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Abstract— This work discusses reference trajectory relevant
model based feedforward design. For motion systems which
contain at least one rigid body mode and which are subject
to reference trajectories with mostly low frequency energy,
the proposed feedforward controller improves tracking per-
formance significantly. The feedforward controller may be of
much lower order than the plant. The proposed feedforward
controller is introduced using a model of an industrial XY-
table as an application example.

I. I NTRODUCTION

In many today’s motion systems, performance require-
ments include short motion times and small settling times.
Typical examples are pick and place machines, hard disk
drives, XY-tables and many robots. To meet these re-
quirements typically, a combination of a feedback and
feedforward controller is used in a so called two degree of
freedom (2DOF) control architecture, see Figure 1, where
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Fig. 1. 2DOF control architecture.

P , C and F represent the plant, feedback controller and
feedforward controller, respectively. Signals are denoted
by lower case: the reference trajectoryr, servo errore,
plant input u, plant outputy and feedforward function
f . The feedback controller guards stability and improves
disturbance rejection [9], while the feedforward controller
is designed to improve tracking performance. This work will
consider the design of a feedforward controller in order to
reduce tracking errors during motion (a typical industrial
example is displayed in Figure 2).

A. Reference profiles

In industrial practice, commonly used reference pro-
files describe varying scanning and point-to-point motions.
These profiles are often designed as piecewise finite order
polynomials. Finite order polynomials typically contain
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Fig. 2. Servo errors during point-to-point motion of a XY-positioning
table using rigid body feedforward and PD controller. Measured servo error
(solid thick), simulated servo error (solid thin) and scaled acceleration of
reference trajectory (dashed). The areaA is studied in later simulations.

constant motion phases (velocity, acceleration, jerk, deriva-
tive of jerk, etc.), [1],[5]. A property of these profiles is that
they contain mostly low frequency energy, as will be illus-
trated in section II. The profiles are generally designed such
that the resonance dynamics of the plant are not excited.
This paper focuses on the case where this is done properly.
Would this not be the case, input shaping techniques may
be applied, as demonstrated in e.g. [2],[4],[5],[7],[8]. In this
paper it is further assumed that the fourth derivative of
the position trajectory exists. As will be shown later, this
requirement is often satisfied in practice due to discrete time
implementation aspects.

B. Plant dynamics

In industrial systems, effort is put in designing mechanics
with very high resonance frequencies, with the goal to
extend the rigid body-like behavior over a frequency range
as large as possible. A typical motion system can therefore
be seen as a plant which contains one or more dominant
rigid body modes and several resonance modes at higher
frequencies (due to limited mechanical stiffness), see also
Figure 3. A transfer function model of a SISO motion
system can therefore be given as follows:

P (s) =
1

mts2
+

N∑

i=1

ki

mt(s2 + 2ζiωis + ω2
i )

, (1)

where mt is the total mass of the system andN the
number of resonance modes withωi, ζi and ki the mode



resonance frequency, damping and mode gainki ∈ {−1, 1}
respectively. Note that by changing the sign ofki, the modes
can show up as resonances or anti-resonances in a bode
diagram. Wheni = 1, a two-mass-spring system arises, as
presented in [13]. The model does not include damping or
friction to the world which is assumed to be negligible or
compensated for otherwise.

C. Feedforward design

A common model based feedforward design approach is
to make the feedforward controllerF equal to the inverse of
the plant, thereby directly minimizing the transfer between
servo errore(s) and reference trajectoryr(s), derived from
Figure 1;

e(s)
r(s)

=
1− P (s)F (s)
1 + P (s)C(s)

(2)

Model inversion is not always feasible due to non-minimum
phase behavior of the plant. A popular method to over-
come these difficulties is the application of a zero phase
error tracking controller (ZPETC) [10] or extensions to
this scheme [3],[11],[12]. As many motion system contain
dominant rigid body behavior, a straightforward approach is
rigid body inversion by means ofacceleration feedforward.
In this case the feedforward controller equals a double
differentiator times the modelled masŝmt of the plant;

F (s) = m̂ts
2 (3)

leading to a feedforward function which is equal to the
scaled acceleration of the reference trajectory (hence justi-
fying the method’s name). Its simplicity and effectiveness
made acceleration feedforward widely applicable in indus-
try.

D. Problem statement

Limitations of acceleration feedforward are experienced
in industrial applications. Servo errors during jerk phases
in a motion remain, which have typically low frequency
behavior and thereby imply an increase of settling time1,
deteriorating performance of motion systems, see Figure 2.
These residual servo errors are highly reproducible [6] and
have a strong dependence on the acceleration of the motion.

In this work, a feedforward controller which extends
the commonly accepted acceleration feedforward with
an additional term, is proposed to reduce these residual
servo errors. It will be shown that at least a fourth order
feedforward controller is needed to compensate for low
frequency residual servo errors. The proposed feedforward
strategy is therefore namedjerk derivative feedforward.

1The ‘settling time’ is the time intervalafter acceleration or deceleration
after which the servo error is required to be within certain bounds.

E. Outline

The next section starts with an analysis of the residual
servo errors when using acceleration feedforward control. In
the third section the jerk derivative feedforward controller
is described. In section IV, implementation aspects of the
proposed method will be discussed. Finally a short discus-
sion wil follow and the work will close with conclusions.
Throughout this work, a model of an industrial XY-table is
used as a motivating example.

II. OPEN LOOP SERVO ERROR DURING MOTION

To find the origin of residual servo errors during motion,
the transfer between the reference trajectory (r(s)) and the
open loop servo error (eo(s)) is studied;

eo(s) = r(s)− P (s)F (s)r(s) (4)

If the plant is represented by Equation 1 and an acceleration
feedforward controllerF (s) = mts

2 is used, the following
relation between the reference acceleration and the open
loop servo errors results;

eo(s)
r̈(s)

=
N∑

i=1

ki

s2 + 2ζiωis + ω2
i

. (5)

When it is assumed that the natural frequencies of the plant
lay much higher then the spectral content of the reference
profile (see Figure 3), Equation 5 may be approximated by;

eo(s)
r̈(s)

|s→0 =

∑N
i=1 ki

∏
j∈{1,...,N |j 6=i} ω2

j∏N
i=1 ω2

i

. (6)

The open loop servo error during motion therefore has
the shape of the acceleration of the reference, scaled
by the right side of Equation 6. Hence, for a plant
with a high natural frequency (ωi), low frequency
open loop servo errors remain during acceleration which
can not be compensated for using acceleration feedforward.

The closed loop servo errore(s) during motion can
be found by filtering the open loop servo erroreo(s)
with the sensitivity functionS = (1 + P (s)C(s))−1, see
Equation 2. The sensitivity function has at least a+2 slope
in lower frequencies due to the rigid body mode of the
plant. The closed loop servo error is therefore proportional
to the double derivative of the open loop servo error. This
results in peaks during non-zero jerk phases of a motion,
see Figure 2. In order to illustrate the insight presented in
this section, an example from industry is shown below.

A. Motivating Example

We consider a motion system with frequency transfer
function given in Figure 3. This model represents the
dynamics in one axis of an industrial XY-table. The
plant has a dominant rigid body behavior, its first natural
frequency lays at approximately600Hz. The system is
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Fig. 3. Spectrum of reference trajectory (scaled) and frequency response
of the plant.

TABLE I

REFERENCE TRAJECTORY PARAMETERS.

Parameter xmax vmax amax jmax Ts
Value 8cm 0.5m/s 10m/s2 2000m/s3 0.25ms

subject to reference trajectories with parameters listed in
Table I. The (scaled) acceleration trajectory in time is
depicted in Figure 2 by the dotted line. The spectrum
of the reference position trajectory is shown in Figure
3. If acceleration feedforward control is used, residual
dynamics are described by Equation 5. The maximum
open loop servo error during motion may be estimated
using Equation 6. As the maximum acceleration equals
10m/s2, the maximum open loop error during motion is
approximately500nm. The open loop servo error has the
shape of the acceleration of the reference trajectory, see
Figure 5.

Filtering the open loop servo error with the sensitivity
obtained by using a PD feedback controller (0dB crossing
at 80Hz, 6dB S peak) gives the closed loop servo error
shown in Figure 2 with the enlarged areaA in Figure 5.

From this example, it appears that the assumptions
made earlier are justified in this application. Non-rigid
body behavior causes servo errors during motion which
cannot be compensated for using acceleration feedforward
control. The next section will propose an extension of
acceleration feedforward control in order to increase
tracking performance.

III. JERK DERIVATIVE FEEDFORWARD

In order to reduce the open loop servo error during
motion, a new feedforward controller is proposed. The
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Fig. 4. Ideal additive feedforward controllerF ∗ and approximationδs2.

new feedforward controller is assumed to be the original
acceleration feedforward controller with an additional term
F ∗;

F = m̂ts
2 + F ∗s2. (7)

A hint on how the termF ∗ can be designed can be found by
putting the open loop servo error during motion (4) equal
to zero;

F ∗ = P−1 1
s2
−mt. (8)

For this example plant, the frequency response of this
’ideal’ feedforward controller, is shown in Figure 4. Since
we are interested in the low-frequency contribution of the
additional feedforward only,F ∗ can be approximated by a
gain δ times a double differentiator, see Figure 4. So that

F ∗|s→0 = δs2, (9)

thenδ can be derived from Equation 1 and Equation 8;

δ =
−mt

∑N
i=1 ki

∏
j∈{1,...,N |j 6=i} ω2

j∏N
i=1 ω2

i

. (10)

Hence, the proposed feedforward controller becomes;

F = mts
2 + δs4. (11)

The second part of this controller is proportional to the
fourth derivative or, in other words, the derivative of the
jerk of the setpoint. Note thatδ is a real scalar, which makes
online tuning feasible. The example below will illustrate an
application of the jerk derivative feedforward controller.

A. Example using jerk derivative feedforward

The jerk derivative feedforward controller is applied to
the example discussed earlier. The constantδ is derived
from Equation 10 and used in the new feedforward
controller. The reference profile with parameters given in
Table I is applied. The resulting servo error during motion
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Fig. 5. Servo error during point to point motion, reaching constant velocity
(Blok A, Figure 2). Dashed: (scaled) open loop servo error, Solid thin:
closed loop servo error using acceleration feedforward, Solid thick: closed
loop servo error using jerk derivative feedforward.
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Fig. 6. Spectrum of open loop servo error using acceleration feedforward
(solid thin) and jerk derivative feedforward (solid thick).

is shown in Figure 5. Clearly, the servo error is reduced
significantly. Comparison of the spectra of the open loop
servo errors of acceleration and jerk derivative control
shows that jerk derivative control leads to a significant
improvement of low frequency tracking, Figure 6.

Notice that δ/mt is a low frequency approximation
of Equation 5. For comparison, the frequency response
of both terms is shown in Figure 7. Clearly, the jerk
derivative feedforward controller does not follow the
residual dynamics at higher frequencies. However, the
low frequency contributions ofall plant modes are
compensated for exactly. Jerk derivative feedforward
therefore has the freedom to compensate for low frequency
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Fig. 7. Residual dynamicseo/r̈, δ and low frequency effect ofF trunc.

residual dynamics of plants with orders much higher than
the order of the feedforward controller (= 4).

IV. I MPLEMENTATION ASPECTS

For practical implementation of the jerk derivative feed-
forward, a discrete time equivalent of Equation 11 needs
to be derived. Neglecting measurement delay, a possible
implementation of the feedforward controller is presented
in Figure 8, whereq is the shift operator. The gray box
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Fig. 8. Possible implementation of jerk derivative feedforward.

includes the blocks that are added to a conventional ac-
celeration feedforward solution. The conventional acceler-
ation feedforward consists of an acceleration feedforward
gain Kacc(= mt) and the discrete time equivalent of a
double integrator (blockI) which computes the position
reference from the acceleration signal. The jerk-derivative
feedforward path basically consists of a series connection of
two differentiating filters and a jerk derivative feedforward
gain Kdjerk(= δ). The differentiating filters are, by means
of delay, implemented in a causal fashion. To compensate
for the combined delay of the jerk derivative path, delay
operators have to be added to the position and acceleration
feedforward path. This is done to match the phase of
the setpoint position with the phase of the corresponding



terms in the feedforward controller. Finally, note that in the
discrete time implementation of the proposed controller the
requirement for the reference trajectory to be at least of
fourth order can be relaxed.

V. D ISCUSSION

The proposed jerk derivative feedforward controller
proves to be capable of compensating low frequency
tracking errors which arise due to flexibility in a motion
system. The residual dynamics after using jerk derivative
feedforward can be calculated following the same strategy
as was used in section II. For the example used in this
work, these residual dynamics have a magnitude−280dB
in low frequency regions. And hence, higher order (higher
than 4) feedforward controllers will not lead to a substantial
improvement in the low frequency region. In the high
frequency region, higher order feedforward design may
lead to a better approximation of the residual dynamics.
This becomes particularly interesting when resonance
frequencies of a motion system are strongly excited by the
reference profile. However, as stated in the introduction
to this paper, this is in practice often prevented a priori
through an appropriate design of the reference trajectory.

The additive form of the jerk derivative feedforward
controller has many practical advantages. After tuning
the acceleration feedforward,δ may be tuned to cancel
residual servo errors during jerk phase. Asδ is a constant
parameter, the possibility arises to tune the jerk derivative
feedforward controller online, monitoring the servo error
in the time domain. This is similar to the way in which
acceleration feedforward controllers are tuned in current
industrial practice.

As was mentioned in the introduction, model based
feedforward design is often based on obtaining an
approximate inverse of the plant. Often, from a practical
point of view, the order of the feedforward controller
is constrained. A possible compromising design choice
could be to use the inverse of a truncated plant model
as a feedforward controller,F trunc. If the order is
constrained to be4, this feedforward controller will
have the same order as the jerk derivative feedforward
controller. However,F trunc only compensates for the low
frequency contribution of this particular inverted mode, see
Figure 7, while the jerk derivative feedforward controller
compensates for all low frequency modal contributions.
Jerk derivative feedforward will therefore have superior
performance for references with mostly low frequency
energy. In high frequency regions,F trunc approximates
the resonance of the inverted mode, while jerk derivative
feedforward shows a poor approximation of the resonance
behavior, Figure 9. Hence, it is expected that in this region,
F trunc will outperform jerk derivative feedforward control.
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Fig. 9. Plant and inverse of feedforward controllers. Plant (solid thin),
Mode inversion based feedforward controller (dashed), derivative of jerk
feedforward controller (solid thick).

VI. CONCLUSIONS

For a plant with a rigid body mode and high frequency
dynamics, which is subject to reference profiles with mostly
low frequency energy, application of only rigid body feed-
forward may lead to performance limiting residual servo
errors during motion. These residual servo errors result
from low frequency modal contributions which cannot be
compensated for using rigid body feedforward control. A
new, setpoint relevant, model based feedforward controller
is proposed which uses the derivative of jerk as an additional
parameter. Jerk derivative feedforward control compensates
for low frequency residual dynamics of plant with (possibly)
much higher order than the feedforward controller. Jerk
derivative feedforward can be tuned online, similar to com-
mon industrial acceleration feedforward tuning procedures.
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