
JESSICA2: A Distributed Java Virtual Machine with Transparent Thread
Migration Support

�

Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau
Department of Computer Science and Information Systems

The University of Hong Kong
Pokfulam, Hong Kong�

wzzhu+clwang+fcmlau � @csis.hku.hk

Abstract

A distributed Java Virtual Machine (DJVM) spanning
multiple cluster nodes can provide a true parallel execution
environment for multi-threaded Java applications. Most ex-
isting DJVMs suffer from the slow Java execution in inter-
pretive mode and thus may not be efficient enough for solv-
ing computation-intensive problems. We present JESSICA2,
a new DJVM running in JIT compilation mode that can
execute multi-threaded Java applications transparently on
clusters. JESSICA2 provides a single system image (SSI)
illusion to Java applications via an embedded global ob-
ject space (GOS) layer. It implements a cluster-aware Java
execution engine that supports transparent Java thread mi-
gration for achieving dynamic load balancing. We discuss
the issues of supporting transparent Java thread migra-
tion in a JIT compilation environment and propose several
lightweight solutions. An adaptive migrating-home proto-
col used in the implementation of the GOS is introduced.
The system has been implemented on x86-based Linux clus-
ters, and significant performance improvements over the
previous JESSICA system have been observed.

1. Introduction

A distributed Java Virtual Machine (DJVM) spanning
multiple cluster nodes and offering a single system image
(SSI) [12] illusion to Java threads can provide a true parallel
execution environment for multi-threaded Java applications.

Some existing DJVMs follow the monolithic approach.
They modify the JVM so that the it can support distributed
class loading, shared object placement and access, dis-
tributed thread management and synchronization, etc. A
notable example is cJVM [5] which makes use of Java’s se-
mantics to optimize the execution of Java threads in cluster�

This research is supported by Hong Kong RGC grant HKU-7030/01E.

environments. However, due to the complexity in modify-
ing a JVM to support the above functions, DJVMs of this
type were usually based on modifications of the Java inter-
preter, and hence can only support execution of Java pro-
grams in interpreter mode. To achieve higher performance
especially for computation-intensive applications, a DJVM
that supports JIT compilation is needed.

The other type of DJVM relies on a Distributed Share
Memory (DSM) system to support the parallel execution of
Java threads. All distributed Java threads can transparently
access objects in the common object space created by the
underlying DSM. In this environment, thread synchroniza-
tion and object consistency are managed through the DSM’s
locking/unlocking mechanisms and data consistency proto-
cols. This approach allows any JVM to be turned into a
DJVM with only minor changes. Java/DSM [20], Hype-
rion [4], Jackal [19] and our previous project, JESSICA
[17], are examples of this type. This in fact is a layered
approach, and as such runtime information at the JVM level
cannot be easily channeled to the underlying DSM, which
could lead to poor running performance. Also, due to the
mismatch between the memory models of Java and the un-
derlying DSM [8], nontrivial optimizing techniques need to
be employed to enable efficient object sharing among dis-
tributed Java threads.

To fully exploit the power of clusters, a thread migra-
tion mechanism can be built into the DJVM to enable dy-
namic load balancing through migrating Java threads be-
tween cluster nodes at runtime without programmers’ in-
volvement. Transparent thread migration has long been
used as a load balancing mechanism to optimize the re-
source usage in distributed environments [10, 13]. “Trans-
parent” means that the migration operation is automati-
cally triggered without explicit instructions from the source
program. Java’s uniform thread model and its machine-
independent bytecode format make the migration mecha-
nism more portable even in heterogeneous environments.



For systems that support thread migration using C/C++ on
DSM [13], the native pointer problem remains a difficult
issue. These systems usually rely on reserving some vir-
tual address space in all the nodes and require the system
to be totally homogeneous. The resulting system imposes
many constraints on the program and is unfriendly to the
end users. The system we present here solves the problem
by allowing the reallocation of the thread stack in different
virtual address spaces. Thus, multi-threaded Java programs
need only be written in the usual fashion.

Our DJVM is a totally new design. We exploit the power
of Just-in-Time (JIT) compiler to enhance the performance.
Incorporating JIT compilation in DJVMs is rarely discussed
in the literature; yet we prove that it is a promising fea-
ture for DJVMs through our implementation. Our proto-
type uses the Kaffe JVM V1.0.6 [1], and runs in a Linux
cluster. We introduce a new cluster-aware Java execution
engine, JITEE, which supports the execution of distributed
Java threads in JIT compiler mode. The results we ob-
tained show a major improvement in performance over the
old interpreter-based implementation.

The other new feature not shared by our previous work
is a global object space (GOS) layer. This layer supports
the access of shared objects by multiple distributed Java
threads. The GOS per se is not a full-fledged object-based
DSM supporting general-purpose distributed computations,
but is built following the memory consistency model de-
fined in the current Java Memory Model. Our design tries
to exploit the Java semantics to minimize the remote object
access overheads in a distributed environment. From our ex-
periences we found that a naive implementation of a GOS
without exploiting object access patterns in multi-threaded
Java programs can result in poor overall performance. In
this paper, we introduce our optimization technique which
is based on an adaptive home-migration strategy for objects.

The rest of the paper is organized as follows. Section 2
presents the overall architecture of JESSICA2. In Section 3,
we discuss the details of the Java thread migration mecha-
nism in a JIT environment. In Section 4, we explain the
design of the GOS. Section 5 shows the experimental re-
sults of our prototype system. Related work is discussed in
Section 6, and a short conclusion is given in Section 7.

2. Overview of JESSICA2 architecture

Figure 1 shows the overall architecture of JESSICA2.
JESSICA2 runs on a cluster environment and it consists of
a collection of modified JVMs that run in different cluster
nodes. We call a node that starts the Java program as the
master node and the JVM running on it as the master JVM.
All the other nodes in the cluster are the worker nodes run-
ning a worker JVM to participate in the execution of a Java
application. The load monitor is an independent process

that runs in any node of the cluster. The load monitor is re-
sponsible for monitoring the system load of the cluster and
activating Java thread migration. The Java threads in the ap-
plication can migrate from one node to another node upon
receiving requests from the load monitor.

Hardware

OS

Hardware

OS

Hardware

OS

Hardware

OS

Worker
JVM

JITEE JITEEJITEE

Host Manager

Portable Java
Frames

Worker
JVM

Master
JVM

Load Monitor

...

Communication Network

Threads Threads Threads

Host ManagerHost Manager

Migration

Migration
Migration

Migration request

Global Object Space

Figure 1. The JESSICA2 system architecture

Each modified JVM on the cluster node uses the modi-
fied Java execution engine, JITEE, to execute the bytecodes
in JIT mode. The Java thread migration mechanism is built
inside the JITEE to enable the mobility of Java threads at
bytecode boundaries. The details of this mechanism will be
discussed in Section 3.

The GOS layer is embedded inside the DJVM to provide
an SSI view for distributed Java threads. Two main kinds of
operations are included: the data access and thread synchro-
nization operations. The data access operations are used
to hide the data location for the distributed Java threads.
They correspond to the bytecode instructions that access
the class static data, object fields, and the array compo-
nents. The thread synchronization operations implement
the Java thread synchronization primitives transparently in a
distributed environment, which include the operations such
as lock(), unlock(), wait(), notify() and notifall().

A daemon thread called the host manager runs inside
the JVM to provide basic communication supports for data
movements in GOS and control movements in JITEE. The
host mangers in different JVMs communicate with each
other through TCP connections.

3. Transparent Java thread migration

The JVM specification [15] defines various runtime data
structures, including the heap, the method area, and the
JVM stack. They together form the execution context of
a Java thread.

In our design, we have abandoned the use of a page-
based DSM because of performance and portability reasons.
Under this environment that is without a DSM, we need to



apply different strategies to handle different types of Java
thread context during thread migration.

The global heap of the DJVM will be realized by the em-
bedded GOS, which will be discussed in detail in the next
section. Therefore during thread migration, we can migrate
all the objects used by the migrated thread by shipping only
the global Java object references without actually moving
the object data to the remote node. The GOS will han-
dle these object data movements once the migrated thread
restarts its execution on the remote node and needs to access
the objects.

For the method area, we partially load each class inde-
pendently on each JVM. The correctness of rebinding the
class structures on the remote machine is guaranteed by pre-
serving a single copy of static data for non-system classes.
Similar approaches can be found in common DJVM proto-
types such as cJVM and Hyperion.

The remaining problem is the JVM stack for Java
threads. It is the key to supporting thread migration in Java.
The thread migration mechanism involves two main oper-
ations, i.e., capturing and restoring JVM stacks of a Java
thread. We use the JITEE to generate efficient native codes
to manage the thread execution context at runtime and ex-
tend the JVM thread system to support stack capturing and
restoring. To be able to rebuild Java thread stack at a differ-
ent virtual memory space in a remote node, the thread stack
context is captured at the bytecode boundary. The captured
stack context is then translated into a machine-independent
text format and is able to be restored by the target JVM. The
machine-independent description of Java stack can help re-
alize thread migration among different types of JVM.

3.1. Stack capturing

The JIT compiler makes the execution context of Java
thread more complicated to capture compared to methods
used in the interpreter mode. Several issues need to be
solved when migrating threads within JIT compilers:

(1) Migration point. In order to migrate thread stack
to a different virtual address space, we need the migra-
tion point to be set at the bytecode boundary. In JIT
mode, the thread runs its native codes generated by the
JIT compiler. When a thread is chosen by the thread
scheduler as the candidate to migrate, it is most likely
running at some point of native codes that is not at the
bytecode boundary. How to “slide” to the bytecode
boundary is an issue for thread migration in JIT mode.

(2) Register context. As JVM is a stack-based ma-
chine, one of the important tasks of a JIT compiler is
to allocate registers for Java variables in the register-
based machines [7, 14]. As a result, the local variables

or stack variables in a method may be loaded into spe-
cific registers during the execution of native codes gen-
erated by a JIT compiler. Moreover, the subsequent
operations on the variables may take place in the allo-
cated registers. That the variables don’t have the most
recent values in the memory will prevent the stack cap-
turing operation from getting the correct values from
the stack. The problem has the same characteristics as
the optimized code debugger. But it is impractical for
us to store heavy data structures like the code debugger
to support thread migration in the execution engine.
We should be able to get the variable information out
of appropriate registers in JIT mode.

(3) Variable types. As the stack variables are dynam-
ically pushed into or popped from the thread stack,
the variable types of specific stack slots cannot be de-
termined in advance. To tell if a variable is a refer-
ence or not and to encode the variable in a machine-
independent format, it is required that the type of the
variable be known at the time of thread migration. In
[6], it is proposed using a separated type stack operated
synchronously for interpreter during thread execution
to the trace the variable types. Although such method
can be used in the case of JIT compilers, it doubles the
operation time to access the stack variable. New ef-
ficient methods suitable for processing stack variables
in JIT compiler mode are needed.

(4) Frame boundary. The JVM stack in an inter-
preter is defined explicitly in the internal data struc-
tures known by JVM. But for a JIT compiler, the stack
is implicitly managed by the native codes generated. In
this case, the frame boundary is known to the running
codes but not known to JVM. Moreover, one single
running stack for a Java thread is often shared among
the Java methods, and the internal JVM functions (in-
cluding the JIT compiler). All these make the frame
boundary in the stack become blurred to JVM, which
in turn makes the stack capturing difficult. One ap-
proach can allocate a dynamic data structure to store
the stack frames upon method invocations during run-
time. However, it will consume more execution time
and memory space, especially for Java programs in
which method invocations are frequent. Therefore, an
efficient mechanism to reveal the stack frame bound-
ary to JVM in JIT mode should be called for.

To address the first two problems, we limit the migra-
tion to take place at some specific points. During the native
codes generation for Java methods in the JIT compiler, we
insert additional checking codes at these points. The codes
are used to check the migration request and to spill the ma-
chine registers to the memory slots of the variables. The
candidate threads to migrate, when running to such points



can detect the migration request, and will call the appropri-
ate functions to do the stack capturing and migration. The
resulting effect is like that the thread slides to a safe point
before migration.

To tackle the third problem, we choose to do the type
spilling at the migration points discussed above. The type
information of stack variables at such points will be gath-
ered at the time of bytecode verification before compiling
the Java methods. We use one single type to encode the ref-
erence type of stack variable as we can identify the exact
type of a Java object from the object reference. Therefore,
we can compress one type into 4-bit data. Eight compressed
types will be bound in a 32-bit machine word, and an in-
struction to store this word will be generated to spill the
information to appropriate location in the current method
frame. For typical Java methods, only a few instructions
are needed to spill the type information of stack variables
in a method, which results in better efficiency than the type
stack method mentioned before.

The fourth problem is solved by generating native codes
that link the Java thread stack dynamically upon method in-
vocations. The codes only need a few instructions to spill
the previous Java frame stack pointer and previous machine
stack pointer. Such arrangement makes it possible to tell a
Java frame from the internal JVM functions frames (we call
it C frames [16]). In our thread migration, we choose the
consecutive Java frames to be migrated to the remote ma-
chine. Upon completion of such Java frames, the control
will return back to the source machine to complete the C
frame execution.

3.2. Stack restoring

The stack restoring needs to recover the machine regis-
ters in the migration target node. Most previous approaches
supporting thread stack restoring often build the stack by
simulating the method invocation and use additional sta-
tus variables to distinguish the restoring execution flow and
the normal execution flow inside the methods [6]. This
will results in large overheads because it needs to add such
branching codes in all the methods. Rather we directly build
the thread stack and use de-compiling techniques to get the
mapping between the thread variables and the machine reg-
isters at all restoration points. Each mapping is then used
by a generated code stub that will be executed before the
restoration point to recover the machine registers. In our
implementation, we allocate the code stubs inside the re-
stored thread stack so that they will be freed automatically
after execution.

4. Global object space

As we mentioned before, our previous JESSICA project
uses a page-based DSM to realize the global heap. How-
ever, the page-based DSM can’t be tightly coupled with
JESSICA’s thread system. For example, the page-based
DSM uses the hardware page fault mechanism to activate
the remote object access. When a page fault happens to
fetch the remote data, the whole DSM system will block
all the threads on the current node. Such case will result
in great performance loss. On the other hand, the paged-
based DSM does not match well with the access granularity
of the object-based Java language. The access unit in a Java
program is an object or more precisely, an object field. A
paged-based DSM will inevitably suffer from false sharing
when multiple irrelevant objects are allocated in the same
memory page.

To support the access of shared object between the
JVMs, we built a new GOS layer using portable object for-
mat for exchanging object data. This layer is embedded
in the JVM and provides a single heap illusion to the dis-
tributed Java threads.

4.1. Memory model and object access

The Java Memory Model (JMM) [15] specifies the se-
mantics of memory operations issued by Java threads.
Based on the common understanding of the JMM, multi-
threaded Java programs assume that there is a single heap
visible to all the threads. The heap stores all the master
copies of objects. Each thread has a local working mem-
ory to keep the copies of objects from the heap that it must
access. In a single-node JVM implementation, this work-
ing area can be regarded as the machine registers. When
the thread starts execution, it operates on the data in its lo-
cal working memory. In addition, Java threads use monitors
to synchronize the concurrent thread execution in a critical
section. When entering a monitor, the thread must flush its
working memory to the heap to ensure that it can access
the latest object data in the critical region. When exiting
the monitor, the modifications of objects inside the working
memory must be reflected in the heap.

In JESSICA2, we follow the above understanding of
JMM to implement the GOS layer. Object caching is
adopted in JVM for improving the performance. Each JVM
in the DJVM will contribute a portion of its heap, the cache
heap area, for storing cached remote objects. The other por-
tion of heap, the global heap area, is used to store the master
copies of objects. The node that holds the master copy of an
object is called the home of the object. For all the threads
inside one JVM, the access to objects in global heap area is
just the same as the single-node JVM implementation, i.e.,
all the objects in the area are the master copies and can be



Java thread

hash
table

hash
table

Global Heap Area Cache Heap Area

Java thread
JVM

Global Heap

Java thread Java thread
JVM

hash
table

hash
table

Global Heap Area Cache Heap Area

Figure 2. GOS architecture

loaded directly into the thread’s working memory. The ac-
cess to the objects in cache heap area will be handled by
the GOS layer. The cache heap area is a per-thread data
structure. It can be viewed as an extension to the thread’s
working memory. Figure 2 shows the architecture of GOS.

To hide the communication latency, we use the threaded-
IO interface inside the JESSICA2 to transfer the object data.
When one thread is blocked in sending object data, the
thread will yield the CPU and let other thread in the local
JVM continue the execution. The approach can make bet-
ter use of the computing resource on clusters and is more
appealing than the approach of running JVM on top of an
existing DSM on clusters, in which case a page-fault will
make the whole JVM stop from running until underlying
DSM has brought in the memory pages needed from the
network. It is also superior to the approach of simply adopt-
ing an existing Object-based DSM without multi-threading
support.

4.2. Adaptive object home migration

With the introduction of Java thread migration among
cluster nodes, the home of an object may be different from
the location of threads that access this object. This will
cause the object to be cached on the remote node after
thread migration. According to the semantics of JMM, at
synchronization points when entering or exiting a monitor,
this cached object has to be flushed and be re-fetched again
from its home. The communication cost of such operations
will slow down the overall system performance.

To address such problem, we introduce the adaptive ob-
ject home migration concept in the GOS design. Object
home migration means that we change the home of an ob-
ject to another node. The master object at the old home
becomes the cache copy and the remote cache copy at the
new home becomes the master copy. By doing so, if an ob-
ject is frequently accessed by the threads on the new home
in a period of time, the communication cost to flush and to
re-fetch this object will be eliminated. This could result in
great performance improvement for the Java applications.

However, it is hard to determine whether the home of an
object should be migrated or not. With complicated com-
piler support [9], it is possible to detect some of the ob-
jects that are local to one thread. However such support
will be too heavy to be exploited at runtime. In our sys-
tem, we choose simple heuristic method to adaptively mi-
grate the home of an object. We follow the rules below
to migrate the home of an object: if the number of the ac-
cesses from a thread dominates the total number of accesses
to an object, the home of the object will be migrated to the
node where the thread is running on. We perform this ob-
ject home migration decision during the flushing operation
from the remote node so that both the new home and the
old home will have the same copy of object data at the time
of home migration. Later the threads in other nodes except
the new home node will be informed an access redirection
when they are trying to access this object the first time after
the home migration operation.

5. Performance results

A JESSICA2 prototype has been implemented based on
Kaffe JVM V1.0.6 on 540MHz Pentium-II cluster nodes
running the Linux 2.2.1 kernel and connected by Fast Eth-
ernet. Various performance results are reported.

5.1. Microbenchmarks on thread migration

We perform microbenchmarks to measure the cost of the
transparent Java thread migration. Table 1 shows the mea-
surements of different operations during thread migration
for different sizes of Java frames.

Table 1. Timing breakdowns of thread migra-
tion (in � s)

Frame number 1 frame 2 frames 11 frames
(475Bytes) (482Bytes) (3,049Bytes)

Stack capturing 232 437 12,993
Frame parsing 166 328 1,383
Resolution 3,431 13,747 227,587
Frame setup 9 13 49
Overall time 3,838 14,525 242,012

From the above measurements we can see that using our
techniques in JIT mode discussed in Section 3, the costs of
stack capturing and frame setup account for an insignificant
part in the overall cost. Because the proposed type spilling
operation can quickly determine the type of variables, the
stack capturing operation costs only a few milliseconds for
large stack frames. The frame setup operation is extremely
fast as we directly manipulate the thread stacks instead of



building the stacks by simulating the function calls as used
in other similar thread migration systems [18]. The most
costly part of thread migration lies in the class and method
resolution for the Java stacks. The cost to resolve class and
method is caused by the disk I/O to perform class loading
when the remote node does not have the needed classes in
the JVM’s class pool. This cost will be amortized with more
threads migrating to this node which needs the same classes.

There are other operations involved in the thread mi-
gration. For example, the native thread creation cost on
the remote node has a constant overhead about 423 � s on
Pentium-II machine. Also the migration mechanism will
insert checkpointing instructions to do the type spilling and
migration checking in the generated native code. This kind
of native code instrumentation occurs only to methods of
the application classes. According to our measurements,
the increase in code size due to the inserted checkpoints is
less than 1%.

5.2. Performance of GOS

The embedded GOS support introduces both the space
overheads and time overheads. The object checking in-
creases the total native code size by nearly 50% for typi-
cal applications because the object checking operations are
performed on every object access even if the object is local.
This is a common problem for object-based DSM compared
to using page-fault hardware mechanism to check the object
status.

The adaptive object home migration plays an important
role in optimizing the GOS performance. We use SOR to
study the effect of home migration. SOR does red-black
successive over-relaxation on a ���������	�
����� matrix in ���
iterations.

Figure 3 shows the execution time of SOR application
while enabling and disabling the adaptive object home mi-
gration. The improvement resulted from enabling adaptive
object home migration mechanism is significant from the
figure. If we disable this mechanism, we will have hun-
dreds of messages transferring between master node and
worker nodes in every iteration in order to fetch and flush
the needed array elements. After adapting the home mi-
gration, the communication volume during each iteration
steps decreased dramatically. Each iteration requires only
20 messages that are necessary for getting the real shared
array and for performing locks.

5.3. Kaffe versus JESSICA2

Table 2 shows the performance comparison between the
original Kaffe JVM and JESSICA2 using Java Grande Fo-
rum’s Benchmark Suite Thread Version 1.0 [11]. The mea-
surements shows that the worst time cost is below 22% for

20000

30000

40000

50000

60000

70000

80000

2 4 8

T
im

e(
m

s)

Number of nodes

Disable adaptive object home migration
Enable adaptive object home migration

Figure 3. Effect of adaptive object home mi-
gration

all the benchmarking applications.

Table 2. Single node performance bench-
marking using Java Grande Forum Bench-
mark suit (in seconds)

Time (in seconds) Kaffe JIT JESSICA2 Slowdown
Barrier 22.58 26.79 18.64%

ForkJoin 6.91 7.2 4.20%
Sync 71.65 52.18 -27.17%

Crypt 9.85 11.98 21.62%
LUFact 9.29 10.97 18.08%

SOR 46.01 36.52 -20.63%
Series 36.91 36.38 -1.44%

SparseMatmult 26.17 31.92 21.97%

From the above table, the Crypt program has 21.62%
slowdown which is due to the large number of iterations
on checking array objects. In some cases, such as SOR and
Sync, JESSICA2 may even outperform Kaffe. This is con-
tributed by replacing the original Kaffe’s thin locks with our
new locking native codes.

5.4. Application benchmark

In this section, we report the performance of four multi-
threaded Java applications on JESSICA2, and show how
thread migration, JIT compilation and communication over-
heads in the GOS, could affect Java programs’ performance.
The applications are CPI, TSP, Raytracer, and nBody. The
program CPI calculates an approximation of 
 by evaluat-
ing the integral. The Travel Salesman Problem (TSP) finds
the shortest route among a number of cities using parallel
branch-and-bound algorithm. The Raytracer program mea-



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2 4 8

T
im

e(
m

s)

Number of nodes

CPI(50,000,000 iterations)

JESSICA
JESSICA2

Figure 4. Performance comparison of JES-
SICA and JESSICA2 based on a CPI program

sures the performance of a 3D Raytracer. The nBody fol-
lows the algorithm of Barnes & Hut to simulate the mo-
tion of particles in a 2D space due to gravitational forces
over a fixed amount of time steps. We use explicit syn-
chronized methods to synchronize the computation steps of
these tested programs.

Figure 4 compares the performance between JESSICA
and JESSICA2 based on the execution time of the CPI pro-
gram. We run the CPI program with 50,000,000 iterations.
In the tests, the number of Java threads created is the same
as the number of cluster nodes used during the test. All
the threads are originally created and running on the mas-
ter JVM. Later, only one thread is left in the master JVM
and the rest are migrated to the worker JVMs, one thread
per worker JVM. The thread migration takes place when it-
eration number is around 2,000,000. From the figure, we
can see that running in the interpretation mode (JESSICA)
is far slower than running in the JIT compiler mode (JES-
SICA2). The result clearly demonstrates the importance of
incorporating the JIT compiler in DJVM.

Next we run TSP with 14 cities, Raytracer with in a
150x150 scene containing 64 spheres, nBody with 640 par-
ticles in 10 iterations. We show the speedups of CPI, TSP,
Raytracer and nBody in Figure 5 by comparing the execu-
tion time between JESSICA2 and Kaffe 1.0.6 (in a single-
node) under JIT compiler mode. From the figure, we can
see nearly linear speedup in JESSICA2 for CPI, despite the
fact that all the threads needed to run in the master JVM
for 4% of the overall time at the very beginning. For the
TSP and Raytracer, the speedup curves show about 50% to
60% of efficiency. Compared to the CPI program, the num-
ber of messages exchanged between nodes in TSP has been
increased because the migrated threads have to access the
shared job queue and to update the best route during the
parallel execution, which will result in flushing of working

0

1

2

3

4

5

6

7

8

2 4 8

S
pe

ed
up

Number of nodes

Speedup

Linear
CPI

TSP
Raytracer

nBody

Figure 5. Speedup Measurement of Java ap-
plications

memory in the worker threads. In Raytracer the number
of messages is small, as it only needs to transfer the scene
data to the worker thread in the initial phase. The slowdown
comes from the object checking in the modified JVM as the
application accesses the object fields extensively in the in-
ner loop to render the scene. But for the nBody program,
the speedup is only 1.5 for 8 nodes. The poor speedup is
expected, which is due to the frequent communications be-
tween the worker threads and the master thread in comput-
ing the Barnes-Hut Tree.

6. Related work

The research on DJVM has been a promising area in re-
cent years. Many prototypes have been developed to sup-
port running multi-threaded Java applications on clusters to
achieve the SSI illusion at the JVM level.

cJVM [5] is a cluster-aware JVM that provides SSI of
a traditional JVM running on cluster environments. cJVM
distributes the Java threads on clusters at the time of thread
creation and support the remote object access by a smart
proxy model. The cJVM prototype was implemented by
modifying Sun JDK1.2 interpreter. Hence it has perfor-
mance weaknesses stemming from the slow execution of the
Java interpreter, and may not be efficient enough for solving
computation-intensive problems in practice.

Java/DSM [20] is a DJVM that runs on a cluster of het-
erogeneous computers. The design was based on the JDK
1.0.2 JVM and relies heavily on the underlying Treadmark
page-based DSM to maintain the consistency of shared data.
Java/DSM requires the threads in the Java program be mod-
ified to specify the location to run. This violates the SSI
requirement of DJVM. Also using a page-based DSM may
suffer from false sharing problems for Java applications.

There are other DSM-based DJVM prototypes, for ex-



ample, JESSICA [17] and Kaffemik [3]. Our previous
work, JESSICA, implemented a preemptive Java thread mi-
gration mechanism, called Delta Execution [16] by modify-
ing the Kaffe JVM V0.9.1 interpreter. JESSICA provides an
SSI illusion to Java programs on top of an existing paged-
based DSM, e.g., Treadmark [2] and JUMP [8]. Kaffemik is
developed on clusters interconnected with SCI. The current
prototype is at its early stage, and lacks support for object
replication and caching.

There are systems developed to support thread migra-
tion. Arachne [10] is one of such systems. It provides
a portable user-level programming library that supports
thread migration over a heterogeneous cluster. However
the thread migration is not transparent to the user as it re-
quired that programs be written using special thread library
or APIs.

7. Conclusion

JESSICA2 is a new DJVM that applies transparent Java
thread migration to multi-threaded Java applications run-
ning in a cluster. We have successfully implemented a pro-
totype that operates in the JIT compiler mode. The migra-
tion mechanism provides us with a flexible way to distribute
threads among cluster nodes at runtime. The performance
improvement over the previous JESSICA system is signif-
icant due to the introduction of a JIT execution engine (JI-
TEE) in JESSICA2.

To support shared object access, we implemented a
global object space (GOS) layer without using a page-based
DSM. The GOS is embedded in the JVM, and by design
works efficiently with the JESSICA2 thread system.

From the various benchmark tests, we conclude that JES-
SICA2 is a promising DJVM system that can serve as a
high-performance parallel execution environment for multi-
threaded Java applications on parallel or distributed hard-
ware.

The current JESSICA2 implementation suffers exces-
sive communications for certain applications requiring a
high degree of object sharing. Our ongoing work will
focus on optimization of the GOS in response to this.
Runtime shared object detection together with good ob-
ject pre-fetching techniques is a possible solution under
study. There are also opportunities to develop load bal-
ancing strategies that are more intelligent, as JESSICA2’s
JITEE is able to obtain various runtime thread information.

References

[1] Kaffe open vm. Technical report, Transvirtual Technologies
Inc., http://kaffe.org, 2002.

[2] C. Amza, A. L. Cox, S.Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. Treadmarks: Shared

memory computing on networks of workstations. IEEE
Computer, 29(2):18–28, February 1996.

[3] J. Andersson, S. Weber, E. Cecchet, C. Jensen, and V. Cahill.
Kaffemik - a distributed jvm on a single address space archi-
tecture. In Java Virtual Machine Research and Technology
Symposium, 2001.

[4] G. Antoniu et al. The hyperion system: Compiling multi-
threaded java bytecode for distributed execution. Parallel
Computing, 27(10):1279–1297, 2001.

[5] Y. Aridor, M. Factor, and A. Teperman. cjvm: a single sys-
tem image of a jvm on a cluster. In International Conference
on Parallel Processing, pages 4–11, 1999.

[6] S. Bouchenak and D. Hagimont. Approaches to capturing
java threads state. In Middleware 2000, New York, USA,
Arpil 2000.

[7] M. G. Burke et al. The jalapeno dynamic optimizing com-
piler for java. In ACM 1999 Java Grande Conference, pages
129–141, 1999.

[8] W. L. Cheung, C. L. Wang, and F. C. M. Lau. Building a
global object space for supporting single system image on a
cluster. In Annual Review of Scalable Computing, volume 4.
World Scientific, 2002.

[9] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and
S. P. Midkiff. Escape analysis for java. In Conference on
Object-Oriented, pages 1–19, 1999.

[10] B. Dimitrov and V. Rego. Arachne: A portable threads sys-
tem supporting migrant threads on heterogeneous network
farms. IEEE Transactions on Parallel and Distributed Sys-
tems, 9(5), 1998.

[11] EPCC. The java grande forum multi-threaded benchmarks.
http://www.epcc.ed.ac.uk/javagrande/threads/contents.html.

[12] K. Hwang, H. Jin, E. Chow, C. L. Wang, and Z. Xu. Design-
ing ssi clusters with hierarchical checkpointing and single
i/o space. IEEE Concurrency Magazine, 7(1):60–69, Jan-
uary 1999.

[13] A. Itzkovitz, A. Schuster, and L. Shalev. Thread migration
and its applications in distributed shared memory systems.
Systems and Software, 42(1):71–87, 1998.

[14] A. Krall and R. Grafl. Cacao – a 64 bit javavm just-in-
time compiler. Concurrency: Practice and Experience,
9(11):1017–1030, 1997.

[15] T. Lindholm and F. Yellin. The Java(tm) Virtual Machine
Specification. Addison Wesley, second edition, 1999.

[16] M. J. M. Ma, C. L. Wang, and F. C. M. Lau. Delta execu-
tion: A preemptive java thread migration mechanism. Clus-
ter Computing: The Journal of Networks, Software Tools
and Application, 3(2):83–94, 2000.

[17] M. J. M. Ma, C. L. Wang, and F. C. M. Lau. Jessica: Java-
enabled single-system-image computing architecture. Par-
allel and Distributed Computing, 60(10):1194–1222, Octo-
ber 2000.

[18] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen,
and P. Verbaeten. Portable support for transparent thread
migration in java. In ASM, pages 29–43, 2000.

[19] R. Veldema, R. A. F. Bhoedjang, and H. E. Bal. Jackal, a
compiler based implementation of java for clusters of work-
stations. PPoPP 2001, 2001.

[20] W. Yu and A. L. Cox. Java/dsm: A platform for heteroge-
neous computing. Concurrency - Practice and Experience,
9(11):1213–1224, 1997.


