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JEŚMANOWICZ’ CONJECTURE WITH FERMAT NUMBERS

Min Tang* and Jian-Xin Weng

Abstract. Let a, b, c be relatively prime positive integers such that a2 + b2 = c2.
In 1956, Jeśmanowicz conjectured that for any positive integer n, the only solution
of (an)x + (bn)y = (cn)z in positive integers is (x, y, z) = (2, 2, 2). Let k ≥ 1
be an integer and Fk = 22k

+ 1 be k-th Fermat number. In this paper, we
show that Jeśmanowicz’ conjecture is true for Pythagorean triples (a, b, c) =
(Fk − 2, 22k−1+1, Fk).

1. INTRODUCTION

Let a, b, c be relatively prime positive integers such that a2 + b2 = c2 with b even.
Clearly, for any positive integer n, the Diophantine equation

(1.1) (na)x + (nb)y = (nc)z, x, y, z ∈ N

has the solution (x, y, z) = (2, 2, 2). In 1956, Sierpiński [8] showed there is no other
solution when n = 1 and (a, b, c) = (3, 4, 5). Jeśmanowicz [3] proved that when
n = 1 and (a, b, c) = (5, 12, 13), (7, 24, 25), (9, 40, 41), (11, 60, 61), Eq.(1.1) has only
the solution (x, y, z) = (2, 2, 2). Moreover, he conjectured that for any positive integer
n, Eq.(1.1) has no solution other than (x, y, z) = (2, 2, 2). Let k ≥ 1 be an integer
and Fk = 22k

+ 1 be k-th Fermat number. Recently, the first author of this paper and
Yang [9] proved that if 1 ≤ k ≤ 4, then Jeśmanowicz’ conjecture is true, that is, the
Diophantine equation

(1.2) ((Fk − 2)n)x + (22k−1+1n)y = (Fkn)z, x, y, z ∈ N

has no solution other than (x, y, z) = (2, 2, 2). For related problems, see for example
[1, 6] and [7].

In this paper, we extend this result as follows.
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Theorem 1. For any positive integers n and k, Eq.(1.2) has only the solution
(x, y, z) = (2, 2, 2).

Throughout this paper, for positive integers a and m with a prime to m, we denote
by ordm(a) the least positive integer h such that ah ≡ 1 (mod m).

2. LEMMAS

In this section, we prepare several lemmas.

Lemma 1. ([5]). For any positive integer m, the Diophantine equation (4m2 −
1)x + (4m)y = (4m2 + 1)z has only the solution (x, y, z) = (2, 2, 2).

Lemma 2. (See [1, Lemma 2]). Let a, b, c be positive integers such that a2 +b2 =
c2. If z ≥ max{x, y}, then the Diophantine equation ax + by = cz has only the
positive solution (x, y, z) = (2, 2, 2).

Lemma 3. (See [4, Corollary 1]). If Eq.(1.1) has a solution (x, y, z) �= (2, 2, 2),
then x, y, z are distinct.

Lemma 4. (See [2, Lemma 2.3]). Let a, b, c be any primitive Pythagorean triple
such that a2 + b2 = c2. Assume that the Diophantine equation ax + by = cz has
only the trivial solution in positive integers x, y and z. Then Eq.(1.1) has no solution
satisfying z < y < x or z < x < y.

Lemma 5. Let k be a positive integer. If (x, y, z) is a solution of Eq.(1.2) with
(x, y, z) �= (2, 2, 2), then x < z < y.

Proof. By Lemmas 2-4, it is sufficient to prove that Eq.(1.2) has no solution
(x, y, z) satisfying y < z < x. By Lemma 1, we may assume that n ≥ 2. Suppose
that Eq.(1.2) has a solution (x, y, z) with y < z < x. Then, dividing Eq.(1.2) by ny ,
we find

(2.1) 2(2k−1+1)y = nz−y
(
F z

k − (Fk − 2)xnx−z
)
.

By (2.1) we may write n = 2r with r ≥ 1. Since the second factor on the right-hand
side of (2.1) is odd, it has to be 1, that is,

(2.2) F z
k − (Fk − 2)x2r(x−z) = 1.

Since Fk ≡ 2 (mod 3), equation (2.2) implies 2z ≡ 1 (mod 3), hence z ≡ 0
(mod 2). Write z = 2z1. Then

(2.3)
( k−1∏

i=0

Fi

)x
2r(x−z) = (F z1

k − 1)(F z1
k + 1).
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Let Fk−1 =
t∏

i=1
pαi

i be the standard prime factorization of Fk−1 with p1 < . . . < pt.

By the known Fermat primes, we know that there is the possibility of t = 1. Moreover,

(2.4) ordpi(2) = 2k, i = 1, . . . , t.

Since gcd(F z1
k −1, F z1

k +1) = 2, by (2.3) we know that pt divides only one of F z1
k −1

and F z1
k + 1.

Case 1. pt | F z1
k − 1. Then 2z1 − 1 ≡ F z1

k − 1 ≡ 0 (mod pt). Hence, we have
z1 ≡ 0 (mod 2k) by (2.4). It follows from (2.4) that

F z1
k − 1 ≡ 2z1 − 1 ≡ 0 (mod pi), i = 1, . . . , t.

Since gcd(F z1
k − 1, F z1

k + 1) = 2, by (2.3) we have

F z1
k − 1 ≡ 0 (mod pαix

i ), i = 1, . . . , t.

Hence Fx
k−1 divides F z1

k − 1.

Case 2. pt | F z1
k +1. Then 2z1+1 ≡ F z1

k +1 ≡ 0 (mod pt), so 22z1 ≡ 1 (mod pt).
Hence, z1 ≡ 0 (mod 2k−1), but z1 �≡ 0 (mod 2k). By (2.4), for i = 1, . . . , t, we have

2z1 − 1 �≡ 0 (mod pi),

(2z1 + 1)(2z1 − 1) = 22z1 − 1 ≡ 0 (mod pi).

Thus
F z1

k + 1 ≡ 0 (mod pi), i = 1, . . . , t.

Similarly to the preceding case, the above yields Fx
k−1 divides F z1

k + 1.
However, by the assumption z < x, we have

Fx
k−1 =

(
22k−1

+ 1
)x

>
(
22k−1

+ 1
)2z1

> F z1
k + 1,

which is absurd. This completes the proof of Lemma 5.

3. PROOF OF THEOREM 1

By Lemma 1, we may assume that n ≥ 2. Suppose that there exists a solution of
Eq.(1.2) with (x, y, z) �= (2, 2, 2). It suffices to observe that this leads to a contradic-
tion. By Lemma 5, we may assume x < z < y. Then, dividing Eq.(1.2) by nx, we
find

(3.1)
( k−1∏

i=0

Fi

)x
= nz−x

(
F z

k − 2(2k−1+1)yny−z
)
.
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It is clear from (3.1) that n is prime to the second factor of the right-hand side of

(3.1). Let
k−1∏
i=0

Fi =
t∏

i=1
pαi

i be the standard prime factorization of
k−1∏
i=0

Fi and write

n =
∏
j∈S

p
βj

j , where βj ≥ 1, S ⊆ {1, . . . , t}. Let T = {1, . . . , t} \ S. If T = ∅, then

let P (k, n) = 1. If T �= ∅, then let

P (k, n) =
∏
i∈T

pαi
i .

By (3.1), we have

(3.2) P (k, n)x = F z
k − 2(2k−1+1)y

∏
j∈S

p
βj(y−z)
j .

If P (k, n) = 1, then S = T = {1, . . . , t}, and p1 = 3. So, as seen in the proof of
Lemma 5, taking the equation in (3.2) modulo 3 implies that z is even. Write z = 2z1.
By (3.2), we have

2(2k−1+1)y
∏
j∈S

p
βj(y−z)
j = (F z1

k − 1)(F z1
k + 1).

Since gcd(F z1
k −1, F z1

k +1) = 2, we find that 2(2k−1+1)y−1 divides only one of F z1
k +1

and F z1
k − 1. Thus 2(2k−1+1)y−1 ≤ F z1

k + 1. However, by the assumption z < y, we
have

2(2k−1+1)y−1 ≥ 2(2k−1+1)(z+1)−1 > 2(2k−1+1)2z1 > (Fk + Fk − 2)z1 ≥ F z1
k + 1,

which is a contradiction.
Now we assume that P (k, n) > 1. First, we shall show that x is even.
Since y ≥ 2, it follows from (3.2) that

(3.3) P (k, n)x ≡ 1 (mod 22k
).

If 3 | P (k, n), then P (k, n) ≡ −1 (mod 4). This together with (3.3) implies that x
is even. Hence, we may assume P (k, n) �≡ 0 (mod 3). Then P (k, n) ≡ 1 (mod 4).
We can write P (k, n) = 1 + 2vW , where v, W are positive integers such that v ≥ 2
and W is odd. Suppose that x is odd, then

P (k, n)x = 1 + 2vW ′, 2 � W ′.

Thus v ≥ 2k by (3.3), and so P (k, n) ≥ Fk , which is a contradiction with

P (k, n) <

k−1∏
i=0

Fi = Fk − 2.
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Therefore, x is even. We can write x = 2uN , where u, N are positive integers such
that N is odd.

Second, we shall prove that z is even.

Case 1. P (k, n) ≡ −1 (mod 4). We can write P (k, n) = 2dM − 1, where d, M
are positive integers such that d ≥ 2 and M is odd. Then

P (k, n)x = 1 + 2u+dV, 2 � V.

By (3.3) we have u + d ≥ 2k.
Since S �= ∅, we can choose a ν ∈ S, and we put pν = 2rt′ + 1 with r ≥ 1, 2 � t′.

Then

2d+r−1 < (2dM − 1)(2rt′ + 1) = P (k, n) · pν ≤
k−1∏
i=0

Fi = 22k − 1.

Thus d + r ≤ 2k. Hence u ≥ r. By (3.2) we have

P (k, n)x ≡ 2z (mod pν).

Noting that pν − 1 | 2ut′, we have

2t′z ≡ P (k, n)2
ut′N ≡ 1 (mod pν).

Since ordpν (2) is even and t′ is odd, we have z ≡ 0 (mod 2).

Case 2. P (k, n) ≡ 1 (mod 4). Similarly to the preceding case, we can show that
z is even.

Write z = 2z1, x = 2x1. By (3.2), we have

(3.4) 2(2k−1+1)y
∏
j∈S

p
βj(y−z)
j =

(
F z1

k − P (k, n)x1

)(
F z1

k + P (k, n)x1

)
.

Since
gcd

(
F z1

k − P (k, n)x1, F z1
k + P (k, n)x1

)
= 2,

we find from (3.4) that 2(2k−1+1)y−1 divides only one of F z1
k + P (k, n)x1 and F z1

k −
P (k, n)x1. Thus 2(2k−1+1)y−1 ≤ F z1

k + P (k, n)x1. However, by the assumption x <

z < y, we have

2(2k−1+1)y−1 > (Fk + Fk − 2)z1 > F z1
k + P (k, n)x1,

which is a contradiction. This completes the proof of Theorem 1.
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8. W. Sierpiński, On the equation 3x + 4y = 5z , Wiadom. Mat., 1 (1955/56), 194-195.
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