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Jet energy scale measurements and their systematic uncertainties are reported for jets measured with
the ATLAS detector using proton-proton collision data with a center-of-mass energy of

ffiffiffi

s
p ¼ 13 TeV,

corresponding to an integrated luminosity of 3.2 fb−1 collected during 2015 at the LHC. Jets are
reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-kt
algorithm with radius parameter R ¼ 0.4. Jets are calibrated with a series of simulation-based corrections and
in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference
object such as a photon, Z boson, or multijet system for jets with 20 < pT < 2000 GeV and pseudorapidities
of jηj < 4.5, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in
the central calorimeter region (jηj < 1.2) for jets with 100 < pT < 500 GeV. An uncertainty of about 4.5% is
found for low-pT jets with pT ¼ 20 GeV in the central region, dominated by uncertainties in the corrections
for multiple proton-proton interactions. The calibration of forward jets (jηj > 0.8) is derived from dijet pT

balance measurements. For jets of pT ¼ 80 GeV, the additional uncertainty for the forward jet calibration
reaches its largest value of about 2% in the range jηj > 3.5 and in a narrow slice of 2.2 < jηj < 2.4.
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I. INTRODUCTION

Jets are a prevalent feature of the final state in high-
energy proton-proton (pp) interactions at CERN’s Large
Hadron Collider (LHC). Jets, made of collimated showers
of hadrons, are important elements in many Standard
Model (SM) measurements and in searches for new
phenomena. They are reconstructed using a clustering
algorithm run on a set of input four-vectors, typically
obtained from topologically associated energy deposits,
charged-particle tracks, or simulated particles.
This paper details the methods used to calibrate the four-

momenta of jets in Monte Carlo (MC) simulation and in data
collected by the ATLAS detector [1,2] at a center-of-mass
energy of

ffiffiffi

s
p ¼ 13 TeV during the 2015 data-taking period

of Run 2 at the LHC. The jet energy scale (JES) calibration
consists of several consecutive stages derived from a
combination of MC-based methods and in situ techniques.
MC-based calibrations correct the reconstructed jet four-
momentum to that found from the simulated stable particles
within the jet. The calibrations account for features of the
detector, the jet reconstruction algorithm, jet fragmentation,
and the busy data-taking environment resulting from multi-
ple pp interactions, referred to as pile-up. In situ techniques
are used to measure the difference in jet response between

data and MC simulation, with residual corrections applied to
jets in data only. The 2015 jet calibration builds on
procedures developed for the 2011 data [3] collected at
ffiffiffi

s
p ¼ 7 TeV during Run 1. Aspects of the jet calibration,
particularly those related to pile-up [4], were also developed
on 2012 data collected at

ffiffiffi

s
p ¼ 8 TeV during Run 1.

This paper is organized as follows. Section II describes
the ATLAS detector, with an emphasis on the subdetectors
relevant for jet reconstruction. Section III describes the jet
reconstruction inputs and algorithms, highlighting changes
in 2015. Section IV describes the 2015 data set and the MC
generators used in the calibration studies. Section V details
the stages of the jet calibration, with particular emphasis
on the 2015 in situ calibrations and their combination.
Section VI lists the various systematic uncertainties in the
JES and describes their combination into a reduced set of
nuisance parameters.

II. THE ATLAS DETECTOR

The ATLAS detector consists of an inner detector
tracking system spanning the pseudorapidity1 range

*Full author list given at the end of the article.
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1The ATLAS reference system is a Cartesian right-handed
coordinate system, with the nominal collision point at the origin.
The anticlockwise beam direction defines the positive z axis, while
the positive x axis is defined as pointing from the collision point
to the center of the LHC ring and the positive y axis points upwards.
The azimuthal angle ϕ is measured around the beam axis, and the
polar angleθ ismeasuredwith respect to the z axis.Pseudorapidity is
defined as η¼− ln½tanðθ=2Þ�, rapidity is defined as y ¼ 0.5 ln½ðEþ
pzÞ=ðE − pzÞ�, where E is the energy and pz is the z component of
the momentum, and transverse energy is defined as ET ¼ E sin θ.
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jηj < 2.5, sampling electromagnetic and hadronic calorim-
eters covering the range jηj < 4.9, and a muon spectrometer
spanning jηj < 2.7. A detailed description of the ATLAS
experiment can be found in Ref. [1].
Charged-particle tracks are reconstructed in the inner

detector (ID), which consists of three subdetectors: a silicon
pixel tracker closest to the beam line, a microstrip silicon
tracker, and a straw-tube transition radiation tracker farthest
from the beam line. The ID is surrounded by a thin solenoid
providing an axial magnetic field of 2 T, allowing the
measurement of charged-particle momenta. In preparation
for Run 2, a new innermost layer of the silicon pixel tracker,
the insertable B-layer (IBL) [5], was introduced at a radial
distance of 3.3 cm from the beam line to improve track
reconstruction, pile-up mitigation, and the identification of
jets initiated by b-quarks.
The ATLAS calorimeter system consists of inner electro-

magnetic calorimeters surrounded by hadronic calorime-
ters. The calorimeters are segmented in η and ϕ, and each
region of the detector has at least three calorimeter readout
layers to allow the measurement of longitudinal shower
profiles. The high-granularity electromagnetic calorimeters
use liquid argon (LAr) as the active material with lead
absorbers in both the barrel (jηj < 1.475) and endcap
(1.375 < jηj < 3.2) regions. An additional LAr presampler
layer in front of the electromagnetic calorimeter within
jηj < 1.8 measures the energy deposited by particles in the
material upstream of the electromagnetic calorimeter. The
hadronic Tile calorimeter incorporates plastic scintillator
tiles and steel absorbers in the barrel (jηj < 0.8) and
extended barrel (0.8 < jηj < 1.7) regions, with photomul-
tiplier tubes (PMT) aggregating signals from a group of
neighboring tiles. Scintillating tiles in the region between
the barrel and the extended barrel of the Tile calorimeter
serve a similar purpose to that of the presampler and were
extended to increase their area of coverage during the
shutdown leading up to Run 2. A LAr hadronic calorimeter
with copper absorbers covers the hadronic endcap region
(1.5 < jηj < 3.2). A forward LAr calorimeter with copper
and tungsten absorbers covers the forward calorimeter
region (3.1 < jηj < 4.9).
The analog signals from the LAr detectors are sampled

digitally once per bunch crossing over four bunch crossings.
Signals are converted to an energy measurement using an
optimal digital filter, calculated from dedicated calibration
runs [6,7]. The signal was previously reconstructed from
five bunch crossings in Run 1, but the use of four bunch
crossings was found to provide similar signal reconstruction
performance with a reduced bandwidth demand. The LAr
readout is sensitive to signals from the preceding 24 bunch
crossings during 25 ns bunch-spacing operation in Run 2.
This is in contrast to the 12 bunch-crossing sensitivity during
50 ns operation in Run 1, increasing the sensitivity to out-of-
time pile-up from collisions in the preceding bunch cross-
ings. The LAr signals are shaped [6] to reduce the

measurement sensitivity to pile-up, with the shaping opti-
mized for the busier pile-up conditions at 25 ns. In contrast,
the fast readout of the Tile calorimeter [8] reduces the signal
sensitivity to out-of-time pile-up from collisions in neigh-
boring bunch crossings.
The muon spectrometer (MS) [1] surrounds the ATLAS

calorimeters and measures muon tracks within jηj < 2.7
using three layers of precision tracking chambers and
dedicated trigger chambers. A system of three supercon-
ducting air-core toroidal magnets provides a magnetic field
for measuring muon momenta.
The ATLAS trigger system begins with a hardware-based

level 1 (L1) trigger followed by a software-based high-level
trigger (HLT) [9]. The L1 trigger is designed to accept events
at an average 100 kHz rate, and accepted a peak rate of
70 kHz in 2015. The HLT is designed to accept events that
arewritten out to disk at an average rate of 1 kHz and reached
a peak rate of 1.4 kHz in 2015. For the trigger, jet candidates
are constructed from coarse calorimeter towers using a
sliding-window algorithm at L1, and are fully reconstructed
in the HLT. Electrons and photons are triggered in the
pseudorapidity range jηj < 2.5, where the electromagnetic
calorimeter is finely segmented and track reconstruction is
available. Compact electromagnetic energy deposits trig-
gered at L1 are used as the seeds for the HLT algorithms,
which are designed to identify electrons based on calorim-
eter and fast track reconstruction. The muon trigger at L1 is
based on a coincidence of trigger chamber layers. The
parameters of muon candidate tracks are then derived in the
HLT by fast reconstruction algorithms in both the ID and
MS. Events used in the jet calibration are selected from
regions of kinematic phase spacewhere the relevant triggers
are fully efficient.

III. JET RECONSTRUCTION

The calorimeter jets used in the following studies
are reconstructed at the electromagnetic energy scale
(EM scale) with the anti-kt algorithm [10] and radius
parameter R ¼ 0.4 using the FASTJET 2.4.3 software
package [11]. A collection of three-dimensional, mass-
less, positive-energy topological clusters (topo-clusters)
[12,13] made of calorimeter cell energies are used as
input to the anti-kt algorithm. Topo-clusters are built from
neighboring calorimeter cells containing a significant
energy above a noise threshold that is estimated from
measurements of calorimeter electronic noise and simu-
lated pile-up noise. The calorimeter cell energies are
measured at the EM scale, corresponding to the energy
deposited by electromagnetically interacting particles. Jets
are reconstructed with the anti-kt algorithm if they pass a
pT threshold of 7 GeV.
In 2015 the simulated noise levels used in the calibration

of the topo-cluster reconstruction algorithm were updated
using observations from Run 1 data and accounting for
different data-taking conditions in 2015. This results in an
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increase in the simulated noise at the level of 10% with
respect to the Run 1 simulation in the barrel region of
the detector, and a slightly larger increase in the forward
region [4]. The noise thresholds of the topo-cluster
reconstruction were increased accordingly. The topo-
cluster reconstruction algorithm was also improved in
2015, with topo-clusters now forbidden from being seeded
by the presampler layers. This restricts jet formation from
low-energy pile-up depositions that do not penetrate the
calorimeters.
Jets referred to as truth jets are reconstructed using the

anti-kt algorithm with R ¼ 0.4 using stable, final-state
particles from MC generators as input. Candidate particles
are required to have a lifetime of cτ > 10 mm and muons,
neutrinos, and particles from pile-up activity are excluded.
Truth jets are therefore defined as being measured at
the particle-level energy scale. Truth jets with pT >
7 GeV and jηj < 4.5 are used in studies of jet calibration
using MC simulation. Reconstructed calorimeter jets are
geometrically matched to truth jets using the distance
measurement2 ΔR.
Tracks from charged particles used in the jet calibration

are reconstructed within the full acceptance of the ID
(jηj < 2.5). The track reconstruction was updated in 2015
to include the IBL and uses a neural network clustering
algorithm [14], improving the separation of nearby tracks
and the reconstruction performance in the high-luminosity
conditions of Run 2. Reconstructed tracks are required to
have a pT > 500 MeV and to be associated with the hard-
scatter vertex, defined as the primary vertex with at least
two associated tracks and the largest p2

T sum of associated
tracks. Tracks must satisfy quality criteria based on the
number of hits in the ID subdetectors. Tracks are assigned
to jets using ghost association [15], a procedure that treats
them as four-vectors of infinitesimal magnitude during the
jet reconstruction and assigns them to the jet with which
they are clustered.
Muon track segments are used in the jet calibration as a

proxy for the uncaptured jet energy carried by energetic
particles passing through the calorimeters without being
fully absorbed. The segments are partial tracks constructed
from hits in the MS [16] which serve as inputs to fully
reconstructed tracks. Segments are assigned to jets using
the method of ghost association described above for tracks,
with each segment treated as an input four-vector of
infinitesimal magnitude to the jet reconstruction.

IV. DATA AND MONTE CARLO SIMULATION

Several MC generators are used to simulate pp collisions
for the various jet calibration stages and for estimating

systematic uncertainties in the JES. A sample of dijet events
is simulated at next-to-leading-order (NLO) accuracy in
perturbative QCD using POWHEG-BOX 2.0 [17–19]. The
hard scatter is simulated with a 2 → 3 matrix element
that is interfaced with the CT10 parton distribution
function (PDF) set [20]. The dijet events are showered
in PYTHIA 8.186 [21], with additional radiation simulated to
the leading-logarithmic approximation through pT-ordered
parton showers [22]. The simulation parameters of the
underlying event, parton showering, and hadronization
are set according to the A14 event tune [23]. For in situ

analyses, samples of Z bosons with jets (Z þ jet) are
similarly produced with POWHEG+PYTHIA using the
CT10 PDF set and the AZPHINLO event tune [24].
Samples of multijets and of photons with jets (γ þ jet)
are generated in PYTHIA, with the 2 → 2 matrix element
convolved with the NNPDF2.3LO PDF set [25], and using
the A14 event tune.
For studies of the systematic uncertainties, the SHERPA 2.1

[26] generator is used to simulate all relevant processes
in dijet, Z þ jet, and γ þ jet events. SHERPA uses multileg
2 → N matrix elements that are matched to parton showers
following the CKKW [27] prescription. The CT10 PDF set
and default SHERPA event tune are used. The multijet
systematic uncertainties are studied using the Herwig++
2.7 [28,29] generator, with the 2 → 2 matrix element con-
volvedwith theCTEQ6L1PDF set [30]. Herwig++ simulates
additional radiation through angle-ordered parton showers,
and is configured with the UE-EE-5 event tune [31].
Pile-up interactions can occur within the bunch crossing

of interest (in-time) or in neighboring bunch crossings (out-
of-time), altering the measured energy of a hard-scatter jet
or leading to the reconstruction of additional, spurious jets.
Pile-up effects are modeled using PYTHIA, simulated with
underlying-event characteristics using the NNPDF2.3LO
PDF set and A14 event tune. A number of these interactions
are overlaid onto each hard-scatter event following a
Poisson distribution about the mean number of additional
pp collisions per bunch crossing (μ) of the event. The value
of μ is proportional to the predicted instantaneous lumi-
nosity assigned to the MC event. It is simulated according
to the expected distribution in the 2015 data-taking period
and subsequently reweighted to the measured distribution.
Events are overlaid both in-time with the simulated hard
scatter and out-of-time for nearby bunches. The number of
in-time and out-of-time pile-up interactions associated with
an event is correlated with the number of reconstructed
primary vertices (NPV) and with μ, respectively, providing a
method for estimating the per-event pile-up contribution.
Generated events are propagated through a full simu-

lation [32] of the ATLAS detector based on Geant4 [33]
which describes the interactions of the particles with the
detector. Hadronic showers are simulated with the FTFP
BERT model, consisting of the Fritiof model and the
Bertini intra-nuclear cascade model, whereas the QGSP

2The distance between two four-vectors is defined as
ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2 þ ðΔϕÞ2
p

, where Δη is their distance in pseudor-
apidity and Δϕ is their azimuthal distance. The distance with
respect to a jet is calculated from its principal axis.
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BERT model was used in Run 1, consisting of a quark–
gluon string model and the Bertini intra-nuclear cascade
model. A description of the various models and a detailed
comparison between FTFP BERT and QGSP BERT can be
found in Ref. [34]. A parametrized simulation of the
ATLAS calorimeter called Atlfast-II (AFII) [32] is used
for faster MC production, and a dedicated MC-based
calibration is derived for AFII samples.
The data set used in this study consists of 3.2 fb−1 of

pp collisions collected by ATLAS between August and
December of 2015 with all subdetectors operational. The
LHC was operated at

ffiffiffi

s
p ¼ 13 TeV, with bunch crossing

intervals of 25 ns. The mean number of interactions per
bunch crossing was estimated through luminosity mea-
surements [35] to be on average hμi ¼ 13.7. The specific
trigger requirements and object selections vary among the
in situ analyses and are described in the relevant sections.

V. JET ENERGY SCALE CALIBRATION

Figure 1 presents an overview of the 2015 ATLAS
calibration scheme for EM-scale calorimeter jets. This
calibration restores the jet energy scale to that of truth jets
reconstructed at the particle-level energy scale. Each stage
of the calibration corrects the full four-momentum unless
otherwise stated, scaling the jet pT, energy, and mass.
First, the origin correction recalculates the four-

momentum of jets to point to the hard-scatter primary
vertex rather than the center of the detector, while keeping
the jet energy constant. This correction improves the η

resolution of jets, as measured from the difference between
reconstructed jets and truth jets in MC simulation. The η

resolution improves from roughly 0.06 to 0.045 at a jet pT
of 20 GeV and from 0.03 to below 0.006 above 200 GeV.
The origin correction procedure in 2015 is identical to that
used in the 2011 calibration [3].
Next, the pile-up correction removes the excess energy due

to in-time and out-of-time pile-up. It consists of two compo-
nents: an area-based pT density subtraction [15], applied at
the per-event level, and a residual correction derived from the

MC simulation, both detailed in Sec. VA. The absolute JES
calibration corrects the jet four-momentum to the particle-
level energy scale, as derived using truth jets in dijet MC
events, and is discussed in Sec.V B. Further improvements to
the reconstructed energy and related uncertainties are
achieved through the use of calorimeter,MS, and track-based
variables in the global sequential calibration, as discussed in
Sec. V C. Finally, a residual in situ calibration is applied to
correct jets in data using well-measured reference objects,
including photons,Z bosons, and calibrated jets, as discussed
in Sec. V D. The full treatment and reduction of the
systematic uncertainties are discussed in Sec. VI.

A. Pile-up corrections

The pile-up contribution to the JES in the 2015 data-
taking environment differs in several ways from Run 1. The
larger center-of-mass energy affects the jet pT dependence
on pile-up-sensitive variables, while the switch from 50 to
25 ns bunch spacing increases the amount of out-of-time
pile-up. In addition, the higher topo-clustering noise thresh-
olds alter the impact of pile-up on the JES. The pile-up
correction is therefore evaluated using updated MC sim-
ulations of the 2015 detector and beam conditions. The
pile-up correction in 2015 is derived using the same
methods developed in 2012 [4], summarized in the follow-
ing paragraphs.
First, an area-based method subtracts the per-event pile-

up contribution to the pT of each jet according to its area.
The pile-up contribution is calculated from the median pT
density ρ of jets in the η–ϕ plane. The calculation of ρ uses
only positive-energy topo-clusters with jηj < 2 that are
clustered using the kt algorithm [10,36] with radius
parameter R ¼ 0.4. The kt algorithm is chosen for its
sensitivity to soft radiation, and is only used in the area-
based method. The central jηj selection is necessitated by
the higher calorimeter occupancy in the forward region.
The pT density of each jet is taken to be pT=A, where the
area A of a jet is calculated using ghost association. In this
procedure, simulated ghost particles of infinitesimal
momentum are added uniformly in solid angle to the event

FIG. 1. Calibration stages for EM-scale jets. Other than the origin correction, each stage of the calibration is applied to the four-
momentum of the jet.
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before jet reconstruction. The area of a jet is then measured
from the relative number of ghost particles associated with
a jet after clustering. The median of the pT density is used
for ρ to reduce the bias from hard-scatter jets which
populate the high-pT tails of the distribution.
The ρ distribution of events with a given NPV is shown

for MC simulation in Fig. 2, and has roughly the same
magnitude at 13 TeV as seen at 8 TeV. At 13 TeV the
increase in the center-of-mass energy is offset by the higher
noise thresholds and the larger out-of-time pile-up, the
latter reducing the average energy readout of any given cell
due to the inherent pile-up suppression of the bipolar
shaping of LAr signals [6]. The ratio of the ρ-subtracted jet
pT to the uncorrected jet pT is taken as a correction factor
applied to the jet four-momentum, and does not affect the
jet η and ϕ coordinates.
The ρ calculation is derived from the central, lower-

occupancy regions of the calorimeter, and does not fully
describe the pile-up sensitivity in the forward calorimeter
region or in the higher-occupancy core of high-pT jets. It is
therefore observed that after this correction some depend-
ence of the anti-kt jet pT on the amount of pile-up remains,
and an additional residual correction is derived. A depend-
ence is seen on NPV, sensitive to in-time pile-up, and μ,
sensitive to out-of-time pile-up. The residual pT dependence
is measured as the difference between the reconstructed jet
pT and truth jet pT, with the latter being insensitive to pile-
up. Reconstructed jets with pT > 10 GeV are geometrically
matched to truth jets within ΔR ¼ 0.3.
The residual pT dependence on NPV (α) and on μ (β)

are observed to be fairly linear and independent of one
another, as was found in 2012 MC simulation. Linear fits
are used to derive the initial α and β coefficients separately
in bins of ptruth

T and jηj. Both the α and β coefficients are
then seen to have a logarithmic dependence on ptruth

T , and
logarithmic fits are performed in the range 20 < ptruth

T <

200 GeV for each bin of jηj. In each jηj bin, the fitted value

at ptruth
T ¼ 25 GeV is taken as the nominal α and β

coefficients, reflecting the dependence in the pT region
where pile-up is most relevant. The logarithmic fits over the
full ptruth

T range are used for a pT-dependent systematic
uncertainty in the residual pile-up dependence. Finally,
linear fits are performed to the binned coefficients as a
function of jηj in 4 regions, jηj < 1.2, 1.2 < jηj < 2.2,
2.2 < jηj < 2.8, and 2.8 < jηj < 4.5. This reduces the
effects of statistical fluctuations and allows the α and β

coefficients to be smoothly sampled in jηj, particularly in
regions of varying dependence. The pile-up-corrected pT,
after the area-based and residual corrections, is given by

pcorr
T ¼ preco

T − ρ × A − α × ðNPV − 1Þ − β × μ;

where preco
T refers to the EM-scale pT of the reconstructed

jet before any pile-up corrections are applied.
The dependence of the area-based and residual correc-

tions on NPV and μ are shown as a function of jηj in Fig. 3.
The shape of the residual correction is comparable to that
found in 2012 MC simulation, except in the forward region
(jηj > 2.5) of Fig. 3(a), where it is found to be larger by
0.2 GeV. This difference in the in-time pile-up term is
primarily caused by higher topo-cluster noise thresholds,
which are more consequential in the forward region.
Two in situ validation studies are performed and no

statistically significant difference is observed in the jet pT
dependence on NPV or μ between 2015 data and MC
simulation. Four systematic uncertainties are introduced to
account for MCmismodeling ofNPV, μ, and the ρ topology,
as well as the pT dependence of the NPV and μ terms used
in the residual pile-up correction. The ρ topology uncer-
tainty encapsulates the uncertainty in the underlying event
contribution to ρ through the use of several distinct MC
event generators and final-state topologies. The uncertain-
ties in the modeling ofNPV and μ are taken as the difference
between MC simulation and data in the in situ validation
studies. The pT-dependent uncertainty in the residual pile-
up dependence is derived from the full logarithmic fits to α
and β. Both the in situ validation studies and the systematic
uncertainties are described in detail in Ref. [4].

B. Jet energy scale and η calibration

The absolute jet energy scale and η calibration corrects
the reconstructed jet four-momentum to the particle-level
energy scale and accounts for biases in the jet η

reconstruction. Such biases are primarily caused by the
transition between different calorimeter technologies and
sudden changes in calorimeter granularity. The calibration
is derived from the PYTHIA MC sample using reconstructed
jets after the application of the origin and pile-up correc-
tions. The JES calibration is derived first as a correction of
the reconstructed jet energy to the truth jet energy [3].
Reconstructed jets are geometrically matched to truth jets
within ΔR ¼ 0.3. Only isolated jets are used, to avoid any
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ambiguities in the matching of calorimeter jets to truth jets.
An isolated calorimeter jet is required to have no other
calorimeter jet of pT > 7 GeV within ΔR ¼ 0.6, and only
one truth jet of ptruth

T > 7 GeV within ΔR ¼ 1.0.
The average energy response is defined as the mean of a

Gaussian fit to the core of the Ereco=Etruth distribution for
jets, binned in Etruth and ηdet. The response is derived as a
function of ηdet, the jet η pointing from the geometric center
of the detector, to remove any ambiguity as to which region
of the detector is measuring the jet. The response in the
full ATLAS simulation is shown in Fig. 4(a). Gaps and
transitions between calorimeter subdetectors result in a
lower energy response due to absorbed or undetected
particles, evident when parametrized by ηdet. A numerical
inversion procedure is used to derive corrections in Ereco

from Etruth, as detailed in Ref. [13]. The average response is
parametrized as a function of Ereco and the jet calibration
factor is taken as the inverse of the average energy response.
Good closure of the JES calibration is seen across the entire η
range, compatible with that seen in the 2011 calibration. As
in 2011, a small nonclosure on the order of a few percent is
seen for low-pT jets due to a slightly non-Gaussian energy
response and jet reconstruction threshold effects, both of
which impact the response fits.
A bias is seen in the reconstructed jet η, shown in

Fig. 4(b) as a function of jηdetj. It is largest in jets that
encompass two calorimeter regions with different energy
responses caused by changes in calorimeter geometry or
technology. This artificially increases the energy of one side
of the jet with respect to the other, altering the reconstructed
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reconstructed jet ηreco due to biases in the jet reconstruction. This bias is addressed with an η correction applied as a function of ηdet.
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four-momentum. The barrel-endcap (jηdetj ∼ 1.4) and
endcap-forward (jηdetj ∼ 3.1) transition regions can be
clearly seen in Fig. 4(b) as susceptible to this effect. A
second correction is therefore derived as the difference
between the reconstructed ηreco and truth ηtruth, parametrized
as a function of Etruth and ηdet. A numerical inversion
procedure is again used to derive corrections in Ereco from
Etruth. Unlike the other calibration stages, the η calibration
alters only the jet pT and η, not the full four-momentum. Jets
calibrated with the full jet energy scale and η calibration are
considered to be at the EMþ JES.
An absolute JES and η calibration is also derived for

fast simulation samples using the same methods with a
PYTHIA MC sample simulated with AFII. An additional
JES uncertainty is introduced for AFII samples to account
for a small nonclosure in the calibration, particularly
beyond jηj ∼ 3.2, due to the approximate treatment of
hadronic showers in the forward calorimeters. This uncer-
tainty is about 1% at a jet pT of 20 GeV and falls rapidly
with increasing pT.

C. Global sequential calibration

Following the previous jet calibrations, residual depend-
encies of the JES on longitudinal and transverse features of
the jet are observed. The calorimeter response and the jet
reconstruction are sensitive to fluctuations in the jet particle
composition and the distribution of energy within the jet.
The average particle composition and shower shape of a jet
varies between initiating particles, most notably between
quark- and gluon-initiated jets. A quark-initiated jet will
often include hadrons with a higher fraction of the jet pT
that penetrate further into the calorimeter, while a gluon-
initiated jet will typically contain more particles of softer
pT, leading to a lower calorimeter response and a wider
transverse profile. Five observables are identified that
improve the resolution of the JES through the global
sequential calibration (GSC), a procedure explored in the
2011 calibration [13].
For each observable, an independent jet four-momentum

correction is derived as a function of ptruth
T and jηdetj by

inverting the reconstructed jet response in MC events.
Both the numerical inversion procedure and the method to
geometrically match reconstructed jets to truth jets are
outlined in Sec. V B. An overall constant is multiplied to
each numerical inversion to ensure the average energy is
unchanged at each stage. The effect of each correction is
therefore to remove the dependence of the jet response on
each observable while conserving the overall energy
scale at the EMþ JES. Corrections for each observable
are applied independently and sequentially to the jet
four-momentum, neglecting correlations between observ-
ables. No improvement in resolution was found from
including such correlations or altering the sequence of
the corrections.

The five stages of the GSC account for the dependence of
the jet response on (in order):
(1) fTile0, the fraction of jet energy measured in the first

layer of the hadronic Tile calorimeter (jηdetj < 1.7);
(2) fLAr3, the fraction of jet energy measured in the

third layer of the electromagnetic LAr calorimeter
(jηdetj < 3.5);

(3) ntrk, the number of tracks with pT > 1 GeV ghost-
associated with the jet (jηdetj < 2.5);

(4) W trk, the average pT-weighted transverse distance
in the η–ϕ plane between the jet axis and all
tracks of pT > 1 GeV ghost-associated to the jet
(jηdetj < 2.5);

(5) nsegments, the number of muon track segments ghost-
associated with the jet (jηdetj < 2.7).

The nsegments correction reduces the tails of the response
distribution caused by high-pT jets that are not fully
contained in the calorimeter, referred to as punch-through
jets. The first four corrections are derived as a function of
jet pT, while the punch-through correction is derived as a
function of jet energy, being more correlated with the
energy escaping the calorimeters.
The underlying distributions of these five observables

are fairly well modeled by MC simulation. Slight
differences with data have a negligible impact on the
GSC as long as the dependence of the average jet response
on the observables is well modeled in MC simulation. This
average response dependence was tested using the dijet tag-
and-probe method developed in 2011 and detailed in
Sec. 12.1 of Ref. [13]. The average pT asymmetry between
back-to-back jets was again measured in 2015 data as a
function of each observable and found to be compatible
between data and MC simulation, with differences small
compared to the size of the proposed corrections.
The jet pT response in MC simulation as a function of

each of these observables is shown in Fig. 5 for several
regions of ptruth

T . The distributions are shown at various
stages of the GSC to reflect the relative disagreement at the
stage when each correction is derived. The dependence of
the jet response on each observable is reduced to less than
2% after the full GSC is applied, with small deviations from
unity reflecting the correlations between observables that
are unaccounted for in the corrections. The distribution of
each observable in MC simulation is shown in the bottom
panels in Fig. 5. The spike at zero in the fTile0 distribution
of Fig. 5(a) at low ptruth

T reflects jets that are fully contained
in the electromagnetic calorimeter and do not deposit
energy in the Tile calorimeter. The negative tail in the
fLAr3 distribution of Fig. 5(b) [and, to a lesser extent, in
the fTile0 distribution of Fig. 5(a)] at low ptruth

T reflects
calorimeter noise fluctuations.

D. In situ calibration methods

The last stages of the jet calibration account for
differences in the jet response between data and MC
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simulation. Such differences arise from the imperfect
description of the detector response and detector material
in MC simulation, as well as in the simulation of the
hard scatter, underlying event, pile-up, jet formation, and
electromagnetic and hadronic interactions with the detector.
Differences between data and MC simulation are quantified
by balancing the pT of a jet against other well-measured
reference objects.
The η-intercalibration corrects the average response of

forward jets to that of well-measured central jets using
dijet events. Three other in situ calibrations correct for
differences in the average response of central jets with
respect to those of well-measured reference objects, each
focusing on a different pT region using Z boson, photon,
and multijet systems. For each in situ calibration the
response Rin situ is defined in data and MC simulation as
the average ratio of jet pT to reference object pT, binned in

regions of the reference object pT. It is proportional to the
response of the calorimeter to jets at the EMþ JES, but is
also sensitive to secondary effects such as gluon radiation
and the loss of energy outside of the jet cone. Event
selections are designed to reduce the impact of such
secondary effects. Assuming that these secondary effects
are well modeled in the MC simulation, the ratio

c ¼ Rdata
in situ

RMC
in situ

ð1Þ

is a useful estimate of the ratio of the JES in data and MC
simulation. Through numerical inversion a correction is
derived to the jet four-momentum. The correction is derived
as a function of jet pT, and also as a function of jet η in the
η-intercalibration.
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FIG. 5. The average jet response in MC simulation as a function of the GSC variables for three ranges of ptruth
T . These include (a) the

fractional energy in the first Tile calorimeter layer, (b) the fractional energy in the third LAr calorimeter layer, (c) the number of tracks
per jet, (d) the pT-weighted track width, and (e) the number of muon track segments per jet. Jets are calibrated with the EMþ JES
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Events used in the in situ calibration analyses are
required to satisfy common selection criteria. At least
one reconstructed primary vertex is required with at least
two associated tracks of pT > 500 MeV. Jets are required
to satisfy data-quality criteria that discriminate against
calorimeter noise bursts, cosmic rays, and other noncolli-
sion backgrounds. Spurious jets from pile-up are identified
and rejected through the exploitation of track-based vari-
ables by the jet vertex tagger (JVT) [4]. Jets with pT <
50 GeV and jηdetj < 2.4 are required to be associated with
the primary vertex at the medium JVT working point,
accepting 92% of hard-scatter jets and rejecting 98% of
pile-up jets.
The η-intercalibration corrects the jet energy scale of

forward jets (0.8 < jηdetj < 4.5) to that of central jets
(jηdetj < 0.8) in a dijet system, and is discussed in
Sec. V D 1. The Z=γ þ jet balance analyses use a well-
calibrated photon or Z boson, the latter decaying into an
electron or muon pair, to measure the pT response of the
recoiling jet in the central region up to a pT of about
950 GeV, as discussed in Sec. V D 2. Finally, the multijet
balance (MJB) analysis calibrates central (jηj < 1.2),
high-pT jets (300 < pT < 2000 GeV) recoiling against
a collection of well-calibrated, lower-pT jets, as discussed
in Sec. V D 3. While the Z=γ þ jet and MJB calibrations
are derived from central jets, their corrections are appli-
cable to forward jets whose energy scales have been
equalized by the η-intercalibration procedure. The cali-
bration constants derived in each of these analyses
following Eq. (1) are statistically combined into a final
in situ calibration covering the full kinematic region, as
discussed in Sec. V D 4.
The η-intercalibration, Z=γ þ jet, and MJB calibrations

are derived and applied sequentially, with systematic
uncertainties propagated through the chain. Systematic
uncertainties reflect three effects:
(1) uncertainties arising from potential mismodeling of

physics effects;
(2) uncertainties in the measurement of the kinematics

of the reference object;
(3) uncertainties in the modeling of the pT balance due

to the selected event topology.
Systematic uncertainties arising from mismodeling of
certain physics effects are estimated through the use of
two distinct MC event generators. The difference between
the two predictions is taken as the modeling uncertainty.
Uncertainties in the kinematics of reference objects are
propagated from the 1σ uncertainties in their own calibra-
tion. Uncertainties related to the event topology are
addressed by varying the event selections for each in situ

calibration and comparing the effect on the pT-response
balance between data and MC simulation.
Systematic uncertainty estimates depend upon data and

MC samples with event yields that fluctuate when applying
the systematic uncertainty variations. To obtain results that

are statistically significant, the binning ofRin situ in pT and
η is dynamically determined for each variation using a
bootstrapping procedure [37]. In this procedure, pseudoex-
periments are derived from the data or MC simulation by
sampling each event with a weight taken from a Poisson
distribution with a mean of one. Each pseudoexperiment
therefore emphasizes a unique subset of the data or MC
simulation while maintaining statistical correlations
between the nominal and varied samples. The statistical
uncertainty of the response variation between the nominal
and varied configuration is then taken as the rms across
the pseudoexperiments, and each varied configuration is
rebinned until a target significance of a few standard
deviations is achieved. Bins are combined only in regions
where the observed response in pT is nearly constant so that
no significant features are removed.

1. η-intercalibration

In the η-intercalibration [3], well-measured jets in the
central region of the detector (jηdetj < 0.8) are used to
derive a residual calibration for jets in the forward region
(0.8 < jηdetj < 4.5). The two jets are expected to be bal-
anced in pT at leading order in QCD, and any imbalance
can be attributed to differing responses in the calorimeter
regions, which are typically less understood in the forward
region. Dijet topologies are selected in which the two
leading jets are back-to-back in ϕ and there is no substantial
contamination from a third jet. The calibration is derived
from the ratio of the jet pT responses in data and MC
simulation in bins of pT and ηdet. Two distinct NLO MC
event generators are used, POWHEG+PYTHIA and SHERPA,
with the former taken as the nominal generator. The events
are generated with a 2 → 3 leading-order matrix element,
increasing the accuracy of the dijet balance for events
sensitive to the rejection criteria for the third jet.
The jet pT balance is quantified by the asymmetry

A ¼ p
probe
T − pref

T

p
avg
T

;

where pprobe
T is the transverse momentum of the forward jet,

pref
T is the transverse momentum of the jet in a well-

calibrated reference region, and p
avg
T is the average pT of

the two jets. The asymmetry is a useful quantity as the
distribution is Gaussian in fixed bins of p

avg
T , whereas

p
probe
T =pref

T is not. Given that the asymmetry is Gaussian,
the relative jet response with respect to the reference region
may be written as

�

p
probe
T

pref
T

�

≈
2þ hAi
2 − hAi ;

where hAi is the mean value of the asymmetry distribution
for a bin of pavg

T and ηdet.
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Events used in the η-intercalibration follow from a
combination of single-jet triggers with various pT thresh-
olds in regions of either jηdetj < 3.1 or jηdetj > 2.8. Triggers
are only used in regions of kinematic phase space in which
they are 99% efficient. Triggers may also be prescaled,
randomly rejecting a set fraction of events to satisfy
bandwidth considerations, and the event weight is scaled
proportionally. Events are required to have at least two jets
with pT > 25 GeV and with jηdetj < 4.5. Events that
include a third jet with relatively substantial pT, p

jet3
T >

0.4pavg
T are rejected. The two leading jets are also required

to be fairly back-to-back, such that Δϕ > 2.5 rad.
The residual calibration is derived from the ratio of

the jet responses in data and the POWHEG+PYTHIA sample.
The SHERPA sample is used to provide a systematic
uncertainty in the MC modeling. The full range of jηdetj <
4.5 is used to derive calibrations for statistically significant
regions of p

avg
T , offering an improvement on the 2011

calibration that extrapolated the measurement from a con-
strained region jηdetj < 2.7 due to statistical considerations.
A two-dimensional sliding Gaussian kernel [3] is used to
reduce statistical fluctuations while preserving the shape
of the MC-to-data ratio and to extrapolate the average
response into regions of low statistics.
Two η-intercalibration methods are performed that pro-

vide complementary results. In the central reference
method, central regions (jηdetj < 0.8) are used as references
to measure the relative jet response in the forward probe
bins (0.8 < jηdetj < 4.5). In the matrix method, numerous
independent reference regions are chosen and the relative
jet response in a given forward probe bin is measured
relative to all reference regions simultaneously. The
response relative to the central region is then obtained as
a function of pavg

T and ηdet through a set of linear equations.
The matrix method takes advantage of a larger data set by
allowing multiple reference regions, including forward
ones, increasing the statistical precision of the calibration.
The binning is chosen such that each reference region is

statistically significant in data and POWHEG+PYTHIA sam-
ples. Some reference regions, particularly for forward
probe bins, may not be statistically significant for the
SHERPA sample due to its smaller sample size. Such regions
are ignored in the combined fit of the response, leading
to small fluctuations in the SHERPA response, which are
smoothed in pT and ηdet by the two-dimensional sliding
Gaussian kernel.
The relative jet responses derived from the two methods

show agreement at the level of 2%, within the uncertainty
of the methods. A slightly larger response is seen in the
most forward bins (jηdetj > 2.5) in the matrix method, as
seen in 2011. This difference exists in the response in
both data and MC simulation, and the MC-to-data ratio is
consistent between methods. The matrix method is used
to derive the nominal calibration in the following results,
with the central reference method providing validation. As

in the 2011 calibration, γ þ jet events are also used to
validate the response in the forward regions, and show
good agreement between data and MC simulation in the
forward region.
The relative jet response is shown in Fig. 6 for both data

and the two MC samples, parametrized by pT in two ηdet
ranges and by ηdet in two pT ranges. The level of modeling
agreement, taken between POWHEG+PYTHIA and SHERPA,
is significantly better than in previous results and is
generally within 1%, with larger differences at low pT
and in forward ηdet regions. This improved agreement is not
due to any changes to the method but results from better
overall particle-level agreement, particularly the improved
modeling of the third-jet radiation by the NLO POWHEG

+PYTHIA and SHERPA generators over that of the LO
PYTHIA and HERWIG generators used in the 2011 calibra-
tion. The particle-level response was also measured with a
POWHEG-BOX sample showered with Herwig++, and
shows a similar level of agreement as found between
POWHEG+PYTHIA and SHERPA. Uncertainties are calculated
in a given bin by shifting the observed asymmetry with all
reference regions and recalculating the response. While
accurate for data and POWHEG+PYTHIA, this can lead to
statistical uncertainties that do not cover the observed
fluctuations in SHERPA, but that do not affect the final
systematic uncertainty derived from the smoothed differ-
ence between MC samples.
The response in data is consistently larger than that in

both MC samples and in the 2011 data for the forward
detector region for all pT ranges. This is due to the
reduction in the number of samples used to reconstruct
pulses in the LAr calorimeter from five to four, which is
sensitive to differences in the pulse shape between data and
MC simulation. The reduction was predicted to increase the
response in the forward region, as seen in a comparison of
Run 1 data processed using both five and four samples. The
expected increase matches that seen in 2015 data, and is
corrected for by the η-intercalibration procedure. The effect
was predicted to be particularly large for 2.3 < jηdetj < 2.6
due to details of the jet reconstruction in calorimeter
transition regions. To fully account for this effect, a finer
binning of Δηdet is used in this region.
The systematic uncertainties account for physics and

detector mismodelings as well as the effect of the event
topology on the modeling of the pT balance. They are
derived as a function of pT and jηdetj, with no statistically
significant variations observed between positive and neg-
ative ηdet. The dominant uncertainty due to MC mismodel-
ing is taken as the difference in the smoothed jet response
between POWHEG+PYTHIA and SHERPA. The estimation of
systematic uncertainties due to pile-up and the choice of
event topology are similar to those of the 2011 calibration
[3], but now use the bootstrapping procedure to ensure
statistical significance. These uncertainties, including those
from varying the Δϕ separation requirement between the
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two leading jets and the third-jet veto requirement, are
usually small compared to the MC uncertainty and are
therefore summed in quadrature with it into a single
physics mismodeling uncertainty, with a negligible loss
of correlation information. Two additional and separate
uncertainties are derived to account for statistical fluctua-
tions and the observed nonclosure of the calibration for
2.0 < jηdetj < 2.6, primarily due to the LAr pulse
reconstruction effects described above. The latter is taken
as the difference between data and the nominal MC event
generator after repeating the analysis with the derived
calibration applied to data. The total η-intercalibration
uncertainty is shown in Fig. 7 as a function of ηdet for
two jet pT values.

2. Z + jet and γ + jet balance

An in situ calibration of jets up to 950 GeV and with
jηj < 0.8 is derived through the pT balance of a jet against a
Z boson or a photon. Z=γ þ jet calibrations rely on the

independent measurement and calibration of the energy of a
photon or of the lepton decay products of a Z boson,
through the decay channels of Z → eþe− and Z → μþμ−.
Bosons are ideal candidates for reference objects as they
are precisely measured: muons from tracks in the ID and
MS and photons and electrons through their relatively
narrow showers in the electromagnetic calorimeter and the
independent measurement of electron tracks in the ID. The
Z þ jet calibration is limited to the statistically significant
pT range of Z boson production of 20 < pT < 500 GeV.
The γ þ jet calibration is limited by the small number of
events at high pT and by both dijet contamination and an
artificial reduction of the number of events due to the
prescaled triggers at low pT, limiting the calibration
to 36 < pT < 950 GeV.
Two techniques are used to derive the response with

respect to the Z boson and photon [3]. The direct balance
(DB) technique measures the ratio of a fully reconstructed
jet’s pT, calibrated up to the η-intercalibration stage, and a
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FIG. 6. Relative response of EMþ JES jets as a function of η at (a) low pT and (b) high pT, and as a function of jet pT within the
ranges of (c) 1.2 < ηdet < 1.5 and (d) 2.6 < ηdet < 2.8. The bottom panels show the MC-to-data ratios, and the overlayed curve reflects
the smoothed in situ correction, appearing solid in the regions in which it is derived and dotted in the regions to which it is extrapolated
by the two-dimensional sliding Gaussian kernel. Results are obtained with the matrix method. The binning is optimized for data and
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reference object’s pT. The use of a fully reconstructed and
calibrated jet allows the calibration to be applied to jets in a
straightforward manner. For a 2 → 2 Z=γ þ jet event, the
pT of the jet can be expected to balance that of the reference
object. However, the DB technique can be affected by
additional parton radiation contributing to the recoil of
the boson, appearing as subleading jets. This is mitigated
through a selection against events with a second jet of
significant pT and a minimum requirement on Δϕ, the
azimuthal angle between the Z=γ boson and the jet, to
ensure they are sufficiently back-to-back in ϕ. The com-
ponent of the boson pT perpendicular to the jet axis is also
ignored, with the reference pT defined as

pref
T ¼ p

Z=γ
T × cos ðΔϕÞ:

The DB technique is also affected by out-of-cone radiation,
consisting of the energy lost outside of the reconstructed
jet’s cone of R ¼ 0.4 due to fragmentation processes. The
out-of-cone radiation may lead to a pT imbalance between
a jet and the reference boson, and is estimated by measuring
the profile of tracks around the jet axis [3].
The missing-ET projection fraction (MPF) technique

instead derives a pT balance between the full hadronic
recoil in an event and the reference boson. The average
MPF response is defined as

RMPF ¼
�

1þ n̂ref · E⃗
miss
T

pref
T

�

; ð2Þ

where RMPF is the calorimeter response to the hadronic
recoil, n̂ref is the direction of the reference object, and pref

T is
the transverse momentum of the reference object. The E⃗miss

T
in Eq. (2) is calculated directly from all the topo-clusters

of calorimeter cells, calibrated at the EM scale, and is
corrected with the pT of the minimum ionizing muons in
Z → μμ events. No correction is needed for electrons or
photons as their calorimeter response is nearly unity.
The MPF technique utilizes the full hadronic recoil of an

event rather than a single reconstructed jet. The MPF
response is therefore less sensitive to the jet definition,
radius parameter, and out-of-cone radiation than the DB
response, with reconstructed jets only explicitly used in the
event selections. The MPF technique is less sensitive to
the generally ϕ-symmetric pile-up and underlying-event
activity. As the MPF technique is not derived from a
reconstructed jet the correction does not directly reflect the
energy within the reconstructed jet’s cone. The out-of-cone
uncertainty derived for the DB technique is therefore
applied as an estimate of the effect of showering and jet
topology. As the MPF technique does not use jets directly,
the impact of the GSC is accounted for by applying a
correction to the cluster-based E⃗miss

T , equal to the difference
in momentum of the leading jet with and without the GSC.
The results from this method are compared with those using
no GSC and those with the GSC applied to all jets in the
event, with negligible differences seen in the MC-to-data
response ratio.
The response of the jet (DB) or hadronic recoil (MPF) is

measured in both data and MC simulation, and a residual
correction is derived using the MC-to-data ratio. The two
methods are complementary and they are both pursued to
check the compatibility of the measured response. The
results below present the Z þ jet results using the MPF
technique and the γ þ jet results using the DB technique.
For both techniques the average response is initially

derived in bins of pref
T . In each bin of pref

T , a maximum-
likelihood fit is performed using a modified Poisson

|
det

η|

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

Phys. model. env.
Statistical unc.
MC generator

ΦΔ
JVT
Third−jet veto
Nonclosure

ATLAS
-1 = 13 TeV, 3.2 fbs

 = 0.4, EM+JES Rtkanti-
 = 35 GeV

T
p

(a)

|
det

η|

0 0.5 1 1.5 2 2.5 3 3.5
0

0.02

0.04

0.06

Phys. model. env.
Statistical unc.
MC generator

ΦΔ
JVT
Third−jet veto
Nonclosure

ATLAS
-1 = 13 TeV, 3.2 fbs

 = 0.4, EM+JES Rtkanti-
 = 300 GeV

T
p

(b)

F
ra

ct
io

n
a
l J

E
S

 u
n
c
e
rt

a
in

ty

F
ra

ct
io

n
a
l J

E
S

 u
n
c
e
rt

a
in

ty

FIG. 7. Systematic uncertainties of EMþ JES jets as a function of jηdetj at (a) pT ¼ 35 GeV and at (b) pT ¼ 300 GeV in the η-
intercalibration. The physics mismodeling envelope includes the uncertainty derived from the alternative MC event generator as well as
the uncertainties of the JVT, Δϕ, and third-jet veto event selections. Also shown are the statistical uncertainties of the MC-to-data
response ratio and the localized nonclosure uncertainty for 2.0 < jηdetj < 2.6. Small fluctuations in the uncertainties are statistically
significant and are smoothed in the combination, described in Sec. V D 4.
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distribution extended to noninteger values. The fit range
is limited to twice the rms of the response distribution
around the mean to minimize the effect of MC mismodel-
ing in the tails of the distribution. The average response is
taken as the mean of the best-fit Poisson distribution. For
2015 data, a new procedure is used to reparametrize
the average balance from the reference object pT to the
corresponding jet pT, better representing the mismeasured
jet to which the calibration is applied. This procedure is
used after the calibration is derived by finding the average
jet pT, without Z=γ þ jet calibrations applied, within each
bin of reference pT.
Events in the Z þ jet selection are required to have a

leading jet with pT > 10 GeV, and in the γ þ jet selection
are required to have a leading jet with pT > 20 GeV. In the
γ þ jet DB (Z þ jet MPF) technique, the leading jet must
sufficiently balance the reference boson in the azimuthal
plane, requiring Δϕðjet; ZðγÞÞ > 2.8ð2.9Þ rad. To reduce
contamination from events with significant hadronic radi-
ation, a selection of psecond

T < maxð15 GeV; 0.1 × pref
T Þ is

placed on the second jet, ordered by pT, in the γ þ jet
DB technique. For the Z þ jet MPF technique, this selec-
tion is mostly looser as RMPF is less sensitive to QCD
radiation, requiring the second jet to have psecond

T <

maxð12 GeV; 0.3 × pref
T Þ.

Electrons [38] (muons [16]) used in the Z þ jet events
are required to pass basic quality and isolation cuts, and
to fall within the range jηj < 2.47 (2.4). Events are
selected based on the lowest-pT unprescaled single-
electron or single-muon trigger. Electrons that fall in
the transition region between the barrel and the endcap of

the electromagnetic calorimeter (1.37 < jηj < 1.52) are
rejected. Both leptons are required to have pT > 20 GeV,
and the invariant mass of the opposite-charge pairs must
be consistent with the Z boson mass, with
66 < mll < 116 GeV. Photons [38] used in the γ þ jet
events must satisfy tight selection criteria and be within
the range jηj < 1.37 with pT > 25 GeV. Events are
selected based on a combination of fully efficient
single-photon triggers. Energy isolation criteria are
applied to the photon showers to discriminate photons
from π0 decays and to maximize the suppression of jets
misidentified as photons [39]. Jets within ΔR ¼ 0.35 of a
lepton are removed from consideration in the Z þ jet
selection, while jets within ΔR ¼ 0.2 of photons are
similarly removed from consideration in both the Z þ jet
and γ þ jet selections.
The average response in Z=γ þ jet events as a function

of jet pT is shown in Fig. 8 for data and two MC samples.
For the DB technique in γ þ jet events, the response is
slightly below unity, reflecting the fraction of pT falling
outside of the reconstructed jet cone. For the MPF
technique in Z þ jet events, RMPF is significantly below
unity, reflecting that the Z boson is fully calibrated while
the topo-clusters used in calculating the hadronic recoil are
at the EM scale. However, in both cases the data and MC
simulation are in agreement, with the MC-to-data ratio
within ∼5% of unity for both MC samples. The rise in
RMPF at low pT in 8(a) is caused by the jet reconstruction
threshold.
Systematic uncertainties in the MC-to-data response

ratios are shown in Fig. 9. In both the DB and MPF
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techniques the event selections are varied to estimate the
impact of the choice of event topology on the MC
mismodeling of the pT response. Variations are made to
the selection criteria for the second-jet pT and Δϕ between
the leading jet and reference object to assess the effect
of additional parton radiation. The effect of pile-up sup-
pression is similarly studied by varying the JVT cut about
its nominal value. Potential MC event generator mismod-
eling is explored by repeating the analyses with alternative
MC event generators, with the difference in the MC-to-
data response ratios taken as a systematic uncertainty.
Uncertainties in the energy (momentum) scale and reso-
lution of electrons and photons (muons) are estimated from
studies of Z → ee (Z → μμ) measurements in data [16,38].
Variations of �1σ are propagated through the analyses to
the MC-to-data response ratios. A purity uncertainty in the
γ þ jet balance accounts for the contamination from multi-
jet events arising from jets appearing as fake photons. The
effect of this contamination on the MC-to-data response
ratio is studied by relaxing the photon identification
criteria. The uncertainty due to out-of-cone radiation is
derived from differences between data and MC simulation
in the transverse momentum of charged-particle tracks
around the jet axis. The bootstrapping procedure is used
to ensure only statistically significant variations of the
response are included in the uncertainties.

3. Multijet balance

The multijet balance (MJB) [3] is the last stage of the
in situ calibration and is used to extend the calibrations to a
pT of 2 TeV. Topologies with three or more jets are used to
balance a high-pT jet against a recoil system composed of
several lower-pT jets. The recoil jets are of sufficiently low

pT as to be in the range of Z=γ þ jet calibrations and are
therefore fully calibrated. The Z=γ þ jet input calibrations
are combined using the procedure outlined in Sec. V D 4.
The leading jet is taken as the highest-pT jet of an event

and the four-momenta of all other subleading jets are
combined into a recoil-system four-momentum. The leading
jet is calibrated only up to the η-intercalibration stage, and
is therefore at the same scale as the jets explored by the
Z=γ þ jet methods. A pT limit of 950 GeV is imposed on
each subleading jet to ensure they are fully calibrated by the
Z=γ þ jet methods. A consequence of this limit is the
rejection of events with very high-pT leading jets, which
often have subleading jets with pT above this limit. These
events are recovered through the use of multiple iterations of
the MJB method, with the previously derived MJB calibra-
tion being applied to higher-pT subleading jets. The new pT
limit on the subleading jets is determined by the statistical
reach of the previous iteration of the MJB method. Using
2015 data, the MJB method is able to cover a range of
300 < pT < 2000 GeV using two iterations.
The average response between the leading jet and recoil

system, RMJB, is defined as

RMJB ¼
�

p
leading
T

precoil
T

�

;

where p
leading
T is the transverse momentum of the highest-

pT jet and precoil
T is from the vectorial sum of all subleading

jets. The response is initially binned as a function of precoil
T ,

corresponding to the well-calibrated reference object. As
with the Z=γ þ jet calibrations, a new procedure is used
for 2015 data to reparametrize the response from precoil

T
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to p
leading
T . This procedure is applied after the calibration is

derived by finding the average pleading
T , without Z=γ þ jet or

MJB calibrations applied, within each bin of precoil
T .

Events entering the MJB calibration are recorded using a
combination of fully efficient single-jet triggers used in
distinct regions of precoil

T . Events are required to have at
least three jets with pT > 25 GeV and jηdetj < 2.8, with the
leading jet required to be central (jηdetj < 1.2). Events
dominated by a dijet pT balance are rejected if the
second jet’s pT is a considerable fraction of the recoil
system’s pT, with a pT asymmetry requirement of
p
asymmetry
T ¼ psecond

T =precoil
T < 0.8. The azimuthal angle

between the leading jet and the recoil system, αMJB, must
satisfy the requirement jαMJB − πj < 0.3 rad, ensuring the
pT of the recoil system is balanced against that of the
leading jet. Contamination of the leading jet from other
jets is minimized by requiring the absolute value of the
azimuthal angle, βMJB, between the leading jet and the
nearest jet with pT > 0.25pleading

T to be greater than 1 rad.
The response RMJB is shown for data and MC simu-

lation in Fig. 10(a). As expected, an offset is seen between
data and MC simulation, reflecting that the recoil system
in data is fully calibrated to the in situ stage while the
leading jet is only partially calibrated. The response is
below unity, particularly at low pT, reflecting the bias in
RMJB due to the leading-jet isolation requirement, which
is well modeled in MC simulation. The MC-to-data ratio
of RMJB, given by Eq. (1), is seen in the bottom panel of
Fig. 10(a). A fairly constant correction of 2% is derived,
up from 1% in 2011. This increase is partially due to
changes in the simulation of hadronic showers in Geant4

as well as the response drift in the Tile calorimeter

PMTs, which will be directly corrected in future data
reprocessing.
Systematic uncertainties in the MC-to-data response

ratio as a function of p
leading
T are shown in Fig. 10(b).

They reflect 1σ uncertainties derived from the MJB event
selection, MC modeling, and jet calibration. Event selec-
tion uncertainties are derived by varying the event selec-
tions and examining the impact on the MC-to-data ratio.
The 1σ variations were conservatively found in 2011 to
be �0.1 rad for αMJB, �0.5 rad for βMJB, �5 GeV for
pthreshold
T , and �0.1 for pasymmetry

T . The uncertainty due to
MC modeling is taken as the difference in the MJB
correction between the nominal PYTHIA generator and
Herwig++. Uncertainties in the calibration of subleading
jets are taken from the input in situ calibrations, with each
component individually varied by �1σ and propagated
through each MJB iteration. The JES uncertainties related
to the pile-up, punch-through, flavor composition, and
flavor response are also propagated through each iteration
in the 2015 calibration. The bootstrapping procedure is
used to ensure statistical significance for each systematic
uncertainty, with each pseudoexperiment independently
propagated through the iterations. The combined uncer-
tainty is generally below 1.5%, consistent with that from
the 2011 calibration.

4. In situ combination

The data-to-MC ratio and the associated systematic
uncertainties derived from the orthogonal Z þ jet,
γ þ jet, and MJB calibrations are combined across
overlapping regions of jet pT [3]. For each method, the
results are recast into a common, fine binning in pT by
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p
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interpolating second-order polynomial splines. Each in situ
method is assigned a pT-dependent weight through a χ2

minimization, using as inputs the response ratios and their
uncertainties in each pT bin. A method’s weight is therefore
increased in pT regions of smaller relative uncertainty and
smaller bin size, with the combination favoring the method
of greatest precision in each region. The combined data-to-
MC ratio is smoothed with a sliding Gaussian kernel to
reduce statistical fluctuations.
The combined data-to-MC ratio is shown in Fig. 11

alongside the Z þ jet, γ þ jet, and MJB ratios in their
original binnings. The inverse of the combined data-to-MC
ratio is taken as the in situ correction applied to data. The
combined correction is 4% at low pT and decreases to 2%
at 2 TeV. This is a larger correction than seen in 2011, but it
is expected due to changes in the simulation of hadronic
showers in Geant4 and the slight PMT down-drift in the
Tile calorimeter. The individual in situ results show good
agreement with one another in the various regions of
overlapping pT. The differences between in situ measure-
ments are quantified with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2=Ndof

p

, which is generally
below 1.
The systematic uncertainties are averaged and smoothed

with the same combination procedure through a linear
transformation [3,13]. One at a time, each uncertainty
source of each in situ method is shifted coherently by
1σ, within the method’s original binning. The binning
interpolation and combination are then repeated with the
nominal weighting of the methods. In this procedure, the
various systematic uncertainties are treated independently
of one another and as fully correlated across pT. Their
independent treatment during the combination allows for
alternative correlation assumptions at a later stage, and the
difference between treating correlations before and after the

combination are found to be negligible. The difference
between the shifted combined correction factor and the
nominal is taken as the 1σ variation for each uncertainty
source. The Z=γ þ jet uncertainties have a one-to-one
correlation with the corresponding uncertainties propagated
through the MJB technique. Therefore, for each of these
uncertainties, the correction factors of the in situ methods
are shifted coherently by 1σ, before the binning interpo-
lation and combination steps.
If the nominal corrections from different in situ methods

disagree in a pT bin, such that the tension factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2=Ndof

p

is above 1, the uncertainty from each source is scaled by the
tension factor in that bin. In the 2015 calibration, a tension
factor of ∼1.1 was found only in the narrow pT region
between 45 and 50 GeV. As with the nominal result, each
systematic uncertainty component is smoothed using a
sliding Gaussian kernel.

VI. SYSTEMATIC UNCERTAINTIES

The final calibration includes a set of 80 JES systematic
uncertainty terms propagated from the individual calibra-
tions and studies, listed in Table I. The majority (67) of
uncertainties come from the Z=γ þ jet and MJB in situ

calibrations and account for assumptions made in the event
topology, MC simulation, sample statistics, and propagated
uncertainties of the electron, muon, and photon energy
scales. The remaining 13 uncertainties are derived from
other sources. Four pile-up uncertainties are included to
account for potential MCmismodeling ofNPV, μ, ρ, and the
residual pT dependence. Three η-intercalibration uncer-
tainties account for potential physics mismodeling, stat-
istical uncertainties, and the method nonclosure in the
2.0 < jηdetj < 2.6 region. Three additional uncertainties
account for differences in the jet response and simulated
jet composition of light-quark, b-quark, and gluon-initiated
jets. As in the 2011 calibration, the flavor response
uncertainties are derived by comparing the average jet
response for each jet flavor using PYTHIA and Herwig++.
The flavor composition uncertainty is analysis dependent,
and is either derived from MC samples in the relevant
phase-space, or is assumed to be a 50% quark and 50%
gluon composition with a conservative 100% uncertainty.
An uncertainty in the GSC punch-through correction is also
considered, derived as the maximum difference between
the jet responses in data and MC simulation as a function
of the number of muon segments. One AFII modeling
uncertainty accounts for nonclosure in the absolute JES
calibration of fast-simulation jets, and is applied only to
AFII MC samples. A high-pT jet uncertainty is derived
from single-particle response studies [34] and is applied
to jets with pT > 2 TeV, beyond the reach of the in situ

methods.
The full combination of all uncertainties is shown in

Fig. 12 as a function of pT at η ¼ 0 and as a function of η at
pT ¼ 80 GeV, assuming a flavor composition taken from
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the inclusive dijet selection in PYTHIA. Each uncertainty is
generally treated independently of the others but fully
correlated across pT and η. Exceptions are the electron and
photon energy scale measurements, which are treated as

fully correlated. The uncertainty is largest at low pT,
starting at 4.5% and decreasing to 1% at 200 GeV. It rises
after 200 GeV due to the statistical uncertainties related to
the in situ calibrations, and increases sharply after 2 TeV

TABLE I. Summary of the systematic uncertainties in the JES, including those propagated from electron, photon,
and muon energy scale calibrations [16,38].

Name Description

Z þ jet
Electron scale Uncertainty in the electron energy scale
Electron resolution Uncertainty in the electron energy resolution
Muon scale Uncertainty in the muon momentum scale
Muon resolution (ID) Uncertainty in muon momentum resolution in the ID
Muon resolution (MS) Uncertainty in muon momentum resolution in the MS
MC generator Difference between MC event generators
JVT Jet vertex tagger uncertainty
Δϕ Variation of Δϕ between the jet and Z boson
2nd jet veto Radiation suppression through second-jet veto
Out-of-cone Contribution of particles outside the jet cone
Statistical Statistical uncertainty over 13 regions of jet pT

γ þ jet
Photon scale Uncertainty in the photon energy scale
Photon resolution Uncertainty in the photon energy resolution
MC generator Difference between MC event generators
JVT Jet vertex tagger uncertainty
Δϕ Variation of Δϕ between the jet and γ

2nd jet veto Radiation suppression through second-jet veto
Out-of-cone Contribution of particles outside the jet cone
Photon purity Purity of sample in γ þ jet balance
Statistical Statistical uncertainty over 15 regions of jet pT

Multijet balance
αMJB selection Angle between leading jet and recoil system
βMJB selection Angle between leading jet and closest subleading jet
MC generator Difference between MC event generators
p
asymmetry
T selection Second jet’s pT contribution to the recoil system

Jet pT threshold Jet pT threshold
Statistical components Statistical uncertainty over 16 regions of pleading

T

η-intercalibration
Physics mismodeling Envelope of the MC, pile-up, and event topology variations
Nonclosure Nonclosure of the method in the 2.0 < jηdetj < 2.6 region
Statistical component Statistical uncertainty

Pile-up
μ offset Uncertainty of the μ modeling in MC simulation
NPV offset Uncertainty of the NPV modeling in MC simulation
ρ topology Uncertainty of the per-event pT density modeling in MC simulation
pT dependence Uncertainty in the residual pT dependence

Jet flavor
Flavor composition Uncertainty in the jet composition between quarks and gluons
Flavor response Uncertainty in the jet response of gluon-initiated jets
b-jet Uncertainty in the jet response of b-quark-initiated jets

Punch-through Uncertainty in GSC punch-through correction

AFII non-closure Difference in the absolute JES calibration using AFII

Single-particle response High-pT jet uncertainty from single-particle and test-beam measurements
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where MJB measurements end and larger uncertainties are
taken from the single-particle response. The uncertainty is
fairly constant as a function of η and reaches a maximum of
2.5% for the most forward jets. A sharp feature can be seen
in the region 2.0 < jηj < 2.6 due to the nonclosure uncer-
tainty of the η-intercalibration.
The complete set of systematic uncertainties provides a

detailed understanding of the many factors that influence
the JES. Uncertainties are generally derived in specific
regions of jet pT and η, and the correlation of uncertainties
between two jets with different kinematics can vary in
strength. For the set of variables fpT; ηg, the Pearson
correlation coefficient (C) between two jets is used to
quantify the correlations, and is defined as

CðfpT;ηg1;fpT;ηg2Þ

¼ CovðfpT;ηg1;fpT;ηg2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CovðfpT;ηg1;fpT;ηg1Þ×CovðfpT;ηg2;fpT;ηg2Þ
p ;

ð3Þ

where Cov is the covariance of the systematic uncertainties
between the two sets of variables.
The jet–jet correlation matrix, including all 80 uncer-

tainties, is shown as a function of jet pT (ηjet1 ¼ ηjet2 ¼ 0)
in Fig. 13(a) and as a function of jet η (pjet1

T ¼ p
jet2
T ¼

60 GeV) in Fig. 13(b). Regions of strong correlation
(C ∼ 1) are shown in mid-tone red, and of weak correlation
(C ∼ 0) in dark blue. In the pT correlation map, features are
visible at low, medium, high, and very high pT, corre-
sponding to the kinematic phase space of the in situ pT-
balance calibrations and the single-particle response. In the
η correlation map the correlation is strongest in the central
and forward η regions of the η-intercalibration. Strong
jet-jet correlations are seen as a function of η due to the

dominance of the MC modeling term in the η-intercalibra-
tion. Correlations due to the nonclosure uncertainty, being
most significant for 2.2 < jηj < 2.4, are seen to be local-
ized in a narrow η region, as expected.
While the 80 uncertainties provide the most accurate

understanding of the JES uncertainty, a number of physics
analyses would be hampered by the implementation and
evaluation of them all. Furthermore, many would receive
no discernible benefit from the rigorous conservation of all
correlations. For these cases a reduced set of nuisance
parameters (NPs) is made available that seeks to preserve as
precisely as possible the correlations across jet pT and η.
As a first step, the global reduction [3] is performed

through an eigen-decomposition of the 67 pT-dependent
in situ uncertainties following from the Z=γ þ jet and
MJB calibrations. The five principal components of greatest
magnitude are kept separate and the remaining components
are quadratically combined into a singleNP, treating them as
independent of one another. This reduces the number of
independent in situ uncertainty sources from 67 to 6 NPs,
with only percent-level losses to the correlations between
jets. The difference in correlation, given by Eq. (3), between
the full NP representation and the reduced representation as
a function of jet pT is given in Fig. 14(a), showing the losses
to be small and constrained in kinematic phase space.
A new procedure is introduced for 2015 data to further

reduce the remaining 19 NPs (6 in situ pT-balance NPs and
13 others) into a smaller, strongly reduced representation.
Various combinations of the remaining NPs into three
components are attempted, and NPs within a single
component are quadratically combined. The combinations
attempt to group NPs into pT and η regions where they are
most relevant, thereby minimizing the correlation loss
and reducing the potential for artificial correlation struc-
tures across large regions of jet kinematic phase space.
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FIG. 12. Combined uncertainty in the JES of fully calibrated jets as a function of (a) jet pT at η ¼ 0 and (b) η at pT ¼ 80 GeV.
Systematic uncertainty components include pile-up, punch-through, and uncertainties propagated from the Z=γ þ jet and MJB (absolute
in situ JES) and η-intercalibration (relative in situ JES). The flavor composition and response uncertainties assume a quark and gluon
composition taken from PYTHIA dijet MC simulation (inclusive jets).
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Combinations that group NPs that are dominant in low-,
medium-, and high-pT kinematic regimes are therefore
generally favored. The η-intercalibration nonclosure uncer-
tainty (Sec. V D 1), being fairly large and localized, and the
AFII uncertainty, being specific to a certain type of MC
simulation, are not included in this procedure. This
procedure is performed using PYTHIA MC simulation,
assuming a conservative 50% quark and 50% gluon
composition with a 100% uncertainty.
The correlation loss between a strongly reduced represen-

tationNPred and the full representationNPfull is generally non-
negligible, as seen in the matrix of the jet-jet pT correlation
differences shown in Fig. 14(b). For two jets with η ¼ 0, the
maximum (mean)pT correlation loss is−0.39 (−0.13), and is
largest between jets in very different kinematic phase space.

This simple mean is taken as the average correlation loss over
the fine logarithmic pT bins, excluding bins in kinematically
forbidden regions. Sensitivity to this correlation loss is
analysis dependent and is determined by the regions in jet
pT–η phase space where the analysis events fall. To allow
analyses to probe their sensitivity to this loss, a set of four
different strongly reduced representations fNPredg is gen-
erated which varies the regions of greatest correlation loss
between them. Each NPred combines the components in a
uniqueway, with different kinematic regions becoming better
or worse descriptions of the full correlation matrix. The
sensitivity of an analysis to the correlation loss can be
quantified by examining the effect of each NPred on the final
analysis observable. The four NPred are each derived to focus
on one of the following correlation scenarios:
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FIG. 13. The full correlation matrix between two jets using all 80 uncertainty sources as a function of (a) pjet
T for ηjet1 ¼ ηjet2 ¼ 0 and
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T ¼ 60 GeV. Regions of strong correlation are visible at low, medium, high, and very high pT corresponding to

the Z þ jet, γ þ jet, and MJB calibrations and the single-particle response, as well as in the central and forward jet η regions from
the η-intercalibration.
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FIG. 14. Jet-jet correlation losses after applying (a) the global reduction and (b) subsequent strong reduction as a function of pjet
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ηjet1 ¼ ηjet2 ¼ 0. The correlation loss is relatively minor from the global reduction and larger from the strong reduction in certain
kinematic regions.
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(1) the general representation with low-, medium-, and
high-pT kinematic regimes;

(2) preservation of low-pT vs medium-pT correlation
structure as well as η dependencies;

(3) preservation of medium-pT vs high-pT correlation
structure;

(4) preservation of very high-pT correlation structure.
When deriving a reduced representation, it can be

useful to highlight exceptional uncertainties or vary the
way in which they are combined. An uncertainty may
exhibit a large anticorrelation across pT or η, and the anti-
correlation information is lost when summed in quad-
rature with other uncertainties to form a single NP. If such
an uncertainty is non-negligible, it is useful to isolate it as
a single strongly reduced NP. For uncertainties derived
from the comparison of two MC event generators, the
correlation structure is not well defined. These NPs can be
split into two identical components of complementary
weight, such that their combination sums to the original
uncertainty for all points in the pT–η phase space. The
split NP can then be divided between two strongly
reduced NPs, changing the correlation information in
certain kinematic regions. A reduced representation can
also recover the correlation information from globally

subdominant eigenvectors that were initially combined in
the preceding eigen-decomposition. These eigenvectors
are smaller overall than others but may be dominant for
specific kinematic regions. By keeping these eigenvectors
separate until the strong reduction procedure, the corre-
lation structure in kinematic regions of interest can be
better probed, at the expense of an increased loss in the
overall global correlation structure.
To ensure the set of four reduced representations fNPredg

is suitable in bracketing the full correlation matrix, a metric
is defined to quantify the uncovered correlation loss of
any derived set. The metric measures the maximum
correlation difference between any two reduced represen-
tations NPred ∈ fNPredg and compares it with the smallest
difference between the full representation NPfull and any
NPred. If the difference between any two NPred is larger than
that of any NPred and NPfull, then analyses that bracket their
sensitivity to correlation loss with fNPredg are conservative
with respect to any differences with the full representation.
The metric to quantify the uncovered correlation loss of any
derived fNPredg is defined as

min
i∈fNPredg

jCfull − Ci
redj − max

i≠j

i;j∈fNPredg
jCi

red − C
j
redj; ð4Þ

FIG. 15. Uncovered jet-jet correlation loss between the full NP representation and the set of strongly reduced representations, showing
regions which are not fully covered by the strongly reduced set of four representations. The uncovered correlation loss is calculated by
the metric given in Eq. (4). The uncovered correlation loss is explored in the four-dimensional jet-jet pT–η phase space. Each subplot
shows the uncovered correlation loss as a function of pT, and subplots are shown for several regions of η in steps of Δη ¼ 0.5. White
regions represent the kinematically forbidden phase space beyond the reach of

ffiffiffi

s
p ¼ 13 TeV. The top (bottom) number in each subplot

gives the maximum (mean) uncovered correlation loss, multiplied by a factor of 100 for visibility, with the mean excluding
kinematically forbidden regions.
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where Cfull is the correlation coefficient for the full NP set
and Cred is that of a reduced NP representation. The metric
is calculated throughout the jet-jet pT–η phase space, and is
not allowed to be greater than zero.
This uncovered correlation loss is shown in Fig. 15 for

several points in the four-dimensional jet-jet pT − η phase
space. It is shown as a function of pT for several distinct
regions of η in steps of Δη ¼ 0.5. For each η region, the
maximum correlation loss not covered by differences
between the reduced representations is above the level of
−0.3 with a mean at or above −0.01. The regions of
maximum difference are very limited in kinematic phase
space and therefore have a minimal impact, with the
strongly reduced representation procedure probing almost
all of the JES correlation structure. The majority of ATLAS
searches using 2015 data have been shown to be insensitive
to this limited loss of correlation information and have used
the strongly reduced NPs successfully, such as the dijet [40]
and multijet [41] resonance searches.

VII. CONCLUSIONS

The derivation of the 2015 ATLAS calibration of the jet
energy scale is presented for EM-scale anti-kt R ¼ 0.4 jets.
An area-based pile-up correction and a pile-up-sensitive
residual correction are derived to reduce contamination
from the busy detector environment at a bunch spacing of
25 ns. Absolute jet energy scale and η calibrations are
derived fromMonte Carlo simulation to correct the jet four-
momentum to the particle-level energy scale and to
improve the jet angular resolution. The global sequential
calibration is derived from pT-sensitive observables to
improve the jet resolution and to account for the differing
energy response between quark- and gluon-initiated jets.
In situ calibrations are derived using 3.2 fb−1 of

ffiffiffi

s
p ¼

13 TeV proton-proton collision data collected by ATLAS
in 2015 at the LHC. Dijet events are selected to measure the
pT- and η-dependent response of forward jets with respect
to central jets. A pT-dependent correction is derived by
balancing the pT of jets against reference photons and Z
bosons decaying into electrons and muons. A final cor-
rection is derived for higher-pT jets through multijet events
in which the highest-pT jet is significantly more energetic
than the others. The in situ corrections are combined in
their overlapping pT ranges to provide a single consistent
calibration at a level of 4% at 20 GeV and 2% at 2 TeV.
The uncertainty in the jet energy scale is consistent with

previous results in 2011 using 7 TeV data, and is at a level
of 4.5% at 20 GeV, 1% at 200 GeV, and 2% at 2 TeV for an
inclusive dijet sample. The uncertainties are fairly constant
with respect to η, and a dedicated uncertainty is introduced
for 2.0 < jηj < 2.6 to account for details in the calorimeter
energy reconstruction. A new method for combining

systematic uncertainties into a strongly reduced set while
preserving correlations is described. The full set of 80
uncertainties is reduced to five, and the correlation infor-
mation loss is probed through a set of four unique
combination scenarios.
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