
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2005; 17:539–572
Published online 22 February 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.849

Jeeg: temporal constraints
for the synchronization of
concurrent objects

Giuseppe Milicia1,∗,† and Vladimiro Sassone2

1Basic Research in Computer Science (BRICS), University of Aarhus,
IT-parken Aabogade 34, DK-8200 Aarhus, Denmark
2Informatics, University of Sussex, Brighton BN1 9QH, U.K.

SUMMARY

We introduce Jeeg, a dialect of Java based on a declarative replacement of the synchronization mechanisms
of Java that results in a complete decoupling of the ‘business’ and the ‘synchronization’ code of classes.
Synchronization constraints in Jeeg are expressed in a linear temporal logic, which allows one to
effectively limit the occurrence of the inheritance anomaly that commonly affects concurrent object-
oriented languages. Jeeg is inspired by the current trend in aspect-oriented languages. In a Jeeg program
the sequential and concurrent aspects of object behaviors are decoupled: specified separately by the
programmer, these are then weaved together by the Jeeg compiler. Copyright c© 2005 John Wiley &
Sons, Ltd.

KEY WORDS: Java; inheritance anomaly; temporal logic

1. INTRODUCTION

In the late 1980s, the first experiments in mixing object-oriented programming languages and
concurrency unveiled serious difficulties in merging the two concepts [1,2]. Typically, the code for
concurrency control, interwoven in the business code of classes, represented an obstacle to code
inheritance, making it essentially impossible even in simple, common situations. The term inheritance
anomaly [3] was coined to refer to this issue. Indeed, the problems arising from the interaction
of inheritance and concurrency were considered so severe as to suggest removing inheritance from
concurrent object-oriented languages entirely [1].

Commonly, in object-oriented code, the set of messages accepted by an object is not uniform in
time. Depending on the object’s state, some of its methods will be unavailable such as, for example,

∗Correspondence to: Giuseppe Milicia, Basic Research in Computer Science (BRICS), University of Aarhus, IT-parken
Aabogade 34, DK-8200 Aarhus, Denmark.
†E-mail: milicia@brics.dk

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 15 January 2003

Revised 20 August 2003
Accepted 14 October 2003

540 G. MILICIA AND V. SASSONE

pop from an empty stack or put on a full buffer. In sequential situations, it is sometimes conceivable
for clients to keep track of which methods are enabled and which are not. For instance, it could be
required of the stack user to know at any given point in time whether or not the stack is empty. In a
concurrent scenario, however, this is clearly not an option. Clients have no way of knowing about other
clients, and any cooperation in this respect requires non-trivial, specific protocols. Our only option
is to interweave the stack code with code that controls access from clients. Concurrent objects must
take direct control of their synchronization code, and the phenomenon of inheritance anomaly sets in,
forcing programmers to override inherited code in order to refine the synchronization code therein.
The situation can be exemplified in a simple case by the following idealized pseudo-code of a buffer:

class Buffer {
...
void put(Object el) {
if ("buffer not full") ...

}

Object get() {
if ("buffer not empty") ...

}
}
Suppose now that to enhance Buffer we wish to add, for instance, the method freeze that makes
it read-only. Whatever the original chunks of code for "buffer not ...", chances are that they
must be totally rewritten to take into account the new enabling condition.

Generally speaking, the inheritance anomaly has been classified in three broad varieties [3] that we
review below.

Partitioning of states. Inspired by the example above, one may disentangle code and synchronization
conditions by describing methods’ enabling according to a partition of the object’s states. To describe
the behavior of the class Buffer, for instance, the state can be partitioned in three sets, empty,
partial and full, the former containing the states in which the buffer is empty—so that get is
inhibited—the latter those in which it is full—so that is put to be disallowed. One can then specify

put: requires not full
get: requires not empty

and refine the code of get and put to specify the state transitions. For instance, get would declare
the conditions under which the buffer becomes empty or partial:

Object get() {
...
if ("buffer is now empty") become empty;
else become partial;

}
The inheritance anomaly here surfaces again, as derived classes may force a refinement of the state
partition. As an example, consider adding a method get2 that retrieves two elements at once.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 541

Alongside empty and full, it is necessary to distinguish those states where the buffer contains
exactly one element. Clearly, the state transitions specified in get and put must be re-described
accordingly.

History-sensitiveness of acceptable states. When method enabling depends on its past history rather
than depending on the object’s state, as above, a different form of inheritance anomaly occurs.
Suppose for instance that we want to refine our buffer with a method gget that works like get but
that cannot be executed immediately after a get. Clearly, that can only be achieved in Java by adding
code to get to keep track of its invocations. That is, we have to rewrite the entire class. We revisit this
problem later on.

Modification of acceptable states. A third kind of anomaly happens with mix-in classes, that is classes
created to be mixed-into other classes to add to their behavior. The typical situation arises when one
wishes to enrich a class with a method that influences the acceptance states of the original class’
methods. Our previous example of the methodfreeze belongs essentially to this category of anomaly.
Similarly, it is reasonable to expect to be able to design a

class Lock {
...
void lock() { ...; }
void unlock() { ...; }

}
to be used to add lock capabilities to clients classes by means of the standard inheritance mechanism.
However, clearly enough, (multiple) inheritance of Lock and Buffer does nothing towards creating
a lockable buffer, unless we completely recode get and put to keep into account the state of the
Lock component of the object.

Although modern programming languages provide concurrency and inheritance, the inheritance
anomaly is most commonly ignored. Indeed, Java and C# are mainstream concurrent object-oriented
languages whose synchronization primitives are based exclusively on (a non-declarative use of) locks
and monitors.

Although no generally accepted solution has emerged so far, several approaches have appeared in
the literature that mitigate the inheritance anomaly. Our proposal, Jeeg, focuses on Java. Jeeg is a
dialect of Java based on method guards whose particularity is to address history-sensitive inheritance
anomaly. As in guard-based languages, methods are labeled by formulae that describe their enabling
condition. The novelty of the approach is that we use (a version of) Linear Temporal Logic (LTL) [4],
so as to allow the expression of properties based on the history of the computation. Exploiting the
expressiveness of LTL, Jeeg is able to single out situations such as those described in the examples
above, thus ridding the language of the corresponding anomalies. Due to the nature of the problem, it
is of course impossible to claim formally that a language avoids the inheritance anomaly or solves it.
The matter depends on the synchronization primitives of the language of choice, and new practices in
object-oriented programming may at any time unveil shortcomings unnoticed before, leading to new
kinds of anomalies. Nevertheless, since the expressive power of LTL is clearly understood, one of the
pleasant features of Jeeg is that it comes equipped with a precise characterization of the situations it can
address. More precisely, we will see that all the anomalies depending on sensitivity to object histories
that are expressible as star-free regular languages can, in principle, be avoided in Jeeg.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

542 G. MILICIA AND V. SASSONE

The current implementation of Jeeg relies on the large body of theoretical work on LTL, which
provides powerful model-checking algorithms and techniques. Currently, each method invocation
incurs an overhead that is linear in the size of the guards appearing in the method’s class. Also, the
evaluation of the guards at runtime requires mutual exclusion guarantees that have a (marginal)
computational cost. When compared with the benefit of a substantially increased applicability of
inheritance, we feel that this is a mild price to pay, especially in the common practical situations where
code overriding is infeasible or cost-ineffective. At the same time, we are working on alternative ways
to implement the ideas of Jeeg, aiming both at a lower computational overhead and at more expressive
logics.

Jeeg is an aspect-oriented language. Synchronization constraints, expressed declaratively, are totally
decoupled from the body of the method, so as to enhance separation of concerns. The structure of the
paper is as follows: Section 2 presents the language, while Section 3 cures the classical inheritance
anomalies with it; Section 4 treats the expressive power of Jeeg. More details on the language and
its current implementation are provided, respectively, in Sections 5 and 6. In Section 7 we discuss
the performance overhead brought forth by the Jeeg methodology. Finally, we discuss related and
further work. The appendices provide some optional material, most notably an example of Jeeg-to-
Java translation.

2. A TASTER OF JEEG

Jeeg differs from Java in the use of new synchronization primitives which replace the wait(),
notify(), and notifyAll() constructs. In Jeeg the synchronization code of a class is not inlined
in its methods; rather it is specified separately. This can be done either via a sync section of the class
definition or via an XML file associated with the class. In the former case, a Jeeg class has the following
structure:

public class MyClass {
sync {

....
}
// Standard Java class definition
...

}
The sync section consists of a sequence of declarations of the form:

m : φ;

where m is a method identifier and φ, the guard, is a formula in a given constraint language to be
described shortly. Methods associated with a guard are said guarded. Intuitively, m : φ means that at a
given point in time a method invocation o.m() can be executed if and only if the guard φ evaluated
on object o yields true. Otherwise, the execution of m is blocked until φ becomes true. Then, the
resumption of m follows the familiar rules of the Java notifyAll primitive. Guarded methods are
executed in mutual exclusion at the level of objects. Indeed, from a Java perspective, every guarded

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 543

method is implicitly synchronized. Synchronization constraints in Jeeg are thus exclusively at the
method level: there is no synchronized key word and it is not possible to define guarded regions.

The XML description of synchronization complies with the document type definition (DTD) of
Appendix A and is described later in Section 5.

The expressive power of this model of synchronization depends of course on the choice of the
constraint language. Indeed, if we limit φ to Java Boolean expressions we obtain a declarative version
of the standard synchronization mechanism of Java.

2.1. The constraint language

Choosing the constraint logic is a trade-off between expressiveness and efficiency, as the truth of
formulae must be verified at every method invocation. We need a logic that is more expressive than Java
Boolean expressions but does not substantially worsen the computational cost of formula evaluation, so
that the computational overhead does not overcome the expressiveness benefits. A logic that suits our
purpose is LTL [4]. As we shall see, (a variation of) LTL used in the context of Jeeg gives a substantial
improvement in the expressiveness of Java Boolean expressions, allowing in particular the vanishing
of the history-sensitive inheritance anomaly, and at the same time keeps the overhead on evaluation
time on the linear scale.

LTL introduces time in propositional and first-order logic. It becomes possible to reason about
dynamic, evolving systems by expressing properties referring to what happened in the past or to what
will happen in the future. For example, one can write

Previous x > 0

which holds if those system states whose preceding state validates the proposition ‘x is greater than 0’,
or also

x > 0 Since y < 0,

true if at some point in time y was less than 0 and at all subsequent instants (that is since then) x has
been positive.

The syntax of our constraint language of choice, CL, is as follows:

φ ::= AP | !φ | φ && φ | φ || φ | Previous φ | φ Since φ

A formula φ of CL is defined starting from atomic formulas AP, denoted by p, q, . . . , which are
Java Boolean expressions. We consider exclusively pure Boolean expressions, with no side-effects,
method invocations or references to objects (other than the implicit references to self); also, φ can
only refer to private/protected fields of the class it belongs to. Note that we could allow particular
methods which can be assumed to have no side-effects, e.g. Object.equal(), in an ad hoc
manner. CL has the obvious conjunction &&, disjunction || and negation ! connectives. In addition
to these, it provides two temporal past operators: previous and since, whose informal meaning we
described above. This logic is a variation of LTL known as past tense LTL [5]. By combining the basic
operators it is possible to define two interesting, self-explanatory, auxiliary ones: always, sometime.
Formally, Sometime φ � true Since φ and Always φ � !Sometime !φ. For the user’s convenience,
these operators are predefined in the Jeeg implementation.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

544 G. MILICIA AND V. SASSONE

All this would not be very helpful in our attempt to tackle the history-sensitive anomaly without a
way to refer to the history of object method invocation. The notion of event introduced below serves
this purpose.

Definition. (Event) An event for object o is the execution of one of its methods.

From this basic notion we can define Hπ(o), the history of object o in (a concurrent) computation π .
Informally, this is the sequence of the events of o in π , in the order they occur, together with the
states they connect. In order to make this precise, observe that thanks to our assumption that guarded
methods run in mutual exclusion, each computation unambiguously defines a sequence of method
invocations for each object involved. So, without loss of generality, as far as o is concerned, the generic
computation π will have the shape

h0
0 · · ·h0

j0
o.m1h

1
0 · · · h1

j1
o.m2h

2
0 · · · h2

j2
· · ·

where mi are all the activations of a guarded method of o in π and hi0 · · ·hiji are sequences of Java
heaps (such sequences arise by assignments to public variables or method invocations—either of the
unguarded and other objects’ methods). Formally, Hπ(o) can then be defined by induction on k,
the number of o guarded methods in π ,

Hπ(o) =
{
h0
j0

for k = 0

Hπk (o)mkh
k
jk

for k > 0

where πk is the subcomputation of π terminating just before the invocation on o.mk.
Note that such a definition makes perfect sense under our hypothesis. As guards may only refer to

private/protected variables, their value can only be affected by invocation of methods of o. It is therefore
a sensible choice to assume h0

j0
h1
j1
h2
j2

· · · as the sequence of states of o for the evaluation of temporal

guards. Note also that only the part of hkjk containing the values of non-reference private/protected
variables of o, say σk , is needed for that. We therefore represent object histories by sequences such as

Hπ(o) ≡ σ0
m1−→ σ1

m2−→ σ2
m3−→ σ3 · · ·

where the computation π will most often remain implicit. To exemplify the definition consider the
simple counter class in Figure 1.

If we execute

Counter c = new Counter();
c.inc();
c.inc();
c.dec();

we obtain the history in Figure 2. Interwoven executions in the presence of concurrent objects easily
become more complex. Nevertheless, the notion of history of each single object remains relatively
simple. Figure 3, for instance, illustrates histories in the case of two concurrent threads executing the
code above on two distinct counters.

For practical convenience we will think of event mi as a reference to a special identifier event in σi .
So, we will write

H(o) ≡ σ0σ1σ2σ3 · · ·

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 545

public class Counter {

private int n = 0;

public void inc() {
n++;

}
public void dec() {

n--;
}

}

Figure 1. A simple counter.

n =0
inc()

n =1
dec()

n =2n =1
inc()

Figure 2. History.

n =2
inc()

n =0 n =0n =1
inc() dec()

n =0 n =1
inc()

C1

C2

C1

n=0

C1

n=1
C1

n=2

C2

n=0

C1

n=1

C2

n=0

C1

n=1

C2

n=1

C1

n=1

C2

n=0

Figure 3. Extracting the history.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

546 G. MILICIA AND V. SASSONE

public class Buffer {

protected Object[] buf;
protected int MAX;
protected int current = 0;

Buffer(int max) {
MAX = max;
buf = new Object[MAX];

}

public synchronized Object get() throws Exception {
while (current<=0) {

wait();
}
current--;
Object ret = buf[current];
notifyAll();
return ret;

}

public synchronized void put(Object v) throws Exception {
while (current>=MAX) {

wait();
}
buf[current] = v;
current++;
notifyAll();

}
}

Figure 4. Concurrent bounded buffer in Java.

with the understanding that σi binds the identifier event to (a value representing method) mi .
(References to event are undefined in σ0.) For example, in the third state in Figure 2, event yields
inc. Identifier event can be used by CL. In this way history information finds its way into our
constraint language.

Next, we give formal semantics to CL by defining the relation Hπ(o) |= φ expressing that property φ
holds for object o after a computation π . Let � denote Hπ(o). For all indexes k in �, we define
�k |= φ, that is φ holds at time k, by structural induction on φ as follows:

�k |= p iff σk |= p (p is true at σk)

�k |= !φ iff not �k |= φ

�k |= φ || ψ iff �k |= φ or �k |= ψ

�k |= Previous φ iff k > 0 and �k−1 |= φ

�k |= φ Since ψ iff �j |= ψ for some j ≤ k, and �i |= φ for all j < i ≤ k

Finally, we convene that � |= φ iff �0 |= φ.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 547

3. THE INHERITANCE ANOMALY

A striking example of the inheritance anomaly, borrowed from [3] and already mentioned in the
introduction, applies to the class Buffer in Figure 4, a simple implementation of a bounded buffer in
Java. Consider defining a subclass of Buffer that provides an additional method gget that removes
an element from the buffer only if the last operation performed by the buffer was not a get. The class
HistoryBuffer in Figure 5 is a possible solution. It illustrates a characteristic occurrence of the
inheritance anomaly. Ideally, we would expect method gget to be independent of the methods defined
in the parent class. A deeper analysis shows that gget can only be implemented if both inherited are
redefined, resulting in the loss of any code reuse that inheritance should have provided.

The example in Figure 5 follows closely the original presentation seen in [3]. However, it is possible
to minimize the amount of code rewriting relying on the implementation of the methods get and put
found in the super-class. We could write

public class HistoryBuffer extends Buffer {
boolean afterGet = false;

public HistoryBuffer(int max) {super(max);}

public synchronized Object gget() throws Exception {
while ((current<=0)||(afterGet)) {

wait();
}
afterGet = false;
return super.get();

}
public synchronized Object get() throws Exception {

Object o = super.get();
afterGet = true;
return o;

}
public synchronized void put(Object v) throws Exception {

super.put(v);
afterGet = false;

}
}

This comes at the price of some redundant synchronization. Nevertheless, the problem remains.
The addition of the method gget forces us to revise the implementation of seemingly unrelated
inherited methods.

This kind of anomaly arises from the fact that gget is a history-sensitive method. Generally
speaking, the inheritance anomaly depends on the synchronization primitives present in the language,
and different primitives result in different varieties of anomaly [3]. In particular, languages based on
method guards and their cousin technologies run the risk of suffering from the history-sensitiveness
of acceptable states. This is indeed the case of Jeeg, as its synchronization mechanisms are based on

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

548 G. MILICIA AND V. SASSONE

public class HistoryBuffer extends Buffer {
boolean afterGet = false;

public HistoryBuffer(int max) {super(max);}

public synchronized Object gget() throws Exception {
while ((current<=0)||(afterGet)) {

wait();
}
current--;
Object ret = buf[current];
afterGet = false;
notifyAll();
return ret;

}
public synchronized Object get() throws Exception {

while (current<=0) { wait(); }
current--;
Object ret = buf[current];
afterGet = true;
notifyAll();
return ret;

}
public synchronized void put(Object v) throws Exception {

while (current>=MAX) { wait(); }
buf[current] = v;
current++;
afterGet = false;
notifyAll();

}
}

Figure 5. The class HistoryBuffer in Java.

a variation of method guards. Therefore, a good test of expressiveness for Jeeg is given by handling
subclassing by history sensitive methods and gget above. It should not come as a surprise now that
the additional expressive power added to method guards by the temporal aspects of CL suffices to solve
several occurrences of the inheritance anomaly. In this section we exemplify such expressiveness, while
in the following we try to quantify it formally.

Consider the Jeeg version of the class Buffer as defined in Figure 6. We can define a class
HistoryBuffer in Jeeg as in Figure 7. This example shows how the use of the temporal operator
Previous avoided the occurrence of the inheritance anomaly. We no longer need to introduce an instance
variable to keep track of the last operation performed. CL gives us enough expressive power to do
without.

As already discussed in the introduction, a different kind of inheritance anomaly that plagues guard-
based languages arises in the case of mix-in classes. In [3], the authors use multiple inheritance to

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 549

public class Buffer {

sync {
put : (current < MAX);
get : (current > 0);

}

protected Object[] buf;
protected int MAX;
protected int current = 0;

Buffer(int max) {
MAX = max;
buf = new Object[MAX];

}

public Object get() throws Exception {
current--;
Object ret = buf[current];
return ret;

}

public void put(Object v) throws Exception {
buf[current] = v;
current++;

}
}

Figure 6. The Buffer class in Jeeg.

show this variant of the inheritance anomaly. Java and Jeeg do not provide multiple inheritance, but
the use of interfaces results in similar problems. Consider the class LockBuf in Figure 8. This is
a subclass of the class Buffer that implements the Lock interface resulting in a lockable buffer.
A locked buffer must not accept any other message than unlock. One would expect the newly
introduced methods to be orthogonal to the inherited ones (this would seem even more natural if
they were inherited by multiple inheritance). Naturally, in Java, we cannot simply implement the
Lock interface to have a lockable buffer, as methods put and get need to be redefined to account
for the new locked and unlocked states, possibly introducing a new Boolean variable locked to
distinguish between the two states the buffer can be in. Jeeg solves the problem elegantly, as can
be seen in Figure 8, again by exploiting the temporal operators of the constraint language. Indeed,
lock and unlock are history-sensitive methods. Note that the synchronization constraints of the
inherited methods are overridden, while the method definitions are not. As explained in Section 5
below, in Jeeg method definitions and their synchronization constraints are orthogonal and can be
overridden/inherited separately. As expected, the syntax super.getConstr allows us to refer to the

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

550 G. MILICIA AND V. SASSONE

public class HistoryBuffer extends Buffer {

sync {
gget: (Previous (event != get)) && (current > 0);

}

public HistoryBuffer(int max) {
super(max);

}

public Object gget() throws Exception {
current--;
Object ret = buf[current];
return ret;

}
}

Figure 7. The HistoryBuffer class in Jeeg.

public interface Lock {
public void lock();
public void unlock();

}

public class LockBuf extends Buffer implements Lock {

sync {
get : (super.getConstr) &&

(! Previous (event==lock));
put : (super.putConstr) &&

(! Previous (event==lock));
lock : (! Previous (event==lock));
unlock : true;

}

public LockBuf(int max) {
super(max);

}

public void lock() { }

public void unlock() { }
}

Figure 8. A lockable buffer.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 551

synchronization constraint of a given method, get in this case, as defined in the super class. In general,
for the constraint attached to method m in the super class, we write super.mCostr.

4. EXPRESSIVENESS OF JEEG

When introducing a new synchronization primitive in a concurrent object-oriented language, it is often
difficult to assess its impact on the inheritance anomaly in a quantitative manner. Building on the
large body of results on LTL, such analysis is however possible for Jeeg. In particular, we adapt to
our context a characterization of LTL expressiveness in term of ‘star-free’ regular languages. (For a
thorough introduction to LTL the reader is referred to [6].)

The question we are interested in is to what degree does Jeeg solve the inheritance anomaly?
According to [3], in a language like Java the anomaly arises when the observable behavior of an object
is more complex than what can be ascertained from its internal state. For instance, the internal state of
a Buffer object cannot account for the information of whether or not the last method to be executed
was a get. Therefore, in order to define gget, we need to refine the internal state of the object, which
comes at a heavy price. The constraint language of Jeeg, however, allows us to describe sequences
of events and so ascertain more behaviors from the same state. As long as CL can describe a certain
sequence, we can write a constraint that avoids the need of state refinement. A measure of how much
of the inheritance anomaly disappears in Jeeg can thus be obtained by measuring which sequences of
states are definable in CL. For the purpose of this section, we assume AP finite.

Definition. (General Regular Expressions) Given a finite alphabet A, the regular expressions over
A ∪ {ε}, where ε is a special symbol such that ε �∈ A, are defined by the following grammar:

re ::= ε | a | re · re | re + re | ¬r | re∗
where ε denotes the empty word, a ∈ A denotes the language consisting of a single string a, and ·,
+, ¬ and ∗ represent language concatenation, union, negation with respect to A∗ and Kleene closure,
respectively. The star-free regular expressions are the regular expressions with no occurrence of ∗.

A classical result about LTL states that the sets of state sequences definable by LTL formulae on
atomic propositions AP coincide with the star-free regular languages on the alphabet ℘(AP), the
powerset of AP. Spelling this out, a set of state sequences X is the set of all � that satisfy a given
φ of LTL if and only if X is a star-free regular language. The reader is referred to [7] for the details.

Applied to our framework, this result gives a first answer to our question: CL can define the sets of
sequences of states that are star-free regular languages on finite subsets of AP. To refine this statement,
let us observe that we can identify a certain state of an object (or better, its part expressible in CL),
by a Boolean formula on its (private/protected) field’s values. Let Ac be the set of these Boolean
expressions. It follows that a certain sequence of states can be identified by a set of formulae P
in Ac. Note that, in general, P will denote a set of sequences of states; that is, all the sequences
such that � |= P (meaning σi |= pi , for every i). In this context, the following theorem formalizes
the correspondence (from the point of view of the class C) between sequences of states denoted by CL
formulae and sequences of states corresponding to star-free regular expressions on Ac.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

552 G. MILICIA AND V. SASSONE

Theorem. (Characterizing CL) Let C be a class and X a set of state sequences. Then, for a given CL
formula φ on C, X = {� | � |= φ} if and only if there exists a star-free regular expression re on AC
such that � ∈ X iff � |= P for some P ∈ re.

It is interesting to specialize this result when AP is restricted to conjunctions of atomic formulae of
the kind event == m. In such a case, CL expresses properties of sequences of events—as states are
only distinguishable in that respect—and captures precisely those sets of sequences of events that are
star-free regular languages on the alphabet of method identifiers.

The characterization in terms of regular languages also provides intuition about what cannot be
expressed in CL and, therefore, will result in the occurrence of inheritance anomalies. We show an
admittedly contrived example below.

Example. Consider a class representing a simple shared resource which can be simultaneously held by
multiple clients:

public class SharedResource {
sync {

request: true;
release: true;

}
public void request() {

...
}
public void release() {

...
}
...

}

Before using the resource, clients are supposed to call the method request. When the client no longer
needs the resource, it should call the method release. To keep the example simple, we assume that
clients respect this protocol.

Suppose that we want to define a class SeizableResource that allows clients to gain exclusive
access to the shared resource. An additional method exclusiveRequest must be provided.
Clearly, this method should be allowed to execute only when no other client is using the resource.
To accomplish this we must make sure that any call to the method request was followed by a call
to the method release. Unfortunately this constraint cannot be expressed by LTL. Indeed from a
language point of view, we want to know whether the history of the object is a word in the language:

M ::= request M release | MM | ε | ...

where the dots stand for any method identifier in the class SharedResource. It is well known that
this language, a language of balanced parentheses, is not star-free or regular. As a consequence, it is
not possible to write a synchronization constraint for the method exclusiveRequest in CL; that is,
it is not possible to find a formula that describes the states where exclusiveRequest is enabled.
What we need to do is to manually keep track of whether the resource is being used or not:

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 553

public class SeizableResource extends SharedResource {
sync {

request : ! (Previous (event==exclusiveRequest));
exclusiveRequest : (! (Previous (event==exclusiveRequest)))

&& (count==0);
}

int count = 0;

public void request() {
count++;
...

}

public void release() {
count--;
...

}

public void exclusiveRequest() { ... }
}

The derived class uses one counter count to ascertain whether the resource is currently being used
by any client. To accomplish this book-keeping, it is necessary to redefine the base-class methods
request and release.

The example above is typical. A constraint which cannot be expressed in LTL must involve some
form of recurrent counting. (For an in-depth discussion on these issues, we again refer the reader
to [6,8].)

Example. The classic HistoryBuffer example has been solved using Jeeg in Figure 6. It is
interesting to analyze the (simple) temporal constraint used in the example in terms of star-free regular
expressions. The constraint relative to the gget method is the following:

(Previous (event != get)) && (current > 0);

For simplicity let us restrict ourselves to its temporal component:

(Previous (event != get))

In light of the previous discussion on the equivalence of (past) LTL formulae and star-free regular
expressions, we give the same constraint in its regular expression form. Intuitively, the language the
formula describes is that of ‘all the words in the trace alphabet not ending with the symbol get’.
We can define A∗ ≡ ε + ¬ε. With abuse of notation we denote the formula (event == get)
simply as get. In this manner occurrences of the event get in the history of the object could be
recorded simply as get. The corresponding (star-free) regular expression is

¬(A∗ · get)
which formalizes the intuitive set of all the words that do not end with the symbol get.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

554 G. MILICIA AND V. SASSONE

5. DIGGING DEEPER INTO JEEG

In this section we look deeper into the interaction between Jeeg synchronization primitives and the
other available language features.

Synchronized and unsynchronized methods

In Jeeg, methods for which a synchronization constraint is specified are executed in mutual exclusion.
In Java terms, they are synchronized. On the other hand, methods for which no synchronization
constraint is specified have no mutual exclusion guarantee. Clearly, an undisciplined use of
unsynchronized methods may lead to mutual exclusion problems. This is particularly relevant in our
setting as the evaluation of a guard must be atomic in order to be meaningful. If an unsynchronized
method attempts to modify an attribute of the object while a guard is being evaluated we may end up
with an inconsistent result. A trivial example will clarify the situation.

public class Counter {
sync {

process : count%20==0;
}
protected count=0;
...
public inc() {count++;...}
public process() {...}

}
In the example above the method inc is not executed in mutual exclusion, as a consequence it can
modify the value of count during a call to the method process and the evaluation of its guard.
Naturally, a call to inc can change the value of the guard for process after its evaluation, and
this would leave the method process to be executed in an inconsistent state. A similar situation
would occur if guards were allowed to use public attributes. To avoid these situations, the attributes
occurring in a guard must be accessed in mutual exclusion with the evaluation of the guard. Therefore,
in Jeeg attributes used in guards can only be modified by synchronized methods.

Java (and consequently Jeeg) allow methods and attributes to be declared static. Static fields and
methods are common to a class rather than to each of its instances. To access a static attribute,
therefore, it is not enough to own the lock for a certain object instance. Indeed, such a lock does not
guarantee mutually exclusive access to static attributes. The lock needed to obtain such access must be
on the class rather than on the object. As a consequence, static fields can only be modified by static
synchronized methods. Conversely, static synchronized methods own a lock on the class rather than
on a specific object instance. For this reason such methods are forbidden to modify non-static object
fields.

Another issue related to unsynchronized methods is that the step-wise history of the object is not
well defined as regards to their execution order. Indeed, there can be two methods active at the same
time. To force an ordering between unsynchronized methods we adopt the policy of accounting for
methods in the history according to the moment their execution finishes. Note, however, that in a
multiprocessor system, this notion is not well-defined. It is therefore bad programming practice in

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 555

public class C {
int i = 0;

sync {
m : (event != m) since (i>0);

}

public void m(Object o) {
....

}

public void m(int i) {
....

}
}

Figure 9. Method overloading.

such systems to rely on guards whose truth values depend on the relative ordering of unsynchronized
methods.

Method overloading

From a synchronization point of view Jeeg does not distinguish between different versions of an
overloaded method. The synchronization granularity stops at the method identifier level.

In the example in Figure 9, the synchronization constraint applies to both definitions of the
overloaded method m. This choice is motivated by the fact that synchronization constraints relate to
the essential behavior of a method, which we feel should not be changed by overloading. One could
certainly define an overloaded method m whose definitions access the shared attributes of the object
in a completely different manner. It would not be difficult to support these situations by basing
synchronization constraints on method signatures rather than identifiers.

Inheritance and method overriding

Consider a subclass Xbuf of Buffer as defined in Figure 10. There we assume the existence of a
support class Couple that only wraps up two values as an object. The new class does not override
any method of its base class, therefore the methods are inherited together with their synchronization
constraints. The additional constraint for the new method is independent of the existing ones.

In Jeeg method definitions and their synchronization constraints are completely decoupled.
This scales up to method overriding and indeed it is possible to selectively override the method
definition, its synchronization constraint, or both.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

556 G. MILICIA AND V. SASSONE

public class Xbuf extends Buffer {

sync {
get2 : (current > 1);

}

public Couple get2() {
current--;
Object ret1 = buf[current];
current--;
Object ret2 = buf[current];
return new Couple(ret1, ret2);

}
}

Figure 10. Inheriting synchronization constraints.

In Figure 8 we show an example of a class which does not override the bodies of its get and put
methods, but overrides their synchronization constraints making them stricter. In this case we say that
the synchronization constraint for the super-class has been covariantly redefined. In [9], the author
favors this manner of synchronization overriding. There is, however, no general agreement on this
issue. As an example the language Rosette [10] is based on making synchronization constraints less
strict in the derived classes, and other authors argue in favor of this choice [11,12]. In Jeeg both manners
of synchronization overriding are possible, indeed we believe that both techniques have their use in
different situations. As an example of a derived class which makes the synchronization constraints
of the parent less stringent, consider the simple class representing a resource (Figure 11). The base
class Resource allows the acquire method to be called only when the resource is not already
taken. The derived class ReadOnlyResource must adopt a less stringent policy, it models a read-
only resource, as a consequence it can be shared without mutual exclusion problems. For this reason
it makes sense to allow multiple clients to share the resource, to accomplish this the synchronization
constraint of the method acquire is made less stringent than in the parent class.

In Figure 12 we see the other extreme, a class which overrides a method but does not override
its synchronization constraint which remains the one inherited. Its semantics are straightforward,
the method get returns the object stored in the buffer as a chunk of bytes. Clearly this does not
affect its concurrent behavior and it is safe to keep its synchronization constraint unchanged.

Jeeg and exceptions

Method execution might be stopped by the occurrence of a unhandled exception. With respect to the
object history two possibilities arise. We could choose to keep the method in the history or ignore it.
It is possible to provide examples favoring one or the other approach. Both solutions pose no

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 557

public class Resource {
int ownerID;
boolean busy;
....
sync {

acquire : ! busy;
release : true;

}
public void acquire(int ID) {

ownerID = ID;
busy = true;

}
public void release() {

busy = false;
}

}

public class ReadOnlyResource extend Resource {
sync {

acquire : true;
}

}

Figure 11. A resource hierarchy.

public class SerBuf extends Buffer {

public Object get() {
current--;
// A byte representation of buf[current]
byte[] b = ...
return b;

}
}

Figure 12. A serializing buffer.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

558 G. MILICIA AND V. SASSONE

implementation challenges. In the current implementation, we chose to only put methods in the history
which completed their execution.

XML constraints

In order to favor the separation between method definitions and synchronization code, Jeeg allows for
the synchronization constraints to be specified separately in an XML file. When the Jeeg compiler
processes a source file ClassName.j1 it looks for a XML file named ClassName.xml. If it
finds the file then it validates it against the relevant DTD, which can be found in Appendix A. If the
validation is successful the synchronization constraints it describes are weaved into the resulting class
file. If a sync section is present in the class definition, it is overridden by the external constraints in
the XML file.

To give a quick taste of how to define synchronization constraints using a XML file, consider
the bounded buffer example in Figure 7. Its sync section is equivalent to the following XML
description:

<?xml version=’1.0’ ?>
<!DOCTYPE Jeeg SYSTEM "Jeeg.dtd">

<Jeeg>
<Class name="HistoryBuffer" super="Buffer" version="j1">

<Method name="gget">
<And>

<Arg>
<Previous>
<BooleanExpression>

event != get
</BooleanExpression>

</Previous>
</Arg>
<Arg>
<BooleanExpression>
current > 0

</BooleanExpression>
</Arg>

</And>
</Method>

</Class>
</Jeeg>

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 559

6. IMPLEMENTATION

The current Jeeg implementation‡ is a pre-processor which, given a Jeeg source file, generates an
equivalent .java file and compiles it to bytecode. The resulting class files rely on a runtime system.
The purpose of the runtime system is to implement a runtime evaluator for the CL formulae used in the
program.

Runtime evaluation of CL expressions

The CL language is essentially a variation of LTL based on past-tense temporal operators. Every time
a guarded method is called its execution depends on the truth value of a certain temporal formula:
its synchronization constraint. If the constraint evaluates to true the method is executed, otherwise it is
blocked until the condition becomes true.

Runtime evaluation of LTL formulae is a recurrent problem. In an wider context the problem can be
stated as follows:

Given a finite trace � and a LTL formula φ, does � |= φ ?

This problem appears frequently when trying to apply model-checking techniques to the verification of
Java or C++ programs [13–18].

Traditionally, LTL model checking is accomplished by first translating the LTL formula in a Büchi
automata [19] and then proving properties on them [19,20]. Although in [13,14] the authors discuss
why such a solution is not ideal to the runtime verification on finite traces, this approach is nevertheless
used by the JPaX runtime analysis tool [15].

Dealing with past-tense operators gives us an advantage. The dynamic programming algorithm
presented in [14] requires as input the trace of the program to evaluate a certain formula, indeed it
traverses the program trace backwards. This implies that the algorithm is not ‘online’, i.e. it cannot be
executed at the same time as the program it refers to. By duality, the same algorithm becomes online for
the past fragment [21]. The algorithm has complexity O(m), where m is the size of the LTL formula.
An alternative approach would rely on modifying the automata-based algorithm proposed in [15] to
adapt them to past-tense operators.

An implementation has thus at least two choices available. The current Jeeg implementation relies
on a variation of the dynamic programming algorithm. We found this choice to be the most natural.
The algorithm is efficient, indeed weakening the logic would not result in a faster algorithm. Intuitively,
given a Jeeg program and its set of synchronization constraints the compiler generates a runtime
evaluation algorithm for them and weaves it into the business code of the program. At every step in
the object history, i.e. method execution, the evaluator updates the truth values of the synchronization
constraints.

The evaluation algorithm consists of (repeated) visits to the syntax tree of the formula.
To focus the ideas, let us consider the example of the temporal formula

(Previous(x > 0)) && !(y < 0)

‡Available at: http://www.brics.dk/∼milicia/Jeeg/.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

560 G. MILICIA AND V. SASSONE

and its corresponding tree:

And

Previous

x>0

Not

y<0

Every node of the tree represents a subformula of the original temporal formula and is labeled by two
attributes, now and before, which hold the truth value of the corresponding sub-formula at the current
time and one step before, respectively. The task of the algorithm is to visit the tree and update the
values of the two attributes for every node.

In Section 2.1 we adopted strong semantics for our temporal operators; that is, we assumed that
Previous can only be applied at times greater than zero. As a consequence, at the initial instant the
before attribute of every sub-formula is set to false. The truth value of the now attribute is initialized
when the object is created and depends on the initial state of the object. For every node φ we use the
notation φ0 to refer to its first (left-wise) child and φ1 to its second child, if the node represents a binary
operator. Attributes of the children are denoted by φi .now and φi.before. The algorithm performs a
simple depth-first visit of the tree and for every node φ updates the value of the before and now fields.
First we perform the assignment φ.before = φ.now, then, depending on the node type, we update the
now field according to the following rules:

previous now = φ0.before
always now = before and φ0.now
sometimes now = before or φ0.now
since now = φ1.now or (before and φ0.now)
and now = φ0.now and φ1.now
or now = φ0.now or φ1.now
not now = not φ0.now
AP now = eval(φ)

To clarify the working of the algorithm, consider a simple formula

Previous(x == 1)

and a trivial counter class such as that we presented in Figure 1. Suppose we execute the code:

Counter c = new Counter();
c.inc();
c.inc();
c.dec();

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 561

n =0 n =1
inc() inc()

Previous
now=false
before=false

x==1
now=false
before=false

Previous

now=false
before=false

x==1

now=true
before=false

Previous

now=true
before=false

x==1

now=false
before=true

n=2
dec()

n=1

Previous

now=false
before=true

x==1

now=true
before=false

Figure 13. History.

then Figure 13 shows how the attributes in the formula tree evolve with respect to the history of the
object c.

It is easy to see that the complexity of the runtime evaluation algorithm is linear in the size of the
formula tree. The runtime overhead involved is thus linear in the size of the synchronization constraints.

Synchronization manager

For the evaluation algorithm to be sound, formulae must be evaluated at every step in the program
history, i.e. after every method execution. This is accomplished by a synchronization manager through
a mechanism of method call interception (MCI), typical of the implementation of aspect-oriented
languages.

The synchronization manager takes control after a method call. Then it checks whether the
synchronization constraint for the method is verified. Note that the constraint must not be evaluated
at this stage, its truth value is already available. This is the case as the truth value of synchronization
constraints is updated after the execution of a method. If the constraint is true the control goes back
to the method code, otherwise the synchronization manager performs a wait() and puts the method
on hold. After the execution of a method is accomplished, the control shifts back to the synchronization
manager. At this point the synchronization constraints are evaluated. Since the execution of a method
may change the state of the object, after updating the value of the synchronization constraints the
manager issues a notifyAll() statement. Blocked methods may then attempt to proceed again.

To perform its tasks the synchronization manager must have access to the private/protected fields
of the object. To accomplish this we chose to make the synchronization manager an inner class of the
object it manages.

A complete example showing the Java code generated from a Jeeg source file can be found in
Appendix B.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

562 G. MILICIA AND V. SASSONE

7. BENCHMARKS

To assess the feasibility of our approach we performed some targeted benchmarking on the current
prototype implementation of the Jeeg compiler. In this section we outline our results.

7.1. General setting

When benchmarking code running in a JVM care must be taken to avoid interference from the garbage
collector. Furthermore a single measurement is no valid indication of the actual time spent during an
operation. Multiple measurement of the same experiment must be performed instead. We take their
average as a fair result of our experiment.

Although Java is designed to be platform independent, different implementations of the virtual
machine for different operating systems might perform differently. We chose to perform our tests on
two popular operating systems: Linux and Windows 2000.

We chose to run the virtual machine with no optimizations, in particular the code was only
interpreted, the just-in-time compiler was turned off. In this manner we could run the same tests a
number of times without speed-ups. Our benchmarks are thus a measure of the worst case scenario,
when the code is executed only once and thus no gain is to be expected by just-in-time compilation.
All the programs were compiled and run using the J2SE 1.4 and the -Xint option.

To have a better feel of the performance impact in a realistic setting we performed our tests on
low-end and high-end machines. Below we list the machines we used.

• Machine 1: AMD 1800+XP, 256 MB, Windows 2000, Jdk 1.4.
• Machine 2: AMD 1800+XP, 256 MB, Linux RedHat 6.2, Jdk 1.4.
• Machine 3: Celeron 300 Mhz, 192 MB, Windows 2000, Jdk 1.4.
• Machine 4: Pentium 4 1.6 Ghz, 512 MB, Linux 2.4.18, Jdk 1.4.

The code used for the benchmarks is available on the Web at http://www.brics.dk/∼milicia/Jeeg.

7.2. Benchmark results

The overhead introduced by our methodology is felt first at the time of object creation, and then
whenever a call to a synchronized method is performed. We begin by showing the test results in these
two situations and conclude with an evaluation of the performance impact of the Jeeg methodology.

Object creation

At object creation time the structures representing the (temporal) formulae of the synchronization
constraints must be built. This results in the creation of as many objects as logic operators present in the
formulae. As a consequence we expect object creation to become slower as synchronization constraints
grow more complex. To quantify the overhead we timed the creation of objects with increasing complex
synchronization constraints (in the size of the formulae involved). The constructor of the object was
otherwise empty. The results of our tests can be found in Figure 14.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 563

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

Constraint Size

T
im

e
in

 m
s

Machine 3

Machine 2

Machine 4

Machine 1

Figure 14. Object creation overhead.

0

20

40

60

80

100

120

140

160

0 50 100 150 200

Constraint Size

T
im

e
in

 m
s Machine 1

Machine 2

Machine 3

Machine 4

Figure 15. Method call overhead.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

564 G. MILICIA AND V. SASSONE

1
30

50
73

122

1248163264
0

200

400

600

800

1000

1200

Ti
m

e
in

 m
s

Constr
ain

t S
ize

Threads

Machine 2 Machine 3

1
30

50
73

122

1248163264
0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
in

 m
s

Constr
ain

t S
ize

Threads

Figure 16. Method call overhead.

Method call

Every time a (synchronized) method is called the algorithm described in Section 6 must be performed.
This results in the evaluation of all synchronization constraints. The overhead we face is thus
proportional to the sum of the sizes of the logic formulae describing the constraints. Clearly every
method call will incur the same overhead regardless of the size of its own synchronization constraint.

To measure the overhead involved in our technique we tested method calls on objects with increasing
complex synchronization constraints. We made sure, to avoid any biased result, that the constraints
would always evaluate to true. Method calls performed no function, in this way we made sure that
we only measured the unavoidable overhead brought up by our technique. The results of our tests can
be seen in Figure 15.

A different performance problem could result from the fact that the synchronization constraints
must be evaluated in mutual exclusion. The object will be locked during the evaluation. If a number of
threads are actively accessing the object this could slow down the method calls sensibly. To evaluate
this issue we performed the test above with an increasing number of threads. The results can be found
in Figure 16. We can see that in the presence of large constraints and over 50 threads actively using the
objects we face a sensible slow-down.

We wish to remark that Jeeg takes care of all the synchronization constraints of the object.
An equivalent Java program must accomplish the same results in a different fashion, for example
using Boolean variables to keep track of its state. An interesting experiment is thus the comparison of

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 565

0

20

40

60

80

100

120

140

0 50 100 150 200 250

Threads

T
im

e
in

 m
s

Machine 3

Java

Machine 1

Figure 17. HistoryBuffer performances.

Figure 18. HistoryBuffer performances.

two semantically equivalent Jeeg and Java programs. We use as our test-bed the HistoryBuffer
example of Section 3. Figure 17 compares the execution time for a method call to a Java implementation
of the class HistoryBuffer (as seen in Figure 5) and its Jeeg counterpart (as seen in Figure 7).
The high-end machines feel almost no performance loss; on the other hand, if many threads are active
at the same time, the low-end machine suffers from severe performance losses. However, even the
low-end machine performs well in the presence of as many as 64 active threads, as Figure 18 shows.

7.3. Evaluation

Our tests show that under low-load (below 70 threads) even the most complex synchronization
constraints yield little performance overhead. Low-end machines face worse scalability problems due

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

566 G. MILICIA AND V. SASSONE

to the additional time the object is kept locked. If the machine cannot perform the evaluation algorithm
fast enough a number of threads will be kept waiting.

Experience shows that the synchronization constraints of an object seldom reach a length of over 10
or 20 logical connectives. Our benchmarks show that for such objects the performance loss is negligible
even in case of high-load (more than 200 active threads).

We are currently evaluating possible optimization strategies for the formulae evaluation algorithm.

8. RELATED WORK

The idea of specifying synchronization constraints in programming (as opposed to verifying) using
a temporal logic has, to the best of our knowledge, not been explored before. Indeed, the problem
of runtime evaluation of LTL formulae has only recently come to the attention of the research
community [13,17].

The idea of a complete separation between the definition of a method and its synchronization
constraints is known to be helpful in avoiding the inheritance anomaly [3,22,23]. In this work, we
uphold the concept by making synchronization code and method definitions totally independent, to the
degree that they do not need to be specified in the same file. In this regard Jeeg is inspired by the current
trends in component-based and aspect-oriented programming [24].

Frølund proposed a methodology for selective inheritance of synchronization constraints [9].
His proposal, based on method guards, favors the covariant redefinition of synchronization constraints
in derived classes. As we pointed out in Section 5, this manner of synchronization redefinition is not
universally accepted. Indeed, some languages [10,25] take the opposite view and allow the derived class
to make the synchronization constraints less stringent, that is contravariant. Examples exist in favor
of both approaches; as a consequence we decided to allow both manners of overriding. From the point
of view of the inheritance anomaly, Frølund’s methodology is subject to the usual problems related to
method guards, i.e. the history dependent variants of the anomaly.

Meseguer [25], analyzed the problem of the inheritance anomaly in the context of his rewriting
logic-based language Maude [26]. Meseguer’s work aimed at removing the need for synchronization
code in the first place. This technique, based on rewriting logic, is closely tied to the Maude system
and we are not aware of any adaption to imperative object-oriented languages such as Java.

Different lines of work were taken by Matsuoka and Yonezawa: the first based on the notion of
reflection [3], the second aiming at reducing the amount of synchronization code to a minimum [3].

An approach more in line with aspect-oriented programming is presented in [27]. Although their use
of abstract communication types (ACTs) does provide a way to tackle the history sensitive anomaly
in a modular fashion, it is still based on ad hoc coding. Every instance of the anomaly requires the
programmer to write a specific ACT to solve it. The problem is thus moved from the object to the
ACT rather than solved. Similar results were obtained using the synchronization patterns [23] and
synchronization rings [28] methodologies.

9. CONCLUSIONS

We introduced Jeeg, a dialect of Java where synchronization constraints are written in LTL and are
specified in a declarative manner. We showed by examples that the additional expressive power of

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 567

our synchronization language, CL, is helpful in treating the inheritance anomaly. Also, we provided
a characterization of the expressiveness of CL in terms of regular languages that yields a precise
description of the sequences of events we can express. Finally, we described the current implementation
of Jeeg.

Propositional LTL seems to us to offer an excellent balance between expressiveness and
computational overhead. It would indeed be interesting to base Jeeg on quantified linear temporal
logic (QLTL) or monadic second-order logic (MSOL), ‘second-order’ variations of LTL of greater
expressiveness. In particular, QLTL and MSOL correspond to regular languages in the same sense
as LTL corresponds to star-free regular languages. However, while giving us the power to express
synchronization policies as complex as regular languages or more, these options would present an
increased computational cost that we are currently investigating.

With regards to the Jeeg compiler, we are exploring the possibility of optimizing the LTL evaluation
procedure by using ad hoc static-analysis techniques.

The current implementation of the Jeeg compiler is available at http://www.brics.dk/∼milicia/Jeeg/.

APPENDIX A. THE JEEG DTD

<!ELEMENT Jeeg (Class)>
<!ELEMENT Class (Method*)>
<!ATTLIST Class

name CDATA #REQUIRED
super CDATA #IMPLIED
version CDATA "j1"

>
<!ELEMENT Method (Previous | Sometime | Always | Since

| And | Or | Implies | BooleanExpression)>
<!ATTLIST Method

name CDATA #REQUIRED
>
<!ELEMENT Constraint (#PCDATA)>
<!ELEMENT BooleanExpression (#PCDATA)>
<!ELEMENT Previous (Previous | Sometime | Always | Since

| And | Or | Implies | BooleanExpression)>
<!ELEMENT Sometime (Previous | Sometime | Always | Since

| And | Or | Implies | BooleanExpression)>
<!ELEMENT Always (Previous | Sometime | Always | Since

| And | Or | Implies | BooleanExpression)>
<!ELEMENT Since (Arg, Arg)>
<!ELEMENT And (Arg, Arg)>
<!ELEMENT Or (Arg, Arg)>
<!ELEMENT Implies (Arg, Arg)>
<!ELEMENT Arg (Previous | Sometime | Always | Since |

And | Or | Implies | BooleanExpression)>

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

568 G. MILICIA AND V. SASSONE

APPENDIX B. THE JAVA CODE GENERATED FROM THE BUFFER EXAMPLE

In this appendix we show the code generated by the Jeeg compiler from theBuffer example presented
in Section 3. Interface and class names referring to the Jeeg runtime system are normally fully qualified.
However, to keep names short here we write, for instance, PropositionalFormula instead of the
fully qualified org.brics.gm.jeeg.formulae.PropositionalFormula.

import org.brics.gm.jeeg.formulae.*;
import org.brics.gm.jeeg.events.*;

The include statements above refer
the Jeeg runtime system.

public class Buffer {

protected SyncManager _sync = null;
protected void
_registerSyncManager(SyncManager s) {

this._sync = s;
s.makeStep();

}

Every Jeeg class requires a
synchronization manager as
described in Section 6. The method
_registerSyncManager is
used at object creation time to
specify which synchronization
manager will take care of the class.

protected class SyncManager {

public SyncManager() {
}

The synchronization manager is
inserted as an inner class.

protected class BufferputProp1
implements PropositionalFormula {
public boolean eval() {

return (current <= MAX);
}

}

Propositional formulae (p ∈ AP),
are wrapped into classes. Observe
that the Java inner class mechanism
grants the synchronization manager
full access on the private/protected
attributes of the surrounding class.

protected class BuffergetProp1
implements PropositionalFormula {
public boolean eval() {

return (current > 0);
}

}

protected TemporalPropositionalFormula
TBufferputProp1 =

new TemporalPropositionalFormula(
new BufferputProp1());

protected TemporalPropositionalFormula
TBuffergetProp1 =

new TemporalPropositionalFormula(
new BuffergetProp1());

protected TemporalFormula
getConstr = TBuffergetProp1;

Appropriate temporal formulae
representing the synchronization
constraints of the object are
instantiated. The classes used
are taken from the Jeeg runtime
system.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 569

protected TemporalFormula
putConstr = TBufferputProp1;

protected int UNKNOWN = -1;
protected int get = 1;
protected int put = 2;
protected Event event = new Event(UNKNOWN);

A unique identifier is generated
for each method. This is used
to identify the events. At object
creation time, when the history of
the object is empty the event
variable takes the UNKNOWN value.

public void makeStep() {
getConstr.eval();
putConstr.eval();

}

The makeStep method evaluates
the synchronization constraints.
This is done using the algorithm
described in Section 6 after every
method execution.

public boolean getpre() {
return getConstr.getCurrentValue();

}
public void acquireget() throws Exception {
while (! getpre()) {

Buffer.this.wait();
}
event = new Event(get,
System.currentTimeMillis());

}

public void releaseget() throws Exception {
event.setEndTime(

System.currentTimeMillis());
makeStep();
Buffer.this.notifyAll();

}

For every method M the synchro-
nization manager has two methods
acquireM() to be called before
the execution of M’s actual code and
releaseM() to be called when
M’s execution is completed.

public boolean putpre() {
return putConstr.getCurrentValue();

}

public void acquireput() throws Exception {
while (! putpre()) {

Buffer.this.wait();
}
event = new Event(put,

System.currentTimeMillis());
}

Synchronization constraints are
wrapped into functions called
Mpre(), where M is the method
the constraint refers to. The
conditions are evaluated in the
acquireM() method.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

570 G. MILICIA AND V. SASSONE

public void releaseput() throws Exception {
event.setEndTime(

System.currentTimeMillis());
makeStep();
Buffer.this.notifyAll();

}
} //SyncManager

The releaseM() method takes
care of issuing the notifyAll()
to wake up any thread waiting. A
call to the makeStep() method
takes care of evolving the object’s
history.

protected Object[] buf;
protected int MAX;
protected int current = 0;

Buffer(int max) {
MAX = max;
buf = new Object[MAX];
this._registerSyncManager(

new SyncManager());
}

When the object is created a
new synchronization manager
is registered. The call to
_registerSyncManager will
take care of initializing the history
of the object as well.

public synchronized Object get()
throws Exception {

((SyncManager) _sync).acquireget();
current--;
Object ret = buf[current];
((SyncManager) _sync).releaseget();
return ret;

}

Calls to the acquire and
release methods are inserted,
respectively, at the beginning and
at the end of the method code. This
implements a simple mechanism of
method call interception.

public synchronized void put(Object v)
throws Exception {

((SyncManager) _sync).acquireput();
buf[current] = v;
current++;
((SyncManager) _sync).releaseput();

}
}

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

JEEG: TEMPORAL CONSTRAINTS FOR THE SYNCHRONIZATION OF CONCURRENT OBJECTS 571

REFERENCES

1. America P. POOL: Design and experience. OOPS Messenger 1991; 2(2):16–20.
2. Briot J-P, Yonezawa A. Inheritance and synchronization in concurrent OOP. Proceedings of the European Conference

on Object-Oriented Programming (ECOOP’87) (Lecture Notes in Computer Science, vol. 276). Springer: Berlin, 1987;
32–40.

3. Matsuoka S, Yonezawa A. Analysis of inheritance anomaly in object-oriented concurrent programming language. Research
Directions in Concurrent Object-Oriented Programming, Gul A, Wegner P, Akinori Y (eds.). MIT Press: Cambridge, MA,
1993; 107–150.

4. Pnueli A. The temporal logic of programs. Proceedings of the 18th IEEE Symposium on the Foundations of Computer
Science (FOCS-77). IEEE Computer Society Press: Los Alamitos, CA, 1977; 46–57.

5. Lichtenstein O, Pnueli A, Zuck L. The glory of the past. Proceedings of the 3rd Workshop on Logics of Programs,
Brooklyn, NY, 17–19 June 1985 (Lecture Notes in Computer Science, vol. 193), Parikh R, (ed.). Springer: Berlin, 1985;
196–218.

6. Emerson EA. Temporal and Modal Logic (Handbook of Theoretical Computer Science, vol. B), van Leeuwen J (ed.).
Elsevier: Amsterdam, 1990; 996–1072.

7. Zuck L. Past temporal logic. PhD Thesis, Weizmann Institute, 1986.
8. Wolfgang T. Languages, Automata and Logic (Handbook of Theoretical Computer Science, vol. B), van Leeuwen J (ed.).

Elsevier: Amsterdam, 1990.
9. Frølund S. Inheritance of synchronization constraints in concurrent object-oriented programming languages. European

Conference on Object-Oriented Programming (ECOOP’92) (Lecture Notes in Computer Science, vol. 615). Springer:
Berlin, 1992; 185–196.

10. Tomlinson C, Singh V. Inheritance and synchronization with enabled-sets. Proceedings of the Conference on Object-
oriented Programming Systems, Languages and Applications (OOPSLA’99). ACM Press: New York, 1989.

11. Nierstrasz O, Papathomas M. Towards a type theory for active objects. Proceedings of the Workshop on Object-Based
Concurrent Systems (OOPSLA/ECOOP90). ACM OOPS Messenger 1991; 2(2):89–93.

12. Nierstrasz O, Papathomas M. Viewing objects as patterns of communicating agents. Proceedings of the Conference on
Object-oriented Programming Systems (OOPSLA/ECOOP’90), Languages and Applications. ACM SIGPLAN Notices
1990; 25(10):38–43.

13. Havelund K, Rosu G. Testing linear temporal logic formulae on finite execution traces. Technical Report TR 01-08, RIACS,
May 2001.

14. Rosu G, Havelund K. Synthesizing dynamic programming algorithms from linear temporal logic formulae. Technical
Report TR 01-15, RIACS, May 2001.

15. Giannakopoulou D, Havelund K. Automata-based verification of temporal properties on running programs. Automated
Software Engineering 2001 (ASE’01), San Diego, CA, November 2001. IEEE Computer Society Press: Los Alamitos, CA,
2001.

16. Havelund K, Rosu G. Monitoring programs using rewriting. Automated Software Engineering 2001 (ASE’01), San Diego,
CA, November 2001. IEEE Computer Society Press: Los Alamitos, CA, 2001.

17. Drusinsky D. The temporal rover and the ATG rover. SPIN Model Checking and Software Verification (Lecture Notes in
Computer Science, vol. 1885). Springer: Berlin, 2000; 323–330.

18. Lee I, Kannan S, Kim M, Sokolsky O, Viswanathan M. Runtime assurance based on formal specifications. Proceedings
of the International Conference on Parallel and Distributed Processing Techniques and Applications. CSREA Press:
Las Vegas, NV, 1999.

19. Clarke EM, Grumberg O, Peled SA. Model Checking. MIT Press: Cambridge, MA, 1999.
20. Holzmann GJ. The model checker SPIN. IEEE Transactions on Software Engineering (Special Issue on Formal Methods

in Software Practice) 1997; 23(5):279–295.
21. Havelund K, Rosu G. Monitoring Java programs with Java Pathexplorer. First Workshop on Runtime Verification (RV’01)

(Electronic Notes in Theoretical Computer Science, vol. 55). Elsevier: Amsterdam, 2001.
22. Matsuoka S, Wakita K, Yonezawa A. Synchronization constraints with inheritance: What is not possible—so what is?

Technical Report TR 90-10, Department of Information Science, The University of Tokyo, 1989.
23. Videira Lopes C, Lieberherr KJ. Abstracting Process-to-function Relations in Concurrent Object-oriented Applications

(Lecture Notes in Computer Science, vol. 821). Springer: Berlin, 1994; 81–99.
24. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier J-M, Irwin J. Aspect-oriented programming.

Object-Oriented Programming (ECOOP’97) (Lecture Notes in Computer Science, vol. 1241). Springer: Berlin, 1997;
220–242.

25. Meseguer J. Solving the inheritance anomaly in concurrent object-oriented programming. Proceedings of the European
Conference on Object-oriented Programming (ECOOP’93) (Lecture Notes in Computer Science, vol. 707). Springer:
Berlin, 1993; 220–246.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

572 G. MILICIA AND V. SASSONE

26. Meseguer J, Winkier T. Parallel programming in MAUDE. Proceedings of Research Directions in High–Level Parallel
Programming Languages (Lecture Notes in Computer Science, vol. 574). Springer: Berlin, 1992; 253–295.

27. Bergmans L. Composing concurrent objects. PhD Thesis, University of Twente, 1994.
28. Holmes D. Synchronization rings—composable synchronization for object-oriented systems. PhD Thesis, Macquarie

University, 1999.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:539–572

	1 INTRODUCTION
	2 A TASTER OF JEEG
	2.1 The constraint language

	3 THE INHERITANCE ANOMALY
	4 EXPRESSIVENESS OF JEEG
	5 DIGGING DEEPER INTO JEEG
	Synchronized and unsynchronized methods
	Method overloading
	Inheritance and method overriding
	Jeeg and exceptions
	XML constraints

	6 IMPLEMENTATION
	Runtime evaluation of CL expressions
	Synchronization manager

	7 BENCHMARKS
	7.1 General setting
	7.2 Benchmark results
	Object creation
	Method call

	7.3 Evaluation

	8 RELATED WORK
	9 CONCLUSIONS
	APPENDIX A. THE JEEG DTD
	APPENDIX B. THE JAVA CODE GENERATED FROM THE BUFFER EXAMPLE

