TAIWANESE JOURNAL OF MATHEMATICS
Vol. 18, No. 3, pp. 925-930, June 2014
DOI: 10.11650/tjm.18.2014.3942
This paper is available online at http://journal.taiwanmathsoc.org.tw

JEŚMANOWICZ’ CONJECTURE WITH FERMAT NUMBERS

Min Tang* and Jian-Xin Weng

Abstract

Let a, b, c be relatively prime positive integers such that $a^{2}+b^{2}=c^{2}$. In 1956, Jeśmanowicz conjectured that for any positive integer n, the only solution of $(a n)^{x}+(b n)^{y}=(c n)^{z}$ in positive integers is $(x, y, z)=(2,2,2)$. Let $k \geq 1$ be an integer and $F_{k}=2^{2^{k}}+1$ be k-th Fermat number. In this paper, we show that Jeśmanowicz' conjecture is true for Pythagorean triples $(a, b, c)=$ $\left(F_{k}-2,2^{2^{k-1}+1}, F_{k}\right)$.

1. Introduction

Let a, b, c be relatively prime positive integers such that $a^{2}+b^{2}=c^{2}$ with b even. Clearly, for any positive integer n, the Diophantine equation

$$
\begin{equation*}
(n a)^{x}+(n b)^{y}=(n c)^{z}, \quad x, y, z \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

has the solution $(x, y, z)=(2,2,2)$. In 1956, Sierpiński [8] showed there is no other solution when $n=1$ and $(a, b, c)=(3,4,5)$. Jeśmanowicz [3] proved that when $n=1$ and $(a, b, c)=(5,12,13),(7,24,25),(9,40,41),(11,60,61)$, Eq.(1.1) has only the solution $(x, y, z)=(2,2,2)$. Moreover, he conjectured that for any positive integer n, Eq.(1.1) has no solution other than $(x, y, z)=(2,2,2)$. Let $k \geq 1$ be an integer and $F_{k}=2^{2^{k}}+1$ be k-th Fermat number. Recently, the first author of this paper and Yang [9] proved that if $1 \leq k \leq 4$, then Jeśmanowicz' conjecture is true, that is, the Diophantine equation

$$
\begin{equation*}
\left(\left(F_{k}-2\right) n\right)^{x}+\left(2^{2^{k-1}+1} n\right)^{y}=\left(F_{k} n\right)^{z}, \quad x, y, z \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

has no solution other than $(x, y, z)=(2,2,2)$. For related problems, see for example [1, 6] and [7].

In this paper, we extend this result as follows.
Received October 28, 2013, accepted December 1, 2013.
Communicated by Wen-Ching Li.
2010 Mathematics Subject Classification: 11D61.
Key words and phrases: Jesmanowicz’ conjecture, Diophantine equation, Fermat numbers.
This work was supported by Anhui Provincial Natural Science Foundation, Grant No. 1208085QA02.
*Corresponding author.

Theorem 1. For any positive integers n and k, Eq.(1.2) has only the solution $(x, y, z)=(2,2,2)$.

Throughout this paper, for positive integers a and m with a prime to m, we denote by $\operatorname{ord}_{m}(a)$ the least positive integer h such that $a^{h} \equiv 1(\bmod m)$.

2. LEMMAS

In this section, we prepare several lemmas.
Lemma 1. ([5]). For any positive integer m, the Diophantine equation $\left(4 m^{2}-\right.$ $1)^{x}+(4 m)^{y}=\left(4 m^{2}+1\right)^{z}$ has only the solution $(x, y, z)=(2,2,2)$.

Lemma 2. (See [1, Lemma 2]). Let a, b, c be positive integers such that $a^{2}+b^{2}=$ c^{2}. If $z \geq \max \{x, y\}$, then the Diophantine equation $a^{x}+b^{y}=c^{z}$ has only the positive solution $(x, y, z)=(2,2,2)$.

Lemma 3. (See [4, Corollary 1]). If Eq.(1.1) has a solution $(x, y, z) \neq(2,2,2)$, then x, y, z are distinct.

Lemma 4. (See [2, Lemma 2.3]). Let a, b, c be any primitive Pythagorean triple such that $a^{2}+b^{2}=c^{2}$. Assume that the Diophantine equation $a^{x}+b^{y}=c^{z}$ has only the trivial solution in positive integers x, y and z. Then Eq.(1.1) has no solution satisfying $z<y<x$ or $z<x<y$.

Lemma 5. Let k be a positive integer. If (x, y, z) is a solution of Eq.(1.2) with $(x, y, z) \neq(2,2,2)$, then $x<z<y$.

Proof. By Lemmas 2-4, it is sufficient to prove that Eq.(1.2) has no solution (x, y, z) satisfying $y<z<x$. By Lemma 1 , we may assume that $n \geq 2$. Suppose that Eq.(1.2) has a solution (x, y, z) with $y<z<x$. Then, dividing Eq.(1.2) by n^{y}, we find

$$
\begin{equation*}
2^{\left(2^{k-1}+1\right) y}=n^{z-y}\left(F_{k}^{z}-\left(F_{k}-2\right)^{x} n^{x-z}\right) \tag{2.1}
\end{equation*}
$$

By (2.1) we may write $n=2^{r}$ with $r \geq 1$. Since the second factor on the right-hand side of (2.1) is odd, it has to be 1 , that is,

$$
\begin{equation*}
F_{k}^{z}-\left(F_{k}-2\right)^{x} 2^{r(x-z)}=1 \tag{2.2}
\end{equation*}
$$

Since $F_{k} \equiv 2(\bmod 3)$, equation (2.2) implies $2^{z} \equiv 1(\bmod 3)$, hence $z \equiv 0$ $(\bmod 2)$. Write $z=2 z_{1}$. Then

$$
\begin{equation*}
\left(\prod_{i=0}^{k-1} F_{i}\right)^{x} 2^{r(x-z)}=\left(F_{k}^{z_{1}}-1\right)\left(F_{k}^{z_{1}}+1\right) \tag{2.3}
\end{equation*}
$$

Let $F_{k-1}=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ be the standard prime factorization of F_{k-1} with $p_{1}<\ldots<p_{t}$. By the known Fermat primes, we know that there is the possibility of $t=1$. Moreover,

$$
\begin{equation*}
\operatorname{ord}_{p_{i}}(2)=2^{k}, \quad i=1, \ldots, t \tag{2.4}
\end{equation*}
$$

Since $\operatorname{gcd}\left(F_{k}^{z_{1}}-1, F_{k}^{z_{1}}+1\right)=2$, by (2.3) we know that p_{t} divides only one of $F_{k}^{z_{1}}-1$ and $F_{k}^{z_{1}}+1$.

Case 1. $p_{t} \mid F_{k}^{z_{1}}-1$. Then $2^{z_{1}}-1 \equiv F_{k}^{z_{1}}-1 \equiv 0\left(\bmod p_{t}\right)$. Hence, we have $z_{1} \equiv 0\left(\bmod 2^{k}\right)$ by (2.4). It follows from (2.4) that

$$
F_{k}^{z_{1}}-1 \equiv 2^{z_{1}}-1 \equiv 0 \quad\left(\bmod p_{i}\right), \quad i=1, \ldots, t
$$

Since $\operatorname{gcd}\left(F_{k}^{z_{1}}-1, F_{k}^{z_{1}}+1\right)=2$, by (2.3) we have

$$
F_{k}^{z_{1}}-1 \equiv 0 \quad\left(\bmod p_{i}^{\alpha_{i} x}\right), \quad i=1, \ldots, t
$$

Hence F_{k-1}^{x} divides $F_{k}^{z_{1}}-1$.
Case 2. $p_{t} \mid F_{k}^{z_{1}}+1$. Then $2^{z_{1}}+1 \equiv F_{k}^{z_{1}}+1 \equiv 0\left(\bmod p_{t}\right)$, so $2^{2 z_{1}} \equiv 1\left(\bmod p_{t}\right)$. Hence, $z_{1} \equiv 0\left(\bmod 2^{k-1}\right)$, but $z_{1} \not \equiv 0\left(\bmod 2^{k}\right)$. By (2.4), for $i=1, \ldots, t$, we have

$$
\begin{aligned}
2^{z_{1}}-1 & \not \equiv 0 \quad\left(\bmod p_{i}\right) \\
\left(2^{z_{1}}+1\right)\left(2^{z_{1}}-1\right) & =2^{2 z_{1}}-1 \equiv 0 \quad\left(\bmod p_{i}\right)
\end{aligned}
$$

Thus

$$
F_{k}^{z_{1}}+1 \equiv 0 \quad\left(\bmod p_{i}\right), \quad i=1, \ldots, t
$$

Similarly to the preceding case, the above yields F_{k-1}^{x} divides $F_{k}^{z_{1}}+1$.
However, by the assumption $z<x$, we have

$$
F_{k-1}^{x}=\left(2^{2^{k-1}}+1\right)^{x}>\left(2^{2^{k-1}}+1\right)^{2 z_{1}}>F_{k}^{z_{1}}+1
$$

which is absurd. This completes the proof of Lemma 5.

3. Proof of Theorem 1

By Lemma 1, we may assume that $n \geq 2$. Suppose that there exists a solution of Eq.(1.2) with $(x, y, z) \neq(2,2,2)$. It suffices to observe that this leads to a contradiction. By Lemma 5, we may assume $x<z<y$. Then, dividing Eq.(1.2) by n^{x}, we find

$$
\begin{equation*}
\left(\prod_{i=0}^{k-1} F_{i}\right)^{x}=n^{z-x}\left(F_{k}^{z}-2^{\left(2^{k-1}+1\right) y} n^{y-z}\right) \tag{3.1}
\end{equation*}
$$

It is clear from (3.1) that n is prime to the second factor of the right-hand side of (3.1). Let $\prod_{i=0}^{k-1} F_{i}=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ be the standard prime factorization of $\prod_{i=0}^{k-1} F_{i}$ and write $n=\prod_{j \in S} p_{j}^{\beta_{j}}$, where $\beta_{j} \geq 1, S \subseteq\{1, \ldots, t\}$. Let $T=\{1, \ldots, t\} \backslash S$. If $T=\emptyset$, then let $P(k, n)=1$. If $T \neq \emptyset$, then let

$$
P(k, n)=\prod_{i \in T} p_{i}^{\alpha_{i}} .
$$

By (3.1), we have

$$
\begin{equation*}
P(k, n)^{x}=F_{k}^{z}-2^{\left(2^{k-1}+1\right) y} \prod_{j \in S} p_{j}^{\beta_{j}(y-z)} . \tag{3.2}
\end{equation*}
$$

If $P(k, n)=1$, then $S=T=\{1, \ldots, t\}$, and $p_{1}=3$. So, as seen in the proof of Lemma 5 , taking the equation in (3.2) modulo 3 implies that z is even. Write $z=2 z_{1}$. By (3.2), we have

$$
2^{\left(2^{k-1}+1\right) y} \prod_{j \in S} p_{j}^{\beta_{j}(y-z)}=\left(F_{k}^{z_{1}}-1\right)\left(F_{k}^{z_{1}}+1\right) .
$$

Since $\operatorname{gcd}\left(F_{k}^{z_{1}}-1, F_{k}^{z_{1}}+1\right)=2$, we find that $2^{\left(2^{k-1}+1\right) y-1}$ divides only one of $F_{k}^{z_{1}}+1$ and $F_{k}^{z_{1}}-1$. Thus $2^{\left(2^{k-1}+1\right) y-1} \leq F_{k}^{z_{1}}+1$. However, by the assumption $z<y$, we have

$$
2^{\left(2^{k-1}+1\right) y-1} \geq 2^{\left(2^{k-1}+1\right)(z+1)-1}>2^{\left(2^{k-1}+1\right) 2 z_{1}}>\left(F_{k}+F_{k}-2\right)^{z_{1}} \geq F_{k}^{z_{1}}+1
$$

which is a contradiction.
Now we assume that $P(k, n)>1$. First, we shall show that x is even.
Since $y \geq 2$, it follows from (3.2) that

$$
\begin{equation*}
P(k, n)^{x} \equiv 1 \quad\left(\bmod 2^{2^{k}}\right) . \tag{3.3}
\end{equation*}
$$

If $3 \mid P(k, n)$, then $P(k, n) \equiv-1(\bmod 4)$. This together with (3.3) implies that x is even. Hence, we may assume $P(k, n) \not \equiv 0(\bmod 3)$. Then $P(k, n) \equiv 1(\bmod 4)$. We can write $P(k, n)=1+2^{v} W$, where v, W are positive integers such that $v \geq 2$ and W is odd. Suppose that x is odd, then

$$
P(k, n)^{x}=1+2^{v} W^{\prime}, \quad 2 \nmid W^{\prime} .
$$

Thus $v \geq 2^{k}$ by (3.3), and so $P(k, n) \geq F_{k}$, which is a contradiction with

$$
P(k, n)<\prod_{i=0}^{k-1} F_{i}=F_{k}-2 .
$$

Therefore, x is even. We can write $x=2^{u} N$, where u, N are positive integers such that N is odd.

Second, we shall prove that z is even.
Case 1. $P(k, n) \equiv-1(\bmod 4)$. We can write $P(k, n)=2^{d} M-1$, where d, M are positive integers such that $d \geq 2$ and M is odd. Then

$$
P(k, n)^{x}=1+2^{u+d} V, \quad 2 \nmid V .
$$

By (3.3) we have $u+d \geq 2^{k}$.
Since $S \neq \emptyset$, we can choose a $\nu \in S$, and we put $p_{\nu}=2^{r} t^{\prime}+1$ with $r \geq 1,2 \nmid t^{\prime}$. Then

$$
2^{d+r-1}<\left(2^{d} M-1\right)\left(2^{r} t^{\prime}+1\right)=P(k, n) \cdot p_{\nu} \leq \prod_{i=0}^{k-1} F_{i}=2^{2^{k}}-1
$$

Thus $d+r \leq 2^{k}$. Hence $u \geq r$. By (3.2) we have

$$
P(k, n)^{x} \equiv 2^{z} \quad\left(\bmod p_{\nu}\right)
$$

Noting that $p_{\nu}-1 \mid 2^{u} t^{\prime}$, we have

$$
2^{t^{\prime} z} \equiv P(k, n)^{2^{u} t^{\prime} N} \equiv 1 \quad\left(\bmod p_{\nu}\right)
$$

Since $\operatorname{ord}_{p_{\nu}}(2)$ is even and t^{\prime} is odd, we have $z \equiv 0(\bmod 2)$.
Case 2. $P(k, n) \equiv 1(\bmod 4)$. Similarly to the preceding case, we can show that z is even.

Write $z=2 z_{1}, x=2 x_{1}$. By (3.2), we have

$$
\begin{equation*}
2^{\left(2^{k-1}+1\right) y} \prod_{j \in S} p_{j}^{\beta_{j}(y-z)}=\left(F_{k}^{z_{1}}-P(k, n)^{x_{1}}\right)\left(F_{k}^{z_{1}}+P(k, n)^{x_{1}}\right) \tag{3.4}
\end{equation*}
$$

Since

$$
\operatorname{gcd}\left(F_{k}^{z_{1}}-P(k, n)^{x_{1}}, F_{k}^{z_{1}}+P(k, n)^{x_{1}}\right)=2
$$

we find from (3.4) that $2^{\left(2^{k-1}+1\right) y-1}$ divides only one of $F_{k}^{z_{1}}+P(k, n)^{x_{1}}$ and $F_{k}^{z_{1}}-$ $P(k, n)^{x_{1}}$. Thus $2^{\left(2^{k-1}+1\right) y-1} \leq F_{k}^{z_{1}}+P(k, n)^{x_{1}}$. However, by the assumption $x<$ $z<y$, we have

$$
2^{\left(2^{k-1}+1\right) y-1}>\left(F_{k}+F_{k}-2\right)^{z_{1}}>F_{k}^{z_{1}}+P(k, n)^{x_{1}}
$$

which is a contradiction. This completes the proof of Theorem 1.

Acknowledgment

We sincerely thank Professor Yong-Gao Chen for his valuable suggestions and useful discussions. We sincerely thank the referee for his/her valuable comments.

References

1. M. J. Deng and G. L. Cohen, On the conjecture of Jeśmanowicz concerning Pythagorean triples, Bull. Aust. Math. Soc., 57 (1998), 515-524.
2. M. J. Deng, A note on the Diophantine equation $(n a)^{x}+(n b)^{y}=(n c)^{z}$, Bull. Aust. Math. Soc., doi:10.1017/S000497271300066X.
3. L. Jesmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat., 1 (1955/56), 196-202.
4. M. H. Le, A note on Jeśmanowicz’ conjecture concerning Pythagorean triples, Bull. Aust. Math. Soc., 59 (1999), 477-480.
5. W. D. Lu, On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$, Acta Sci. Natur. Univ. Szechuan, 2 (1959), 39-42.
6. T. Miyazaki, Generalizations of classical results on Jesmanowicz’ conjecture concerning Pythagorean triples, J. Number Theory, 133 (2013), 583-595.
7. T. Miyazaki and A. Togbé, The Diophantine equation $(2 a m-1)^{x}+(2 m)^{y}=(2 a m+1)^{z}$, Int. J. Number Theory, 8 (2012), 2035-2044.
8. W. Sierpiński, On the equation $3^{x}+4^{y}=5^{z}$, Wiadom. Mat., 1 (1955/56), 194-195.
9. M. Tang and Z. J. Yang, Jesmanowicz' conjecture revisted, Bull. Aust. Math. Soc., 88 (2013), 486-491.

Min Tang and Jian-Xin Weng
School of Mathematics and Computer Science
Anhui Normal University
Wuhu 241003
P. R. China

E-mail: tmzzz2000@163.com

