
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 125, Number 7, July 1997, Pages 2093–2102
S 0002-9939(97)04003-3

JENSEN’S OPERATOR INEQUALITY FOR FUNCTIONS

OF TWO VARIABLES

FRANK HANSEN

(Communicated by Palle E. T. Jorgensen)

Abstract. The operator convex functions of two variables are characterized
in terms of a non-commutative generalization of Jensen’s inequality.

1. Functional calculus for functions of several variables

The tensor product of two square matrices A = (aij) and B of order n can be
represented as the matrix

A⊗B =

 a11B · · · a1nB
...

...
an1B · · · annB

(1)

which is of order n2. However, if A and B are block matrices

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
of order 2n, then it is often more convenient to represent the tensor product A⊗B
as the block matrix

A11 ⊗B11 A11 ⊗B12 A12 ⊗B11 A12 ⊗B12

A11 ⊗B21 A11 ⊗B22 A12 ⊗B21 A12 ⊗B22

A21 ⊗B11 A21 ⊗B12 A22 ⊗B11 A22 ⊗B12

A21 ⊗B21 A21 ⊗B22 A22 ⊗B21 A22 ⊗B22

 .(2)

The definition according to (2) is unitarily equivalent to the definition according to
(1), and no confusion will occur as long as the two representations are not mixed.
The latter representation has the benefit of rendering formulas for block matrices
more transparent and will be used throughout this paper. A similar representation
will be used for tensor products of block matrices of bounded linear operators on a
Hilbert space.

Korányi [10] considered functional calculus for functions of two variables. Let
f : I×J → R be a function of two variables defined on the product of two intervals,
and let A,B be selfadjoint linear operators with finite spectra on a Hilbert space.
If the spectrum of A is contained in I, and the spectrum of B is contained in J,
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2094 FRANK HANSEN

and A =
∑

λiPi and B =
∑

µjQj are the spectral decompositions of A and B
respectively, then the formula

f(A,B) =
∑
i,j

f(λi, µj)Pi ⊗Qj(3)

defines the functional calculus. The definition is readily extended to bounded nor-
mal operators and to functions of more than two variables. When we use the
representation of tensor products of block matrices, then

f

[(
A1 0
0 A2

)
,

(
B1 0
0 B2

)]

=


f(A1, B1) 0 0 0

0 f(A1, B2) 0 0
0 0 f(A2, B1) 0
0 0 0 f(A2, B2)

 .

If the function f can be separated as the product f(t, s) = g(t)h(s) of two functions
each of only one variable, then f(A,B) = g(A)⊗ h(B).

The operator monotone functions of one variable were characterized by Löwner
[12]. After a very important preparation by Kraus [11], this enabled Bendat and
Sherman [4] to characterize the operator convex functions of one variable. There
is no natural order structure for sets of operators, so the question of operator
monotonicity for functions of several variables is not so fundamental. Korányi [10]
nevertheless explored notions of operator monotonicity for functions of several vari-
ables and succeeded in characterizing such classes of functions. Work along this
line has been continued by Vasudeva [13]. A function f of n real variables defined
on a product J = J1 × · · · × Jn of intervals is said to be operator convex, if

f(λA1 + (1− λ)B1, . . . , λAn + (1− λ)Bn)

≤ λf(A1, . . . , An) + (1− λ)f(B1, . . . , Bn)

for every λ ∈ [0, 1] and all sequences of operators (A1, . . . , An) and (B1, . . . , Bn)
such that the spectra of Ai and Bi are contained in Ji for i = 1, . . . , n. This
definition is meaningful since also the spectrum of λAi + (1− λ)Bi is contained in
the interval Ji for i = 1, . . . , n. If J is open, then it is enough to assume that f is
mid-point matrix convex for matrices of arbitrary order. This is so because a mid-
point matrix convex function of order 4n of one variable is automatically matrix
convex of order n, cf. [7, The proof of Theorem 2.1]. The function f is therefore real
analytic in each variable and hence real analytic in n variables according to Hartogs’
theorem [8]. It is also clear that the pointwise limit of operator convex functions
of n variables is operator convex. Some operator convex functions of two variables
have been studied by Ando [2] and Aujla [3] who also characterized the separately
operator convex functions of two variables in terms of an operator inequality. In
the case of one variable, it is well known that a continuous function f : [0, α[→ R
is operator convex (and f(0) ≤ 0), if and only if it satisfies the inequality

f(a∗xa) ≤ a∗f(x)a(JO)

for each selfadjoint operator x with spectrum in [0, α[ and each contraction a. This
inequality can therefore be considered as a generalization of Jensen’s inequality to
operators [7]. It is the aim of this paper to generalize Jensen’s operator inequality
(JO) for functions of one variable to functions of two variables in such a way that it
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JENSEN’S OPERATOR INEQUALITY FOR FUNCTIONS OF TWO VARIABLES 2095

captures the notion of operator convexity. The proposed method will in principle be
applicable to functions of n variables, but the complexity is such that only functions
of two variables are seriously considered. We obtain an operator inequality that
characterizes the set of (normalized) operator convex functions of two variables,
and we are able to characterize those separately operator convex functions of two
variables that are (jointly) operator convex in terms of an operator inequality.

2. Unitary dilations

Theorem 2.1. Let (a, b) be a pair of linear operators on a Hilbert space H such
that aa∗ + bb∗ = 1 and b is normal. There exists a normal operator c such that

U =

(
a b
c∗ −a∗

)
is unitary.

Proof. Let ξ be a vector in H. Since b is normal, we have

‖a∗bξ‖2 = (a∗bξ | a∗bξ) = (bξ | aa∗bξ)
= (ξ | (1− bb∗)bb∗ξ)

= (aa∗ξ | (1− aa∗)ξ).

If a∗ξ = 0, it follows that a∗bξ = 0. We can thus define a linear operator c on the
range R(a∗) of a∗ by setting

ca∗ξ = a∗bξ ∀ξ ∈ H.

Since ‖ca∗ξ‖ = ‖a∗bξ‖ ≤ ‖(1 − a∗a)1/2‖ · ‖a∗ξ‖, it follows that c can be extended
first by continuity to the closure of R(a∗), and then to all of H by setting c =
1− p+ cp where p is the orthogonal projection on the closure of R(a∗). We notice
that ca∗ = a∗b, and since b is normal

ac∗a∗ = b∗aa∗ = b∗(1− bb∗) = (1− bb∗)b∗

= aa∗b∗.

Thus (c∗a∗ξ | a∗η) = (a∗b∗ξ | a∗η) for all ξ, η ∈ H. Since both pH and
(1−p)H are left invariant by c (and consequently by c∗), it follows that c∗a∗ = a∗b∗.
Furthermore,

c∗ca∗ = c∗a∗b = a∗b∗b = a∗bb∗ = a∗(1− aa∗) = (1− a∗a)a∗

and also

cc∗a∗ = ca∗b∗ = a∗bb∗ = a∗(1 − aa∗) = (1− a∗a)a∗.

It follows that

c∗c = cc∗ = 1− p+ (1− a∗a)p = 1− a∗a,

so c is normal. Finally, we calculate

UU∗ =

(
a b
c∗ −a∗

)(
a∗ c
b∗ −a

)
=

(
aa∗ + bb∗ ac− ba
c∗a∗ − a∗b∗ c∗c+ a∗a

)
=

(
1 0
0 1

)
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and, using once more that b is normal

U∗U =

(
a∗ c
b∗ −a

)(
a b
c∗ −a∗

)
=

(
a∗a+ cc∗ a∗b− ca∗

b∗a− ac∗ b∗b + aa∗

)
=

(
1 0
0 1

)
.

QED
Let (a, b) be a pair of operators on a Hilbert space H such that aa∗ + bb∗ = 1

and b is normal, and let

U =

(
a b
c∗ −a∗

)
be the unitary dilation constructed in Theorem 2.1. We notice that also

V =

(
a −b
c∗ a∗

)
is unitary and calculate that

U∗
(

x 0
0 0

)
U =

(
a∗xa a∗xb
b∗xa b∗xb

)
, V ∗

(
x 0
0 0

)
V =

(
a∗xa −a∗xb
−b∗xa b∗xb

)
.

Since the tensor product

U ⊗ U =


a⊗ a a⊗ b b⊗ a b⊗ b
a⊗ c∗ −a⊗ a∗ b⊗ c∗ −b⊗ a∗

c∗ ⊗ a c∗ ⊗ b −a∗ ⊗ a −a∗ ⊗ b
c∗ ⊗ c∗ −c∗ ⊗ a∗ −a∗ ⊗ c∗ a∗ ⊗ a∗


and

V ⊗ V =


a⊗ a −a⊗ b −b⊗ a b⊗ b
a⊗ c∗ a⊗ a∗ −b⊗ c∗ −b⊗ a∗

c∗ ⊗ a −c∗ ⊗ b a∗ ⊗ a −a∗ ⊗ b
c∗ ⊗ c∗ c∗ ⊗ a∗ a∗ ⊗ c∗ a∗ ⊗ a∗

 ,

we obtain that

(U ⊗ U)∗


X 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (U ⊗ U) =


(a∗ ⊗ a∗)X(a⊗ a) (a∗ ⊗ a∗)X(a⊗ b) (a∗ ⊗ a∗)X(b⊗ a) (a∗ ⊗ a∗)X(b⊗ b)

(a∗ ⊗ b∗)X(a⊗ a) (a∗ ⊗ b∗)X(a⊗ b) (a∗ ⊗ b∗)X(b⊗ a) (a∗ ⊗ b∗)X(b⊗ b)

(b∗ ⊗ a∗)X(a⊗ a) (b∗ ⊗ a∗)X(a⊗ b) (b∗ ⊗ a∗)X(b⊗ a) (b∗ ⊗ a∗)X(b⊗ b)

(b∗ ⊗ b∗)X(a⊗ a) (b∗ ⊗ b∗)X(a⊗ b) (b∗ ⊗ b∗)X(b⊗ a) (b∗ ⊗ b∗)X(b⊗ b)
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for each element X in the tensor product B(H) ⊗ B(H). We furthermore obtain
that

(V ⊗ V )∗


X 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (V ⊗ V ) =


(a∗ ⊗ a∗)X(a ⊗ a) −(a∗ ⊗ a∗)X(a ⊗ b) −(a∗ ⊗ a∗)X(b ⊗ a) (a∗ ⊗ a∗)X(b ⊗ b)

−(a∗ ⊗ b∗)X(a ⊗ a) (a∗ ⊗ b∗)X(a ⊗ b) (a∗ ⊗ b∗)X(b ⊗ a) −(a∗ ⊗ b∗)X(b ⊗ b)

−(b∗ ⊗ a∗)X(a ⊗ a) (b∗ ⊗ a∗)X(a ⊗ b) (b∗ ⊗ a∗)X(b ⊗ a) −(b∗ ⊗ a∗)X(b ⊗ b)

(b∗ ⊗ b∗)X(a ⊗ a) −(b∗ ⊗ b∗)X(a ⊗ b) −(b∗ ⊗ b∗)X(b ⊗ a) (b∗ ⊗ b∗)X(b ⊗ b)


and consequently

1
2
(U ⊗ U)∗


X 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (U ⊗ U) + 1
2
(V ⊗ V )∗


X 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (V ⊗ V ) =


(a∗ ⊗ a∗)X(a⊗ a) 0 0 (a∗ ⊗ a∗)X(b⊗ b)

0 (a∗ ⊗ b∗)X(a⊗ b) (a∗ ⊗ b∗)X(b⊗ a) 0

0 (b∗ ⊗ a∗)X(a⊗ b) (b∗ ⊗ a∗)X(b⊗ a) 0

(b∗ ⊗ b∗)X(a⊗ a) 0 0 (b∗ ⊗ b∗)X(b⊗ b)

 .

A similar construction can be carried out on the tensor product B(H)⊗· · ·⊗B(H)
of n copies of B(H) in terms of U ⊗ · · · ⊗ U and V ⊗ · · · ⊗ V.

3. Jensen’s operator inequality

Theorem 3.1. If f is a real continuous function of two variables defined on the
domain [0, α[×[0, β[ (with α, β ≤ ∞), the following conditions are equivalent:

(1) f is operator convex, and f(t, 0) ≤ 0 and f(0, s) ≤ 0 for all (t, s) ∈
[0, α[×[0, β[.

(2) The operator inequality

 f(a∗xa, a∗ya) 0

0 f(b∗xb, b∗yb)

≤
 (a⊗ a)∗f(x, y)(a⊗ a) (a⊗ a)∗f(x, y)(b⊗ b)

(b⊗ b)∗f(x, y)(a⊗ a) (b⊗ b)∗f(x, y)(b⊗ b)


is valid for all selfadjoint operators x and y with spectra in [0, α[ and [0, β[ respec-
tively, and all pairs of operators (a, b) such that aa∗ + bb∗ = 1 and b is normal.

(3) The operator inequality

 f(pxp, pyp) 0

0 f((1− p)x(1− p), (1− p)y(1− p))



≤
 (p⊗ p)f(x, y)(p⊗ p) (p⊗ p)f(x, y)((1− p)⊗ (1− p))

((1− p)⊗ (1− p))f(x, y)(p⊗ p) ((1− p)⊗ (1− p))f(x, y)((1− p)⊗ (1− p))
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is valid for all selfadjoint operators x and y with spectra in [0, α[ and [0, β[ respec-
tively, and every orthogonal projection p.

Proof. (1)⇒ (2) :
Let (a, b) be a pair of operators such that aa∗ + bb∗ = 1 and b is normal, and

let U and V be the unitary dilations constructed in section 2. Since f is operator
convex we obtain

f(a∗xa, a∗ya) 0 0 0
0 f(a∗xa, b∗yb) 0 0
0 0 f(b∗xb, a∗ya) 0
0 0 0 f(b∗xb, b∗yb)


= f

((
a∗xa 0

0 b∗xb

)
,

(
a∗ya 0

0 b∗yb

))

= f

(
1
2
U∗
(

x 0
0 0

)
U + 1

2
V ∗
(

x 0
0 0

)
V, 1

2
U∗
(

y 0
0 0

)
U + 1

2
V ∗
(

y 0
0 0

)
V

)

≤ 1
2
f

(
U∗
(

x 0
0 0

)
U,U∗

(
y 0
0 0

)
U

)
+ 1

2
f

(
V ∗
(

x 0
0 0

)
V, V ∗

(
y 0
0 0

)
V

)

= 1
2
(U ⊗ U)∗f

((
x 0
0 0

)
,

(
y 0
0 0

))
(U ⊗ U)

+ 1
2
(V ⊗ V )∗f

((
x 0
0 0

)
,

(
y 0
0 0

))
(V ⊗ V )

= 1
2
(U ⊗ U)∗


f(x, y) 0 0 0

0 f(x, 0) 0 0
0 0 f(0, y) 0
0 0 0 f(0, 0)

 (U ⊗ U)

+ 1
2
(V ⊗ V )∗


f(x, y) 0 0 0

0 f(x, 0) 0 0
0 0 f(0, y) 0
0 0 0 f(0, 0)

 (V ⊗ V )

≤ 1
2
(U ⊗ U)∗


f(x, y) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 (U ⊗ U)

+ 1
2
(V ⊗ V )∗


f(x, y) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 (V ⊗ V )
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=


(a⊗ a)∗f(x, y)(a⊗ a) 0

0 (a⊗ b)∗f(x, y)(a⊗ b)

0 (b⊗ a)∗f(x, y)(a⊗ b)

(b⊗ b)∗f(x, y)(a⊗ a) 0

0 (a⊗ a)∗f(x, y)(b⊗ b)

(a⊗ b)∗f(x, y)(b⊗ a) 0

(b⊗ a)∗f(x, y)(b⊗ a) 0

0 (b⊗ b)∗f(x, y)(b⊗ b)

 .

In particular,

 f(a∗xa, a∗ya) 0

0 f(b∗xb, b∗yb)

≤
 (a⊗ a)∗f(x, y)(a⊗ a) (a⊗ a)∗f(x, y)(b⊗ b)

(b⊗ b)∗f(x, y)(a⊗ a) (b⊗ b)∗f(x, y)(b⊗ b)

 .

(2)⇒ (3) is obvious.
(3)⇒ (1): Let (x1, x2) and (y1, y2) be pairs of operators with spectra in [0, α[

and [0, β[ respectively. We set

U =

√
2

2

(
1 −1
1 1

)
and

x = U∗
(

x1 0
0 x2

)
U, y = U∗

(
y1 0
0 y2

)
U, p =

(
1 0
0 0

)
.

It follows from (3) that f

((
x1+x2

2
0

0 0

)
,

(
y1+y2

2
0

0 0

))
0

0 f

((
0 0
0 x1+x2

2

)
,

(
0 0
0 y1+y2

2

))


=

(
f(pxp, pyp) 0

0 f((1− p)x(1− p), (1− p)y(1− p))

)

≤
(

(p⊗ p)f(x, y)(p⊗ p) (p⊗ p)f(x, y)((1− p)⊗ (1− p))
((1− p)⊗ (1− p))f(x, y)(p⊗ p) ((1− p)⊗(1− p))f(x, y)((1− p)⊗(1− p))

)
.

All rows and columns with indices from 2 to 7 in the last 8×8 block matrix contain
only the zero operator on H. In particular,

f

(
x1 + x2

2
, 0

)
≤ 0 and f

(
0,
y1 + y2

2

)
≤ 0,

and it follows that f(t, 0) ≤ 0 and f(0, s) ≤ 0 for all (t, s) ∈ [0, α[×[0, β[. Since

U ⊗ U =
1

2


1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

 ,
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we calculate the element in the first row and first column of the 4× 4 block matrix

(p⊗ p)f(x, y)(p⊗ p)

= (p⊗ p)(U ⊗ U)∗f
((

x1 0
0 x2

)
,

(
y1 0
0 y2

))
(U ⊗ U)(p⊗ p)

to be (f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2))/4. This is also the entry in the
fourth row and fourth column of the 4 × 4 block matrix ((1 − p) ⊗ (1 − p))f(x, y)
· ((1− p)⊗ (1− p)) while the first row and fourth column of the 4× 4 block matrix
(p⊗p)f(x, y)((1−p)⊗(1−p)) and the fourth row and first column of the transpose
both are (f(x1, y1) − f(x1, y2) − f(x2, y1) + f(x2, y2))/4. Inserting these values in
the above inequality between 8 × 8 block matrices and then discarding the rows
and columns with indices between 2 and 7, it follows that

f

(
x1 + x2

2
,
y1 + y2

2

)(
1 0
0 1

)
≤ f(x1, y1) + f(x2, y2)

4

(
1 1
1 1

)
+

f(x1, y2) + f(x2, y1)

4

(
1 −1
−1 1

)
.

By multiplying the above operator inequality to the left and to the right with the

projection 1
2

(
1 1
1 1

)
, we obtain

1

2
f

(
x1 + x2

2
,
y1 + y2

2

)(
1 1
1 1

)
≤ f(x1, y1) + f(x2, y2)

4

(
1 1
1 1

)
and consequently

f

(
x1 + x2

2
,
y1 + y2

2

)
≤ 1

2
f(x1, y1) +

1

2
f(x2, y2).

Since f is continuous, it follows that f is operator convex. QED

Let σ be the extremal connection associated with the representing function
f(t) = −t2, cf. [6, Theorem 2.6]. The mapping (A,B) → AσB is concave on
the set of pairs of positive semi-definite operators, and if A is invertible given by
the formula

AσB = A1/2f(A−1/2BA−1/2)A1/2 = −BA−1B.

It is connected to the harmonic mean through the formula

A !B = 2[B + (A + B)σ B].

We shall characterize the operator convex functions of two variables among the
separately operator convex functions in terms of the connection σ. The following
result can be deduced by slightly altering the presentation in Aujla [3].

Proposition 3.2. Let f be a real continuous function of two variables defined on
the domain [0, α[×[0, β[ (with α, β ≤ ∞) and suppose that f(t, 0) ≤ 0 and f(0, s) ≤
0 for all (t, s) ∈ [0, α[×[0, β[. Then f is separately operator convex, if and only if
the difference

∆(a) = (a⊗ a)∗f(x, y)(a⊗ a)− f(a∗xa, a∗ya) ≥ 0

for all selfadjoint operators x and y with spectra in [0, α[ and [0, β[ respectively, and
every contraction a.
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Theorem 3.3. Let f be a separately operator convex function of two variables
defined on the domain [0, α[×[0, β[ (with α, β ≤ ∞) and suppose that f(t, 0) ≤ 0
and f(0, s) ≤ 0 for all (t, s) ∈ [0, α[×[0, β[. Then f is (jointly) operator convex, if
and only if

[V ∗∆(a)V ] σ |C|+ ∆(b) ≥ 0,

where C = V |C| is the polar decomposition of C = (a ⊗ a)∗f(x, y)(b × b), for all
selfadjoint operators x and y with spectra in [0, α[ and [0, β[ respectively, and all
pairs of operators (a, b) such that aa∗ + bb∗ = 1 and b is normal. The condition re-
mains sufficient if a is constrained to be of the form a = p, where p is an orthogonal
projection, and b = 1− p.

Proof. If f is operator convex, then(
V ∗∆(a)V |C|

|C| ∆(b)

)
=

(
V 0
0 1

)∗( ∆(a) C

C∗ ∆(b)

)(
V 0
0 1

)
≥ 0

according to Theorem 3.1, and this is equivalent to

[V ∗∆(a)V ] σ |C|+ ∆(b) ≥ 0,

cf. [2, Lemma 1] or [1]. Suppose conversely that

[V ∗∆(p)V ] σ |C|+ ∆(1− p) ≥ 0

for each orthogonal projection p. The statement is equivalent to(
r(C)∆(p)r(C) C

C∗ ∆(1 − p)

)
≥ 0,

where r(C) is the range projection of C = (p ⊗ p)f(x, y)((1 − p) ⊗ (1 − p)). In
particular, if we restrict ourselves to such projections that are considered in the
proof of 3.1 (3) ⇒ (1), it follows that r(C) = p⊗ p whenever

f(x1, y1)− f(x1, y2)− f(x2, y1) + f(x2, y2)(∗)
is invertible. Since (p⊗ p)∆(p)(p⊗ p) ≤ ∆(p) by virtue of the normalization of f,
we obtain (

∆(p) C

C∗ ∆(1− p)

)
≥ 0

and hence

f

(
x1 + x2

2
,
y1 + y2

2

)
≤ 1

2
f(x1, y1) +

1

2
f(x2, y2)(#)

whenever the expression in (∗) is invertible. If the function f is constant in one
of the variables, then f is trivially operator convex. Otherwise we obtain that the
expression in (∗) is invertible and thus the inequality (#) is satisfied for x1, x2, y1, y2

belonging to a dense set of operators. Since f is continuous, it follows that f is
operator convex. QED
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