti-

cle after applying a proper Lorentz transformation (rota-

tion) as described in Ref. [38]. Whenever less than 150

particles are reconstructed, the list is filled with zeros.

The distributions of these features considering the 150

highest-pT particles in the jet are shown in Fig. 5 for the

five jet categories. This jet representation is used for a

RNN with a GRU layer and for JEDI-net.

4 JEDI-net

In this work, we apply an IN [5] architecture to learn a repre-

sentation of a given input graph (the set of constituents in a

jet) and use it to accomplish a classification task (tagging the

jet). One can see the IN architecture as a processing algorithm

to learn a new representation of the initial input. This is done

replacing a set of input features, describing each individual

vertex of the graph, with a set of engineered features, specific

of each vertex but whose values depend on the connection

between the vertices in the graph.

The starting point consists of building a graph for each

input jet. The NO particles in the jet are represented by the

vertices of the graph, fully interconnected through directional

edges, for a total of NE = NO × (NO − 1) edges. An exam-

ple is shown in Fig. 6 for the case of a three-vertex graph.

The vertices and edges are labeled for practical reasons, but

the network architecture ensures that the labeling convention

plays no role in creating the new representation.

Once the graph is built, a receiving matrix (RR) and a

sending matrix (RS) are defined. Both matrices have dimen-

sions NO × NE . The element (RR)i j is set to 1 when the i th

vertex receives the j th edge and is 0 otherwise. Similarly, the

element (RS)i j is set to 1 when the i th vertex sends the j th

edge and is 0 otherwise. In the case of the graph of Fig. 6,

the two matrices take the form:

RS =

⎛

⎜

⎜

⎝

E1 E2 E3 E4 E5 E6

O1 0 0 0 1 1 0

O2 1 0 0 0 0 1

O3 0 1 1 0 0 0

⎞

⎟

⎟

⎠

(1)

RR =

⎛

⎜

⎜

⎝

E1 E2 E3 E4 E5 E6

O1 1 1 0 0 0 0

O2 0 0 1 1 0 0

O3 0 0 0 0 1 1

⎞

⎟

⎟

⎠

. (2)

123



58 Page 4 of 15 Eur. Phys. J. C (2020) 80 :58

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5

Σzlog(z)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
.

D
en

si
ty

(a
.u

.)

quark

gluon

W

Z

top

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

C0
1

0

5

10

15

20

25

30

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

C1
1

0

20

40

60

80

100

120

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

C2
1

0

100

200

300

400

500

600

700

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

C1
2

0

20

40

60

80

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.00 0.02 0.04 0.06 0.08 0.10

C2
2

0

100

200

300

400

500

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

D1
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ro

b
.

D
en

si
ty

(a
.u

.)

0 1 2 3 4 5 6

D2
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

D
(1,1)
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

D
(1,2)
2

0

2

4

6

8

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

M 1
2

0

2

4

6

8

10

12

14

16

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

M 2
2

0

5

10

15

20

25

30

35

40
P

ro
b
.

D
en

si
ty

(a
.u

.)

0.0 0.1 0.2 0.3 0.4

N 1
2

0

1

2

3

4

5

6

7

8

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

N 2
2

0

2

4

6

8

10

P
ro

b
.

D
en

si
ty

(a
.u

.)

0 100 200 300 400

jet mass

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
.

D
en

si
ty

(a
.u

.)

0 50 100 150 200

Multiplicity

0.00

0.01

0.02

0.03

0.04

P
ro

b
.

D
en

si
ty

(a
.u

.)

Fig. 2 Distributions of the 16 high-level features used in this study, described in Ref. [24]

123



Eur. Phys. J. C (2020) 80 :58 Page 5 of 15 58

0 25 50 75

∆η

0

20

40

60

80

∆
φ

quark

10
−2

10
−1

10
0

10
1

10
2

0 25 50 75

∆η

0

20

40

60

80

∆
φ

gluon

10
−2

10
−1

10
0

10
1

10
2

0 25 50 75

∆η

0

20

40

60

80

∆
φ

W

10
−2

10
−1

10
0

10
1

0 25 50 75

∆η

0

20

40

60

80

∆
φ

Z

10
−2

10
−1

10
0

10
1

0 25 50 75

∆η

0

20

40

60

80

∆
φ

top

10
−2

10
−1

10
0

Fig. 3 Average 100 × 100 images for the five jet classes considered in

this study: q (top left), g (top center), W (top right), Z (bottom left), and

top jets (bottom right). The temperature map represents the amount of

pT collected in each cell of the image, measured in GeV and computed

from the scalar sum of the pT of the particles pointing to each cell

The input particle features are represented by an input

matrix I . Each column of the matrix corresponds to one of the

graph vertices, while the rows correspond to the P features

used to represent each vertex. In our case, the vertices are

the particles inside the jet, each represented by its array of

features (i.e., the 16 features shown in Fig. 5). Therefore, the

I matrix has dimensions P × NO .

The I matrix is processed by the IN in a series of steps,

represented in Fig. 7. The I matrix is multiplied by the RR

and RS matrices and the two resulting matrices are then con-

catenated to form the B matrix, having dimension 2P × NE :

B =
(

I × RR

I × RS

)

. (3)

Each column of the B matrix represents an edge, i.e. a

particle-to-particle interaction. The 2P elements of each col-

umn are the features of the sending and receiving vertices for

that edge. Using this information, a DE -dimensional hidden

representation of the interaction edge is created through a

trainable function fR : R
2P �→ R

DE . This gives a matrix

E with dimensions DE × NE . The cumulative effects of

the interactions received by a given vertex are gathered by

summing the DE hidden features over the edges arriving to

it. This is done by computing E = E R⊤
R with dimensions

DE × NO , which is then appended to the initial input matrix

I :

C =
(

I

E

)

. (4)

At this stage, each column of the C matrix represents a

constituent in the jet, expressed as a (P + DE )-dimensional

feature vector, containing the P input features and the DE

hidden features representing the combined effect of the inter-

actions with all the connected particles. A trainable function

fO : R
P+DE �→ R

DO is used to build a post-interaction rep-

resentation of each jet constituent. The function fO is applied

to each column of C to build the post-interaction matrix O

with dimensions DO × NO .

A final classifier φC takes as input the elements of the

O matrix and returns the probability for that jet to belong

to each of the five categories. This is done in two ways: (i)

in one case, we define the quantities O i =
∑

j Oi j , where

j is the index of the vertex in the graph (the particle, in

our case), and the i ∈ [0, DE ] index runs across the DE

outputs of the fO function. The O quantities are used as

input to φC : R
DO �→ R

N . This choice allows to preserve

the independence of the architecture on the labeling con-

vention adopted to build the I , RR , and RS matrices, at the

123



58 Page 6 of 15 Eur. Phys. J. C (2020) 80 :58

0 25 50 75

∆η

0

20

40

60

80

∆
φ

quark

10
−2

10
−1

10
0

10
1

10
2

0 25 50 75

∆η

0

20

40

60

80

∆
φ

gluon

10
−2

10
−1

10
0

10
1

10
2

0 25 50 75

∆η

0

20

40

60

80

∆
φ

W

10
−2

10
−1

10
0

10
1

10
2

0 25 50 75

∆η

0

20

40

60

80

∆
φ

Z

10
−2

10
−1

10
0

10
1

10
2

0 25 50 75

∆η

0

20

40

60

80

∆
φ

top

10
−2

10
−1

10
0

10
1

10
2

Fig. 4 Example of 100×100 images for the five jet classes considered

in this study: q (top-left), g (top-right), W (center-left), Z (center-right),

and top jets (bottom). The temperature map represents the amount of

pT collected in each cell of the image, measured in GeV and computed

from the scalar sum of the pT of the particles pointing to each cell

cost of losing some discriminating information in the sum-

mation. (ii) Alternatively, the φC matrix is defined directly

from the DO × NO elements of the O matrix, flattened into

a one-dimensional array. The full information from O is pre-

served, but φC assumes an ordering of the NO input objects.

In our case, we rank the input particles in descending order

by pT.

The trainable functions fO , fR , and φC consist of three

DNNs. Each of them has two hidden layers, the first (sec-

ond) having N 1
n (N 2

n = ⌊N 1
n /2⌋) neurons. The model is

implemented in PyTorch [39] and trained using an NVIDIA

GTX1080 GPU. The training (validation) data set consists of

630,000 (240,000) examples, while 10,000 events are used

for testing purposes.

The architecture of the three trainable functions is deter-

mined by minimizing the loss function through a Bayesian

optimization, using the GpyOpt library [40], based on

Gpy [41]. We consider the following hyperparameters:

– The number of output neurons of the fR network, DE

(between 4 and 14).

– The number of output neurons of the fO network, DO

(between 4 and 14).

– The number of neurons N 1
n in the first hidden layer of the

fO , fR , and φC network (between 5 and 50).

– The activation function for the hidden and output layers

of the fR network: ReLU [42], ELU [43], or SELU [44]

functions.

– The activation function for the hidden and output layers

of the fO network: ReLU, ELU, or SELU.

– The activation function for the hidden layers of the φC

network: ReLU, ELU, or SELU.

– The optimizer algorithm: Adam [45] or AdaDelta [46].

In addition, the output neurons of the φC network are acti-

vated by a softmax function. A learning rate of 10−4 is used.

For a given network architecture, the network parameters are

optimized by minimizing the categorical cross entropy. The

Bayesian optimization is repeated four times. In each case,

the input particles are ordered by descending pT value and

the first 30, 50, 100, or 150 particles are considered. The

parameter optimization is performed on the training data set,

while the loss for the Bayesian optimization is estimated on

the validation data set.

Tables 1 and 2 summarize the result of the Bayesian opti-

mization for the JEDI-net architecture with and without the

sum over the columns of the O matrix, respectively. The best

result of each case, highlighted in bold, is used as a reference

for the rest of the paper.

123



Eur. Phys. J. C (2020) 80 :58 Page 7 of 15 58

−1000 −500 0 500 1000

px [Gev]

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

P
ro

b
.

D
en

si
ty

(a
.u

.)

quark

gluon

W

Z

top

−1000 −750 −500 −250 0 250 500 750 1000

py [Gev]

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

P
ro

b
.

D
en

si
ty

(a
.u

.)

−3000 −2000 −1000 0 1000 2000 3000

pz [Gev]

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

P
ro

b
.

D
en

si
ty

(a
.u

.)

0 500 1000 1500 2000 2500 3000 3500

E [Gev]

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

P
ro

b
.

D
en

si
ty

(a
.u

.)

0 200 400 600 800 1000 1200

pT [GeV]

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

P
ro

b
.

D
en

si
ty

(a
.u

.)

−3 −2 −1 0 1 2 3

η

10
−5

10
−4

10
−3

10
−2

10
−1

P
ro

b
.

D
en

si
ty

(a
.u

.)

−3 −2 −1 0 1 2 3

φ

1.4 × 10
−1

1.5 × 10
−1

1.6 × 10
−1

1.7 × 10
−1

1.8 × 10
−1

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

∆R

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.0 0.2 0.4 0.6 0.8

Relative E [Gev]

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ro

b
.

D
en

si
ty

(a
.u

.)

0.0 0.2 0.4 0.6 0.8

Relative pT [GeV]

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ro

b
.

D
en

si
ty

(a
.u

.)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Relative φ

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ro

b
.

D
en

si
ty

(a
.u

.)

−1.5 −1.0 −0.5 0.0 0.5 1.0

Relative η

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ro

b
.

D
en

si
ty

(a
.u

.)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Rotated η

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ro

b
.

D
en

si
ty

(a
.u

.)

−1.0 −0.5 0.0 0.5 1.0

Rotated φ

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ro

b
.

D
en

si
ty

(a
.u

.)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

cos θ

10
−1

P
ro

b
.

D
en

si
ty

(a
.u

.)

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

Relative cos θ

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ro

b
.

D
en

si
ty

(a
.u

.)

Fig. 5 Distributions of kinematic features described in the text for the 150 highest-pT particles in each jet

123



58 Page 8 of 15 Eur. Phys. J. C (2020) 80 :58

O3

O1 O2
E1

E2 E3

E4

E5 E6

Fig. 6 An example graph with three fully connected vertices and the

corresponding six edges

For comparison, three alternative models are trained on the

three different representations of the same data set described

in Sect. 3: a DNN model taking as input a list of HLFs, a

CNN model processing jet images, and a recurrent model

applying GRUs on the same input list used for JEDI-net. The

three benchmark models are optimized through a Bayesian

optimization procedure, as done for the INs. Details of these

optimizations and the resulting best models are discussed in

“Appendix A”.

5 Results

Figure 8 shows the receiver operating characteristic (ROC)

curves obtained for the optimized JEDI-net tagger in each of

the five jet categories, compared to the corresponding curves

for the DNN, CNN, and GRU alternative models. The curves

are derived by fixing the network architectures to the optimal

values based on Table 2 and “Appendix A” and performing a

k-fold cross-validation training, with k = 10. The solid lines

represent the average ROC curve, while the shaded bands

quantify the ±1 RMS dispersion. The area under the curve

Fig. 7 A flowchart illustrating the interaction network scheme

123



Eur. Phys. J. C (2020) 80 :58 Page 9 of 15 58

Table 1 Optimal JEDI-net hyperparameter setting for different input

data sets, when the summed O i quantities are given as input to the φC

network. The best result, obtained when considering up to 150 particles

per jet, is highlighted in bold

Hyperparameter Number of jet constituents

30 50 100 150

N 1
n 6 50 30 50

DE 8 12 4 14

DO 6 14 4 10

fR activation ReLU ReLU SELU SELU

fO activation ELU ReLU ReLU SELU

φC activation ELU SELU SELU SELU

Optimizer Adam Adam Adam Adam

Optimized loss 0.84 0.58 0.62 0.55

Table 2 Optimal JEDI-net hyperparameter setting for different input

data sets, when all the Oi j elements are given as input to the φC network.

The best result, obtained when considering up to 100 particles per jet,

is highlighted in bold

Hyperparameter Number of jet constituents

30 50 100 150

N 1
n 50 50 30 10

DE 12 12 10 4

DO 6 14 10 14

fR activation ReLU ELU ELU SELU

fO activation SELU SELU ELU SELU

φC activation SELU ELU ELU SELU

Optimizer Adam Adam Adam Adam

Optimized loss 0.63 0.57 0.56 0.62

(AUC) values, reported in the figure, allow for a comparison

of the performance of the different taggers.

The algorithm’s tagging performance is quantified com-

puting the true positive rate (TPR) values for two given ref-

erence false positive rate (FPR) values (10% and 1%). The

comparison of the TPR values gives an assessment of the

tagging performance in a realistic use case, typical of an

LHC analysis. Table 3 shows the corresponding FPR values

for the optimized JEDI-net taggers, compared to the corre-

sponding values for the benchmark models. The largest TPR

value for each class is highlighted in bold. As shown in Fig. 8

and Table 3, the two JEDI-net models outperform the other

architectures in almost all cases. The only notable exception

is the tight working point of the top-jet tagger, for which the

DNN model gives a TPR higher by about 2%, while the CNN

and GRU models give much worse performance.

The TPR values for the two JEDI-net models are within

1%. The only exception is observed for the tight working

points of the W and Z taggers, for which the model using

the O sums shows a drop in TPR of ∼ 4%. In this respect,

the model using summed O features is preferable (despite

this small TPR loss), given the reduced model complexity

(see Sect. 7) and its independence on the labeling convention

for the particles embedded in the graph and for the edges

connecting them.

6 What did JEDI-net learn?

In order to characterize the information learned by JEDI-

net, we consider the O sums across the NO vertices of the

graph (see Sect. 4) and we study their correlations to physics

motivated quantities, typically used when exploiting jet sub-

structure in a search. We consider the HLF quantities used for

the DNN model and the N -subjettiness variables τ
(β)

N [47],

computed with angular exponent β = 1, 2.

Not all the O sums exhibit an obvious correlation with the

considered quantities, i.e., the network engineers high-level

features that encode other information than what is used, for

instance, in the DNN model.

Nevertheless, some interesting correlation pattern between

the physics motivated quantities and the O i sums is observed.

The most relevant examples are given in Fig. 9, where the 2D

histograms and the corresponding linear correlation coeffi-

cient (ρ) are shown. The correlation between O1 and the par-

ticle multiplicity in the jet is not completely unexpected. As

long as the O quantities aggregated across the graph have the

same order of magnitude, the corresponding sum O would

be proportional to jet-constituent multiplicity.

The strong correlation between the O4 and τ
(β=2)
1 (with

ρ values between 0.69 and 0.97, depending on the jet class)

is much less expected. The τ
β
1 quantities assume small val-

ues when the jet constituents can be arranged into a single

sub-jet inside the jet. Aggregating information from the con-

stituent momenta across the jet, the JEDI-net model based

on the O quantities learns to build a quantity very close to

τ
(β=2)
1 . The last two rows of Fig. 9 show two intermediate

cases: the correlation between O2 and τ
(β=1)
3 and between

O9 and τ
(β=2)
3 . The two O sums considered are correlated to

the corresponding substructure quantities, but with smaller

(within 0.48 and 0.77) correlation coefficients.

7 Resource comparison

Table 4 shows a comparison of the computational resources

needed by the different models discussed in this paper. The

best-performing JEDI-net model has more than twice the

number of trainable parameters than the DNN and GRU

model, but approximately a factor of 6 less parameters than

the CNN model. The JEDI-net model based on the summed

O features achieves comparable performance with about a

123



58 Page 10 of 15 Eur. Phys. J. C (2020) 80 :58

Fig. 8 ROC curves for

JEDI-net and the three

alternative models, computed

for gluons (top-left), light quarks

(top-right), W (center-left) and

Z (center-right) bosons, and top

quarks (bottom). The solid lines

represent the average ROC

curves derived from 10 k-fold

trainings of each model. The

shaded bands around the average

lines are represent one standard

deviation, computed with the

same 10 k-fold trainings

factor of 4 less parameters, less than the DNN and GRU mod-

els. While being far from expensive in terms of number of

parameters, the JEDI-net models are expensive in terms of

the number of floating point operations (FLOP). The simple

model based on O sums, using as input a sequence of 150

particles, uses 458 MFLOP. The increase is mainly due to

the scaling with the number of vertices in the graph. Many

of these operations are the 0× and 1× products involving

the elements of the RR and RS matrices. The cost of these

operations could be reduced with an IN implementation opti-

mized for inference, e.g., through an efficient sparse-matrix

representation.

In addition, we quote in Table 4 the average inference

time on a GPU. The inference time is measured applying

123



Eur. Phys. J. C (2020) 80 :58 Page 11 of 15 58

Table 3 True positive rates (TPR) for the optimized JEDI-net taggers and the three alternative models (DNN, CNN, and GRU), corresponding to

a false positive rate (FPR) of 10% (top) and 1% (bottom). The largest TPR value for each case is highlighted in bold

Jet category DNN GRU CNN JEDI-net JEDI-net with
∑

O

TPR for FPR = 10%

Gluon 0.830 ± 0.002 0.740 ± 0.014 0.700 ± 0.008 0.878 ± 0.001 0.879 ± 0.001

Lght quarks 0.715 ± 0.002 0.746 ± 0.011 0.740 ± 0.003 0.822 ± 0.001 0.818 ± 0.001

W boson 0.855 ± 0.001 0.812 ± 0.035 0.760 ± 0.005 0.938 ± 0.001 0.927 ± 0.001

Z boson 0.833 ± 0.002 0.753 ± 0.036 0.721 ± 0.006 0.910 ± 0.001 0.903 ± 0.001

Top quark 0.917 ± 0.001 0.867 ± 0.006 0.889 ± 0.001 0.930 ± 0.001 0.931 ± 0.001

TPR for FPR = 1%

Gluon 0.420 ± 0.002 0.273 ± 0.018 0.257 ± 0.005 0.485 ± 0.001 0.482 ± 0.001

Light quarks 0.178 ± 0.002 0.220 ± 0.037 0.254 ± 0.007 0.302 ± 0.001 0.301 ± 0.001

W boson 0.656 ± 0.002 0.249 ± 0.057 0.232 ± 0.006 0.704 ± 0.001 0.658 ± 0.001

Z boson 0.715 ± 0.001 0.386 ± 0.060 0.291 ± 0.005 0.769 ± 0.001 0.729 ± 0.001

Top quark 0.651 ± 0.003 0.426 ± 0.020 0.504 ± 0.005 0.633 ± 0.001 0.632 ± 0.001

−2.5 −2.0 −1.5 −1.0 −0.5

O1

20

40

60

80

100

120

140

160

M
u
lt

ip
li
ci

ty

gluons (ρ = 0.76)

100

101

−2.50 −2.25 −2.00 −1.75 −1.50 −1.25 −1.00

O1

20

40

60

80

100

120

M
u
lt

ip
li
ci

ty

quarks (ρ = 0.78)

100

101

−2.4 −2.2 −2.0 −1.8 −1.6

O1

20

30

40

50

60

70

80

M
u
lt

ip
li
ci

ty

W (ρ = 0.73)

100

101

−2.4 −2.2 −2.0 −1.8 −1.6 −1.4

O1

20

30

40

50

60

70

80

90

M
u
lt

ip
li
ci

ty

Z (ρ = 0.72)

100

101

−2.5 −2.0 −1.5 −1.0 −0.5

O1

20

40

60

80

100

120

M
u
lt

ip
li
ci

ty

top (ρ = 0.69)

100

101

0 5 10 15 20

O4

10

20

30

40

50

60

70

τ
2 1

gluons (ρ = 0.96)

100

101

102

0 5 10 15

O4

10

20

30

40

50

60

τ
2 1

quarks (ρ = 0.97)

100

101

102

103

−2 0 2 4 6

O4

5

10

15

20

25

30

35

40

τ
2 1

W (ρ = 0.71)

100

101

102

−2 0 2 4 6

O4

5

10

15

20

25

τ
2 1

Z (ρ = 0.72)

100

101

102

−2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

O4

10

20

30

40

50

τ
2 1

top (ρ = 0.88)

100

101

−2 −1 0 1 2

O2

20

40

60

80

τ
1 3

gluons (ρ = 0.50)

100

101

−2 −1 0 1

O2

10

20

30

40

50

60

70

80

τ
1 3

quarks (ρ = 0.69)

100

101

102

−2.5 −2.0 −1.5 −1.0 −0.5 0.0

O2

5

10

15

20

25

30

τ
1 3

W (ρ = 0.76)

100

101

−2.0 −1.5 −1.0 −0.5 0.0 0.5

O2

10

20

30

40

50

τ
1 3

Z (ρ = 0.74)

100

101

−2 −1 0 1 2

O2

10

20

30

40

50

60

70

80

τ
1 3

top (ρ = 0.56)

100

101

−2 −1 0 1 2 3 4

O9

2

4

6

8

10

12

τ
2 3

gluons (ρ = 0.71)

100

101

102

−2 −1 0 1 2 3

O9

1

2

3

4

5

6

7

8

τ
2 3

quarks (ρ = 0.75)

100

101

102

−2 −1 0 1

O9

0.5

1.0

1.5

2.0

2.5

3.0

3.5

τ
2 3

W (ρ = 0.49)

100

101

102

−2.0 −1.5 −1.0 −0.5 0.0 0.5

O9

1

2

3

4

τ
2 3

Z (ρ = 0.59)

100

101

−2 0 2 4

O9

2

4

6

8

10

12

τ
2 3

top (ρ = 0.49)

100

101

Fig. 9 Two-dimensional distributions between (top to bottom) O1 and

constituents multiplicty, O4 and τ
(β=2)
1 , O2 and τ

(β=1)
3 , O9 and τ

(β=2)
3 ,

for jets originating from (right to left) gluons, light flavor quarks,W

bosons, Z bosons, and top quarks. For each distribution, the linear cor-

relation coefficient ρ is reported

123



58 Page 12 of 15 Eur. Phys. J. C (2020) 80 :58

Table 4 Resource comparison across models. The quoted number of

parameters refers only to the trainable parameters for each model. The

inference time is measured by applying the model to batches of 1000

events 100 times: the 50% median quantile is quoted as central value and

the 10%-90% semi-distance is quoted as the uncertainty. The GPU used

is an NVIDIA GTX 1080 with 8 GB memory, mounted on a commercial

desktop with an Intel Xeon CPU, operating at a frequency of 2.60GHz.

The tests were executed in Python 3.7 with no other concurrent process

running on the machine

Model Number of

parameters

Number

of FLOP

Inference

time/batch (ms)

DNN 14725 27 k 1.0 ± 0.2

CNN 205525 400 k 57.1 ± 0.5

GRU 15575 46 k 23.2 ± 0.6

JEDI-net 33625 116 M 121.2 ± 0.4

JEDI-net 8767 458 M 402 ± 1

with
∑

O

the model to 1000 events, as part of a Python application

based on TensorFlow [48]. To this end, the JEDI-net mod-

els, implemented and trained in PyTorch, are exported to

ONNX [49] and then loaded as TensorFlow graph. The

quoted time includes loading the data, which occurs for the

first inference and is different for different event represen-

tations, that is smaller for the JEDI-net models than for the

CNN models. The GPU used is an NVIDIA GTX 1080 with

8 GB memory, mounted on a commercial desktop with an

Intel Xeon CPU, operating at a frequency of 2.60 GHz. The

tests were executed in Python 3.7, with no other concurrent

process running on the machine. Given the larger number of

operations, the GPU inference time for the two IN models is

much larger than for the other models.

The current IN algorithm is costly to deploy in the online

selection environment of a typical LHC experiment. A ded-

icated R&D effort is needed to reduce the resource con-

sumption in a realistic environment in order to benefit from

the improved accuracy that INs can achieve. For example,

one could trade model accuracy for reduced resource needs

by applying neural network pruning [50,51], reducing the

numerical precision [52,53], and limiting the maximum num-

ber of particles in each jet representation.

8 Conclusions

This paper presents JEDI-net, a jet tagging algorithm based

on interaction networks. Applied to a data set of jets from

light-flavor quarks, gluons, vector bosons, and top quarks,

this algorithm achieves better performance than models

based on dense, convolutional, and recurrent neural net-

works, trained and optimized with the same procedure on

the same data set. As other graph networks, JEDI-net offers

several practical advantages that make it particularly suitable

for deployment in the data-processing workflows of LHC

experiments: it can directly process the list of jet constituent

features (e.g. particle four-momenta), it does not assume spe-

cific properties of the underlying detector geometry, and it

is insensitive to any ordering principle applied to the input

jet constituents. For these reasons, the implementation of this

and other graph networks is an interesting prospect for future

runs of the LHC. On the other hand, the current implemen-

tation of this model demands large computational resources

and a large inference time, which make the use of these mod-

els problematic for real-time selection and calls for a dedi-

cated program to optimize the model deployment on typical

L1 and HLT environments.

The quantities engineered by one of the trained IN models

exhibit interesting correlation patterns with some of the jet

substructure quantities proposed in literature, showing that

the model is capable of learning some of the relevant physics

in the problem. On the other hand, some of the engineered

quantities do not exhibit striking correlation patterns, imply-

ing the possibility of a non trivial insight to be gained by

studying these quantities.

Acknowledgements We are grateful to Caltech and the Kavli Founda-

tion for their support of undergraduate student research in cross-cutting

areas of machine learning and domain sciences. We would also like to

thank the Taylor W. Lawrence Research Fellowship and Mellon Mays

Fellowship for supporting E. A. M. and making this research effort pos-

sible. This work was conducted at “iBanks,” the AI GPU cluster at Cal-

tech. We acknowledge NVIDIA, SuperMicro and the Kavli Foundation

for their support of “iBanks”. This project has received funding from

the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation program (grant agreement no

772369) and is partially supported by the U.S. Department of Energy,

Office of High Energy Physics Research under Caltech Contract No.

DE-SC0011925. J. M. D. is supported by Fermi Research Alliance,

LLC under Contract No. DE-AC02-07CH11359 with the U.S. Depart-

ment of Energy, Office of Science, Office of High Energy Physics.

Data Availability Statement This manuscript has associated data in a

data repository. [Authors’ comment: The data set was created using the

configuration and parametric description of an LHC detector described

in Ref. [24,32], and is available on the Zenodo platform [33–36].]

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you

give appropriate credit to the original author(s) and the source, pro-

vide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indi-

cated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permit-

ted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

Funded by SCOAP3.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2020) 80 :58 Page 13 of 15 58

Appendix

A Alternative models

The three benchmark models considered in this work are

derived through a Bayesian optimization of their hyperpa-

rameters, performed using the GpyOpt library [40], based

on Gpy [41]. For each iteration, the training is performed

using early stopping to prevent over-fitting and to allow a

fair comparison between different configurations. The data

set for training (validation) consists of 630,000 (240,000)

jets, with 10,000 jets used for testing purposes. The loss for

the Bayesian optimization is estimated on the validation data

set. The CNN and GRU networks are trained on four different

input data sets, obtained considering the first 30, 50, 100, or

150 highest-pT jet constituents. The DNN model is trained

on quantities computed from the full list of particles.

The DNN model consists on a multilayer perceptron, alter-

nating dense layers to dropout layers. The optimal architec-

ture is determined optimizing the following hyperparame-

ters:

– Number of dense layers (NDL ) between 1 and 3.

– Number of neurons per dense layer (nn): 10, 20, . . . , 100.

– Activation functions for the dense layers: ReLU, ELU,

or SELU.

– Dropout rate: Between 0.1 and 0.4.

– Batch size: 50, 100, 200, or 500.

– Optimization algorithm: Adam, Nadam [54], or AdaDelta.

The optimization process gives as output an optimal archi-

tecture with three hidden layers of 80 neurons each, activated

by ELU functions. The best dropout rate is found to be 0.11,

when a batch size of 50 and the Adam optimizer are used.

This optimized network gives a loss of 0.66 and an accuracy

of 0.76.

The CNN model consists of two-dimensional convolu-

tional layers with batch normalization, followed by a set of

dense layers. A 2 × 2 max pooling layer is applied after the

fist convolutional layer. The optimal architecture is derived

optimizing the following hyperparameters:

– Number of convolutional layers NC L between 1 and 3.

– Number of convolutional filters n f in each layer (10, 15,

20, 25, or 30).

– Convolutional filter size: 3 × 3, 5 × 5, 7 × 7, or 9 × 9.

– Max pooling filter size: 2 × 2, 3 × 3, or 5 × 5.

– Activation functions for the convolutional layers (ReLU,

ELU, or SELU).

– Number of dense layers NDL between 1 and 3.

– Number of neurons nn per dense layer: 10, 20, . . . , 60.

– Activation functions for the dense layers: ReLU, ELU,

or SELU.

Table 5 Optimal CNN hyperparameter setting for different input data

sets

Hyperparameter Number of jet constituents

30 50 100 150

NC L 3 1 1 3

n f 20 10 30 30

Filter size 3 × 3 3 × 3 3 × 3 3 × 3

Max pooling size 2 × 2 5 × 5 5 × 5 2 × 2

Conv. activation ReLU ELU ELU ReLU

NDL 2 3 3 3

nn 60 50 60 60

Dense activation SELU ELU ELU ELU

Dropout 0.11 0.1 0.4 0.1

Batch size 200 500 100 50

Optimizer Adam Adam Adam Adam

Optimized loss 0.88 0.73 0.74 0.74

Optimized accuracy 0.67 0.74 0.74 0.74

The best configuration, used as a benchmark for comparison, is high-

lighted in bold

– Dropout rate: Between 0.1 and 0.4.

– Batch size: 50, 100, 200, or 500.

– Optimization algorithm: Adam, Nadam, or AdaDelta.

The stride of the convolutional filters is fixed to 1 and “same”

padding is used. Table 5 shows the optimal sets of hyper-

parameter values, obtained for the four different data set

representations. While the optimal networks are equivalent

in performance, we select the network obtained for ≤ 50

constituents, because it has the smallest number of parame-

ters.

The recurrent model consists of a GRU layer feeding a set

of dense layers. The following hyperparameters are consid-

ered:

– Number of GRU units: 50, 100, 200, 300, 400, or 500.

– Activation functions for the GRU layers: ReLU, ELU, or

SELU.

– Number of dense layers: Between 1 and 4.

– Number of neurons per dense layer: 10, 20, . . ., 100.

– Activation functions for the dense layers: ReLU, ELU,

or SELU.

– Dropout rate: between 0.1 and 0.4.

– Batch size: 50, 100, 200, or 500.

– Optimization algorithm: Adam, Nadam, or AdaDelta.

The best hyperparameter values are listed in Table 6. As for

the CNN model, the best performance is obtained when the

list of input particles is truncated at 50 elements.

123



58 Page 14 of 15 Eur. Phys. J. C (2020) 80 :58

Table 6 Optimal GRU hyperparameter settings for different input data

sets

Hyperparameter Number of jet constituents

30 50 100 150

nu 100 50 200 50

NDL 3 1 3 4

nn 70 40 40 100

Dense activation SELU SELU ReLU ELU

Dropout 0.40 0.10 0.22 0.10

Batch size 500 500 500 500

Optimizer Adam Adam Adam AdaDelta

Optimized loss 0.78 0.71 0.78 0.85

Optimized accuracy 0.72 0.75 0.73 0.68

The best configuration, used as a benchmark for comparison, is high-

lighted in bold

B Performance on public top tagging data set

In this appendix, we retrain and evaluate the performance

of JEDI-net on a public top tagging data set [19,23] used

to benchmark many neural networks architectures for the

task of differentiating top quark jets from light quark jets.

To select the hyperparameters of the model (with and with-

out the sum over particles), we performed a Bayesian opti-

mization. We scan N 1
n from 16 to 256, DE from 4 to 64,

DO from 4 to 64, ReLU, ELU, or SELU activation func-

tions for fR , fO , and φC , and either the Adam or Adadelta

optimizers with an initial learning rate of 10−3. We report

three metrics for the performance of the network on the top

tagging data set: model accuracy, area under the ROC curve

Table 7 The optimized hyperparameters, number of trainable parame-

ters, and performance metrics of the JEDI-net models on the top tagging

data set. Performance metrics are evaluated on the test sample. We quote

the area under the ROC curve (AUC), the accuracy, and the background

rejection at a signal efficiency of 30%

Model JEDI-net JEDI-net with
∑

O

Number of constituents 150 150

N 1
n 64 256

DE 64 64

DO 16 32

fR activation ReLU SELU

fO activation SELU ReLU

φC activation ReLU SELU

Optimizer Adam Adam

Number of parameters 169906 148962

Accuracy 0.9263 0.9300

AUC 0.9786 0.9807

1/ǫB(ǫS = 30%) 590.4 774.6

(AUC), and background rejection power at a fixed signal effi-

ciency of 30%, 1/ǫB(ǫS = 30%). In Table 7, the accuracy,

AUC, and 1/ǫB(ǫS = 30%) values are listed for each model

considered. The performance of JEDI-net compared to other

models developed for this data set is approaching state-of-

the-art [23].

References

1. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, JHEP 08,

001 (1997). https://doi.org/10.1088/1126-6708/1997/08/001

2. S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Web-

ber, Nucl. Phys. B 406, 187 (1993). https://doi.org/10.1016/

0550-3213(93)90166-M

3. M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008). https://

doi.org/10.1088/1126-6708/2008/04/063

4. A.J. Larkoski, I. Moult, B. Nachman, (2017). arXiv:1709.04464

5. P.W. Battaglia, R. Pascanu, M. Lai, D. Rezende, K. Kavukcuoglu,

(2016). arXiv:1612.00222

6. J. Orbach, Arch. Gen. Psychiatry 7(3), 218 (1962). https://doi.org/

10.1001/archpsyc.1962.01720030064010

7. K. Fukushima, Biol. Cybern. 36, 193 (1980)

8. Y.L. Cun, B. Boser, J.S. Denker, R.E. Howard, W. Habbard, L.D.

Jackel, D. Henderson, Chap. Handwritten Digit Recognition with

a Back-propagation Network (Morgan Kaufmann Publishers Inc.,

San Francisco, 1990), pp. 396–404

9. A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K.J. Lang, Chap.

Phoneme Recognition Using Time-delay Neural Networks (Morgan

Kaufmann Publishers Inc., San Francisco, 1990), pp. 393–404

10. K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, CoRR

(2014). arXiv:1409.1259

11. G. Louppe, K. Cho, C. Becot, K. Cranmer, JHEP 01, 057 (2019).

https://doi.org/10.1007/JHEP01(2019)057

12. S. Egan, W. Fedorko, A. Lister, J. Pearkes, C. Gay (2017).

arXiv:1711.09059

13. T. Cheng, Comput. Softw. Big Sci. 2(1), 3 (2018). https://doi.org/

10.1007/s41781-018-0007-y

14. P.T. Komiske, E.M. Metodiev, J. Thaler, JHEP 01, 121 (2019).

https://doi.org/10.1007/JHEP01(2019)121

15. L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, A.

Schwartzman, JHEP 07, 069 (2016). https://doi.org/10.1007/

JHEP07(2016)069

16. D. Guest, J. Collado, P. Baldi, S.C. Hsu, G. Urban, D. White-

son, Phys. Rev. D 94(11), 112002 (2016). https://doi.org/10.1103/

PhysRevD.94.112002

17. S. Macaluso, D. Shih, JHEP 10, 121 (2018). https://doi.org/10.

1007/JHEP10(2018)121

18. K. Datta, A.J. Larkoski, JHEP 03, 086 (2018). https://doi.org/10.

1007/JHEP03(2018)086

19. A. Butter, G. Kasieczka, T. Plehn, M. Russell, SciPost Phys. 5(3),

028 (2018). https://doi.org/10.21468/SciPostPhys.5.3.028

20. G. Kasieczka, T. Plehn, M. Russell, T. Schell, JHEP 05, 006 (2017).

https://doi.org/10.1007/JHEP05(2017)006

21. P.T. Komiske, E.M. Metodiev, M.D. Schwartz, JHEP 01, 110

(2017). https://doi.org/10.1007/JHEP01(2017)110

22. A. Schwartzman, M. Kagan, L. Mackey, B. Nachman, L. De

Oliveira, J. Phys. Conf. Ser. 762(1), 012035 (2016). https://doi.

org/10.1088/1742-6596/762/1/012035

23. A. Butter et al., SciPost Phys. 7, 014 (2019). https://doi.org/10.

21468/SciPostPhys.7.1.014

24. J. Duarte et al., JINST 13(07), P07027 (2018). https://doi.org/10.

1088/1748-0221/13/07/P07027

123

https://doi.org/10.1088/1126-6708/1997/08/001
https://doi.org/10.1016/0550-3213(93)90166-M
https://doi.org/10.1016/0550-3213(93)90166-M
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/1709.04464
http://arxiv.org/abs/1612.00222
https://doi.org/10.1001/archpsyc.1962.01720030064010
https://doi.org/10.1001/archpsyc.1962.01720030064010
http://arxiv.org/abs/1409.1259
https://doi.org/10.1007/JHEP01(2019)057
http://arxiv.org/abs/1711.09059
https://doi.org/10.1007/s41781-018-0007-y
https://doi.org/10.1007/s41781-018-0007-y
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1103/PhysRevD.94.112002
https://doi.org/10.1103/PhysRevD.94.112002
https://doi.org/10.1007/JHEP10(2018)121
https://doi.org/10.1007/JHEP10(2018)121
https://doi.org/10.1007/JHEP03(2018)086
https://doi.org/10.1007/JHEP03(2018)086
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1088/1742-6596/762/1/012035
https://doi.org/10.1088/1742-6596/762/1/012035
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.1088/1748-0221/13/07/P07027


Eur. Phys. J. C (2020) 80 :58 Page 15 of 15 58

25. I. Henrion, et al., In Proceedings of the Deep Learning for Physical

Sciences Workshop at NIPS (2017). https://dl4physicalsciences.

github.io/files/nips_dlps_2017_29.pdf

26. H. Qu, L. Gouskos, (2019). arXiv:1902.08570

27. M. Abdughani, J. Ren, L. Wu, J.M. Yang, J. High Energy Phys.

2019, (2019). https://doi.org/10.1007/JHEP08(2019)055

28. N. Choma, F. Monti, L. Gerhardt, T. Palczewski, Z. Ronaghi, P.

Prabhat, W. Bhimji, M. Bronstein, S. Klein, J. Bruna, 386–391

(2018). https://doi.org/10.1109/ICMLA.2018.00064

29. S. Farrell, et al., In 4th International Workshop Connecting The

Dots 2018 (CTD2018) (Seattle, Washington, 2018 (20-22 Mar

2018)

30. J. Arjona Martínez, O. Cerri, M. Pierini, M. Spiropulu, J.R. Vli-

mant, Eur. Phys. J. Plus 134(7), 333 (2019). https://doi.org/10.

1140/epjp/i2019-12710-3

31. S.R. Qasim, J. Kieseler, Y. Iiyama, M. Pierini, Eur. Phys. J. C 79(7),

608 (2019). https://doi.org/10.1140/epjc/s10052-019-7113-9

32. E. Coleman, M. Freytsis, A. Hinzmann, M. Narain, J. Thaler, N.

Tran, C. Vernieri, JINST 13(01), T01003 (2018). https://doi.org/

10.1088/1748-0221/13/01/T01003

33. J.M. Duarte, et al., HLS4ML LHC Jet dataset (30 particles) (Zen-

odo, 2020). https://doi.org/10.5281/zenodo.3601436

34. J.M. Duarte, et al., HLS4ML LHC Jet dataset (50 particles) (Zen-

odo, 2020). https://doi.org/10.5281/zenodo.3601443

35. J.M. Duarte, et al., HLS4ML LHC Jet dataset (100 particles) (Zen-

odo, 2020). https://doi.org/10.5281/zenodo.3602254

36. J.M. Duarte, et al., HLS4ML LHC Jet dataset (150 particles) (Zen-

odo, 2020). https://doi.org/10.5281/zenodo.3602260

37. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012).

https://doi.org/10.1140/epjc/s10052-012-1896-2

38. J. Pearkes, W. Fedorko, A. Lister, C. Gay, (2017).

arXiv:1704.02124

39. A. Paszke, et al., In NIPS-W (2017). https://openreview.net/pdf?

id=BJJsrmfCZ

40. The GPyOpt authors. GPyOpt: A bayesian optimization framework

in python (2016). http://github.com/SheffieldML/GPyOpt

41. GPy. GPy: A gaussian process framework in python (2012). http://

github.com/SheffieldML/GPy

42. V. Nair, G.E. Hinton, In Proceedings of ICML, vol. 27 (2010), pp.

807–814

43. D. Clevert, T. Unterthiner, S. Hochreiter, CoRR (2015).

arXiv:1511.07289

44. G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, CoRR

(2017). arXiv:1706.02515

45. D.P. Kingma, J. Ba, CoRR (2014). arXiv:1412.6980

46. M.D. Zeiler, CoRR (2012). arXiv:1212.5701

47. J. Thaler, K. Van Tilburg, JHEP 03, 015 (2011). https://doi.org/10.

1007/JHEP03(2011)015

48. M. Abadi et al., TensorFlow: Large-scale machine learning on

heterogeneous systems (2015). Software available from https://

tensorflow.org

49. J. Bai, F. Lu, K. Zhang et al., Onnx: Open neural network exchange

(2019). https://github.com/onnx/onnx

50. Y. LeCun, J.S. Denker, S.A. Solla, In Advances in Neu-

ral Information Processing Systems 2, ed. by D.S. Touretzky

(Morgan-Kaufmann, 1990), pp. 598–605. https://openreview.net/

pdf?id=OM0jvwB8jIp57ZJjtNEZ

51. S. Han, H. Mao, W.J. Dally, CoRR (2015). arXiv:1510.00149

52. Y. Cheng, D. Wang, P. Zhou, T. Zhang, CoRR (2017).

arXiv:1710.09282

53. S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan, CoRR

(2015). arXiv:1502.02551

54. T. Dozat, In ICLR Workshop (2016)

123

https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf
http://arxiv.org/abs/1902.08570
https://doi.org/10.1007/JHEP08(2019)055
https://doi.org/10.1109/ICMLA.2018.00064
https://doi.org/10.1140/epjp/i2019-12710-3
https://doi.org/10.1140/epjp/i2019-12710-3
https://doi.org/10.1140/epjc/s10052-019-7113-9
https://doi.org/10.1088/1748-0221/13/01/T01003
https://doi.org/10.1088/1748-0221/13/01/T01003
https://doi.org/10.5281/zenodo.3601436
https://doi.org/10.5281/zenodo.3601443
https://doi.org/10.5281/zenodo.3602254
https://doi.org/10.5281/zenodo.3602260
https://doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1704.02124
https://openreview.net/pdf?id=BJJsrmfCZ
https://openreview.net/pdf?id=BJJsrmfCZ
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1212.5701
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1007/JHEP03(2011)015
https://tensorflow.org
https://tensorflow.org
https://github.com/onnx/onnx
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1502.02551

	JEDI-net: a jet identification algorithm based on interaction networks
	Abstract 
	1 Introduction
	2 Related work
	3 Data set description
	4 JEDI-net
	5 Results
	6 What did JEDI-net learn?
	7 Resource comparison
	8 Conclusions
	Acknowledgements
	Appendix
	A Alternative models
	B Performance on public top tagging data set
	References


