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Nano	uids are nanosize-powder suspensions that are of interest for their enhanced thermal transport properties.�ey are studied as
promising alternatives to ordinary cooling 	uids, but the tribiological e
ects of nano	uids on cooling-system materials are largely
unknown. �e authors have developed methodology that uses jet impingement on typical cooling-system materials to test such
e
ects.�ework is presented of the authors’ research on the interactions of a typical nano	uid (2% volume of alumina nanopowders
in a solution of ethylene glycol in water) which is impinged on aluminum and copper specimens for tests as long as 112 hours. �e
surface changes were assessed by roughness measurements and optical-microscope studies. Comparative roughness indicate that
both the reference cooling 	uid of ethylene glycol and water and its nano	uid with 2% alumina produce roughness changes in
aluminum (even for the shortest 3-hour test), but no signi�cant roughness di
erences were observed between them. No signi�cant
roughness changes were observed for copper. Microscopy observations, however, show di
erent surface modi�cations in both
aluminum and copper by both the nano	uid and its base 	uid. �e possible mechanisms of early erosion are discussed. �ese
investigations demonstrate suitable methods for the testing of nano	uid e
ects on cooling system-materials.

1. Introduction and Literature Review

�e concept of nano	uid was proposed in 1995 by Choi and
Eastman [1] and Choi [2] as a suspension of solid nanosize
(1 to 100 nanometers) particles in a carrier liquid. Since then,
nano	uids have been produced for many research purposes
as mixtures (typically up to 5%) of solid metal nanoparticles
(as gold), oxides (as alumina, silica, titanium dioxide, and
copper oxide), carbides, or nitrides nanoparticles and of
carbon nanotubes or nano�bers in continuous and saturated
	uids (as water, ethanol, and ethylene glycol) [3]. Nano	uids
are predicted to have higher thermal conductivity and heat
transfer coe
cients than those of the base 	uids because
solids have much larger thermal conductivity than those of
carrier 	uids, and nanoparticles have a much larger surface-
to-volume ratio and larger mobility than those of larger solid
particles. �erefore, nano	uids are promising as coolants for
critical-cooling systems, as nuclear systems [4], large engine
radiators, and microchips [5]. �ese and other potential uses

of nano	uids, as applications for enhanced detergency, in the
biomedical �eld, and as smart 	uids, were discussed byWong
and De Leon [5]. Synthesis of nanopowders, preparation of
nano	uids, and nano	uid performance as transport- and
electromagnetically active-media and as media for chemical
reactions have been recently reviewed by Taylor et al. [6].

�ermal and transport properties of nano	uids are pre-
dicted as substantially di
erent from those of the base
	uids, such as their increased thermal conductivity [7] and
larger viscosity than those of the base 	uids [7], and an
abnormal convective-heat-transfer coe
cient [8, 9]. Mea-
surements of nano	uids’ e
ective thermal conductivity and
viscosity found them to be substantially higher than those
of the base 	uids [10]. �e enhancement of heat transfer
coe
cient appears to go beyond amere thermal-conductivity
e
ect because it cannot be predicted by traditional pure
	uid correlations. �ese abnormal thermal properties may
be partially explained by the very large surface to volume
ratio and high mobility nanosize particles [7, 9], but a full
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understanding of nano	uid thermal properties should also
consider the thermal dispersion and intensi�ed turbulence
brought about by nanoparticle motion [4]. �e measured
thermal conductivities of nano	uids strongly depend on
temperature, particle volume fraction, size, shape [9], coat-
ing of nanoparticles [11], type of base 	uid [12], and pH
of mixtures [13]. Such dependences and some larger than
expected nano	uid viscosities can be partially explained [14–
16] by aggregation of the nanoparticles, while the kinetics of
deagglomeration may strongly depend also on suspension of
pH [17]. A comprehensive review of heat transfer properties
of nano	uids and their dependence on several factors was
presented by Das et al. [18].

�e potential of nano	uids to enhance existing heat-
exchanger systems has prompted experimental work with
traditional radiators. For instance, Leong et al. [19] reported
the heat transfer enhancement of an automotive car radiator
using ethylene glycol with 2% copper as nano	uid (with ethy-
lene glycol as the base 	uid for comparison); they observed
that the overall heat transfer coe
cient and bulk heat transfer
increased by about 3.8% with the use of the nano	uid com-
pared to the base 	uid alone. �e work of Peyghambarzadeh
et al. [20] tested �ve di
erent concentrations for nano	uid
of alumina nanoparticles in water in the range of 0.1 to 1%
volume, as they compare to pure water in an automobile
radiator. �eir results demonstrated that the nano	uids with
those low concentrations can enhance heat transfer e
ciency
up to 45% in comparison to pure water. Some follow-up
work by the same researchers [21] measured the overall
heat transfer coe
cient (according to the conventional 3-
NTU technique) in a car radiator cooled by copper-oxide-
and iron-oxide-nano	uids at concentrations of 0.15, 0.4,
and 0.65 vol.% in water. �ey found that both nano	uids
produced larger overall heat transfer coe
cients (by up to
9%) as compared to those for water and that increasing
the nanoparticle concentration enhanced the heat transfer.
However, increasing the nano	uid inlet temperature led to
lower overall heat transfer. A computational 	uid dynamics
simulation [22] of ideal nano	uid cooling in a Cummins
500 hp diesel engine showed that radiator size could be
reduced by 5%.

Many concerns remain about nano	uid e
ects on
cooling-system materials, particularly wear and erosion, and
there is little understanding of the tribological impact of
nano	uids on typical material surfaces. Initial research at the
US Department of Energy facilities [23] suggested that no
surface change would result to aluminum 3003 jet-impacted
by a SiC-nano	uid jet, for the case of 750 hours of a 2 vol.%
SiC in water nano	uid at 8m/s and impact angle of 30∘.
�e follow-up work of Singh [24] with the same methods
found no signi�cant erosion using nano	uids of Cu and
Al oxides in the base 	uids ethylene and trichloroethylene
glycols, with velocities of 9m/s and at 90∘ and 30∘ impact
angles: the corresponding erosion rate in vehicle radiator was
extrapolated to be of 0.065 milligrams/year of typical vehicle
operation. Nguyen et al. [25] reported the wear e
ect on an
aluminum specimen subjected to the impinging of a jet of a
5% alumina-in-water nano	uid at a velocity of 9.6m/s. A�er
180 hours, a signi�cant total mass loss of 14mgwasmeasured.

Recent experimental research work [26, 27] tested the
material-removal e
ects on aluminum, copper, and stainless
steel targets of nano	uid jets of TiO2, Al2O3, and ZrO2 (each
at 9% concentration) and of SiC (at 3% concentration) in
the base 	uid of distilled water plus a surfactant, as they
compared to the same materials impacted by a water-only
jet. �ey measured target thickness di
erences by scanning
the surface with a pro�lometer as an estimation of the
wear. While no di
erences in erosion e
ects were observed
for stainless steel, some signi�cant increases of erosion (as
compared to base 	uid) were observed on aluminum targets
for the TiO2, Al2O3, and ZrO2 nano	uids (of about three
hundred times the wear removal caused by water) and for
copper only in the case of ZrO2 nano	uid. No e
ects were
observed for any target material when impacted by the SiC
nano	uid. From SEM analysis they concluded that, for the
used nano	uids, most of the material would be removed by
mechanical erosion, while,for the water, it would be worn
mainly by intergranular corrosion (around the impurities
of the metal matrix); SiC seemed to cause a very small
corrosion e
ect, partly counterbalanced in the wear removal
measurement by a deposition of metal oxides.

George et al. [28] recently presented experimental work
on erosion e
ects of a nano	uid of 0.1%-volume of TiO2
in distilled water. �ey tested for up to 10 hours the jet-
impingement e
ects at di
erent angles on aluminum and
cast iron surfaces, by measuring weight loss, roughness by
speckle interferometry, and hardness a�er tests. Employed jet
speeds were 5m/sec and 10m/sec. �ey found that the rates
of erosion reached maxima at a 20∘ angle of impingement
for aluminum and at a 90∘ angle for cast iron. SEM images
and AFM scans were used to identify likely mechanisms
of erosion: corrosion-assisted erosion was the prominent
mode of material removal in cast iron, whereas mild abra-
sive erosion was responsible for the observed aluminum
smoothening upon nano	uid impingement; some degree of
work hardening was observed for both materials.

�e authors presented [29] some preliminary work about
the e
ects of jet-impingement on the roughness change (Ra,
Rz, and Rq) of 3003-T3 aluminum and copper specimens
a�er 3-, 7-, and 14-hour treatments with suspensions of 2%
nanoalumina in water and in a solution of water plus ethylene
glycol, as they compared to average initial roughness. Some
substantial increases of roughness were found for the alu-
minum specimens, while no signi�cant change was observed
for copper. �ey also presented [30] dynamic viscosity
measurements, showing that the addition of 2%-volume of
alumina nanopowders in ethylene glycol increased viscosity
by about 30%, while a 5% of nanopowder can almost triple
the viscosity. �e authors concluded that a 2%-volume con-
centration seemed to be a reasonable practical compromise
(to enhance overall e
ciency of cooling systems) between
the likely improvements of heat transfer versus the increased
viscosity. �is paper presents the authors’ recent work on
wear and erosion e
ects of alumina-nanopowder-nano	uid
jet-impingement on two typical cooling-system materials,
aluminum and copper, for long experiments (up to 112-
hour tests), including microscopy analysis of the impacted



Advances in Tribology 3

surfaces, and discussion of possible mechanisms of surface
modi�cation.

2. Experimental Methods and Test Parameters

�e authors developed a test rig to explore the possible
erosion e
ects of some typical nano	uid suspensions impact-
ing some typical cooling-system materials. Figure 1 shows a
schematic and a photograph of the developed test rig.

�e test rig of Figure 1 allows controlling a 	uid jet, which
impacts a material target (the test specimen); nozzle to target
distance and target angle can be set within wide ranges;
nano	uid is recirculated by the instrument pumpduring each
test; development of the instrument is presented elsewhere
[29, 30]. �e recirculation (gear) pump yields a maximum
volume 	ow of 2.5 liter/minute at nozzle velocity of 10.7m/s.
�e tests of this research work employed a commercial mix-
ture of ethylene glycol in water (Prestone Super Tech 50/50
antifreeze/coolant [31]) as reference 	uid and the nano	uid
suspension obtained by adding a 2% volume concentration

of alumina nanoparticles in that reference 	uid.�is mixture
was formulated from a 20%-aluminum-oxide nanopowder
dispersion in water (in which the employed nanopowders
were of 99.99% gamma-alumina, 10 nm original average
particle size before aggregation in a 20% dispersion, pro-
prietary dispersant not disclosed, supplied by US Research
Nanomaterials, Inc).

�e jet-impingement tests were carried out for 3, 7, 14,
28, 56, and 112 hours for each of the 	uids, where 	uid
jets were applied normally (e.g., at 90∘) to test specimen
surfaces, for constant distance from nozzle to target of
1 inch (25.4mm). Test target materials were copper alloy
110 (99.90% electrolytic heat exchanger quality, supplied by
MSC Inc.) and aluminum 3003-T3 alloy (supplied by Kaiser
Aluminum); each specimen was a plate of 3 inch by 2 inch
(50.8mm by 75.4mm), 0.05 inch (1.27mm) thickness.

Each specimen was polished using 	exible sand paper
with distilled water in the sequence of 220, 800, and 1200 grit,
to obtain a Ra roughness not greater than 7 �inch. Specimens
were cleaned before tests by ultrasonic method with micro-
90 cleaning solution, and they were rinsed with distilled
water a�er tests and air-dried before weight and roughness
measurements, which were performed before and a�er tests.
Assessment of material-removal was carried out by pre- and
posttest weighing of specimens, with a Shimadzu AUW120D
balance of 0.1mg minimum readability in the used range.

Further assessment of surface modi�cations was car-
ried out by pre- and posttest roughness measurements; the
employed instrument was a Mitutoyo Surfest SJ-201 surface
roughness tester, and the recorded roughness parameters
were Ra, Rq, and Rz. Roughness was measured in two
directions: along the lay (e.g., the predominant polishing
direction) and across it. For the employed measurement
range of 14, 400 �inch (360 �m), the instrument resolution
was of 1 �inch (0.0254�m) [32].

Optical microscopy observations were also carried out
for the impacted material surfaces (of aluminum and cop-
per specimens) before and a�er the jet-impingement tests

to assess surface modi�cations and to help elucidate the
mechanisms of material change. A Keyence VHX 1000
Digital Microscope of 54 Megapixel resolution was used.
Surface images were captured by a high resolution zoom lens
VH-Z500R/W for magni�cations of 500x to 5000x (in the
sequence 500x, 1000x, 2000x, 3000x, and 5000x). A lower
resolution lens (VH-Z20R) also was used at magni�cations
of 20x to 200x (in the sequence 20x, 30x, 50x, 100x, 150x, and
200x). A VH-Z20R lens was employed for capturing images
by three other lens angles (15∘, 45∘, and 90∘).

3. Results and Discussion

Figure 2 presents the measured average Ra roughness for
3003-T3 aluminum specimens before and a�er 3-, 7-, 14-,
28-, 56-, and 112-hour treatments with (i) the reference
	uid of 50/50% ethylene glycol in water (EG/Water) and
(ii) a nano	uid of 2%-volume of nanoalumina mixed in the
reference 	uid (initial values (without treatment) are called
“before test,” while values a�er each treatment are called “a�er
test” in following graphs).

�e measurements presented in Figure 2 indicate that
aluminum-specimen roughness is a
ected by the jet-
impingements with both the reference 	uid (EG/water)
and its 2%-alumina-nano	uid. For both of them, the Ra
roughness values initially decrease (from the 3-hour test)
showing relatively lower values for 7 and 14 hours, to be
followed by a monotonous increase a�er 28 hours (and
longer) of testing. Similar trends were observed for the two
other measured roughness parameters, Rq and Rz. Weight
measurements suggested a small increase in weight a�er
treatments (the highest measured of 5mg) for 3- to 28-hour
tests on aluminum, but no signi�cant weight change was
observed a�er 28 hours of jet-impingement.

Since the initial roughness for each specimen presented
in Figure 2 was within the 2- to 7-microinch range, each
of the Ra values is normalized and presented in Figure 3.
Normalization of each a�er-test Ra-value was done by divid-
ing it by the corresponding initial (before-test) Ra for the
corresponding specimen. Figure 3 clearly shows the trends
suggested by Figure 2, of initial roughness increase, followed
by a decrease for 7 and 14 hours and by a monotonous
increase a�er 28 hours of test. �e roughness values increase
up to eightfold for the longest tested time of 112 hours.
�e evolution of roughness in Figures 2 and 3 suggests that
some early cleaning of the surface may occur during the �rst
three hours of test (shown as a small increase of roughness),
while removal of loosematerial (le� from previous polishing)
occurs within the �rst 14 hours. A�er 28 hours of test,
increased material erosion seems to proceed. Figure 3 also
suggests that there were no signi�cant di
erences on the
measured roughness values a�er jet-impingement by the
reference 	uid (ethylene glycol/water), compared to those by
its 2%-alumina-nano	uid.

�e measured roughness changes for aluminum samples
suggest that signi�cant surface modi�cations occur when
impinged by a jet of the tested 	uids. To study such
modi�cations, optical microscopy was conducted for all
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Figure 1: Schematics and photograph of the authors’ test rig to assess nano	uid wear.
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Figure 2: Average Ra roughness for 3003-T3 aluminum before and
a�er 3-, 7-, 14-, 28-, 56-, and 112-hour treatments with the reference
	uid of 50/50% ethylene glycol in water and with nano	uid of 2%
nanoalumina in reference 	uid.

the specimens a�er and before treatments. Figures 4 and 5
show microscopy images (for 5000x magni�cation) for the
aluminum specimens before and a�er jet-treatments with
each corresponding 	uid.

Figure 4 allows comparison of before- and a�er-test
images with reference 	uid of 50/50% ethylene glycol and
water (magni�cation: 5000x) without nanoparticles. A�er
treatment, polishing scratches have been removed (a�er test
of 112 hours), and small pitting on average, smaller than 5
micrometers (200microinches) becomes larger (to average
of 5 to 10 micrometers (200 to 400microinches), showing
as circled darker clusters in a�er-test image); some observed
features also suggest that some larger areas (of about 20
micrometers, not shown in Figure 4) may have started some
“spalling.”

Figure 5 allows comparison of before- and a�er-test
images with nano	uid of 2% alumina in 50/50% ethylene
glycol and water (magni�cation: 5000x). A�er 112-hour
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Figure 3: Normalized Ra roughness for 3003-T3 aluminum before
and a�er 3-, 7-, 14-, 28-, 56-, and 112-hour treatments with the refer-
ence 	uid of 50/50% Ethylene glycol in water and with nano	uid of
2% nanoalumina in reference 	uid.

treatment, some polishing scratches remain (as compared to
Figure 4 images, where scratches were fully removed), and
small pitting size is widespread (on average, smaller than
5 micrometers (200microinches, circled in the �gure) and
pitting seems like clusters along original scratching lines
(circled in the �gure).

Figure 6 presents the typically measured average Ra
roughness for copper alloy 110 before and a�er 3-, 7-, 14-
, 28-, 56-, and 112-hour treatments with (i) the reference
	uid of 50% ehtylene glycol in water (EG/Water) and (ii)
a nano	uid of 2% volume of nanoalumina mixed in the
reference 	uid (initial values (without treatment) are called
“before test,” while values a�er each treatment are called
“a�er test” in following graphs). Since the initial roughness
for each specimen presented in Figure 6 was within the 2-
to 4-microinch range, each of the Ra values is normalized
and presented in Figure 7, where normalization of each a�er-
test Ra-value was done as for data of Figure 3. Measured
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Before A�er

Figure 4: Optical microscopy images of 3003-T3 aluminum before and a�er (112-hour) test with (reference 	uid, without nanoparticles)
50/50% ethylene glycol/water (magni�cation: 5000x). Preexisting pitting and enlarged ones a�er treatment are circled.

Before A�er

Figure 5: Optical microscopy images of 3003-T3 aluminum before and a�er (112-hour) test with nano	uid of 2% alumina in 50/50% ethylene
glycol/water (magni�cation: 5000x). Preexisting pitting and enlarged ones a�er treatment are circled.

Rq and Rz roughness showed similar trends. No signi�cant
roughness di
erences weremeasured, but normalized data of
Figure 7 suggests a slight roughness decrease; however, these
small observed di
erences are roughly within the instrument
resolution of 1 �inch, and they need further experimentation
for validation.

Weight measurements of copper specimens found no
signi�cant weight change a�er jet-impingements for the
tested 	uids and times. To study possible modi�cations
nondetected by roughness or weight measurements, optical
microscopy was conducted for all the specimens a�er and
before treatments. Figures 8 and 9 show microscopy images
(for 5000x magni�cation) for the copper specimens before
and a�er jet-treatments with each corresponding 	uid.

Figure 8 allows comparison of before- and a�er-test
images with reference 	uid of 50/50% ethylene glycol and
water (magni�cation: 5000x), without nanoparticles. Before
treatment, some limited pitting (circled in “before” image)
and machining scratches were observed, while a�er 112-hour
treatment polishing scratches have not been removed, and
widespread small-size pitting is observed (some pitting a�er
treatment seems to cluster around some areas (circled in
“a�er” image).

Figure 9 allows comparison of before- and a�er-test
images with nano	uid of 2% alumina in 50/50% ethylene
glycol and water (magni�cation: 5000x). A�er 112-hour treat-
ment, polishing scratches were not removed, and preexisting
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Figure 6: Average Ra roughness for alloy 110 copper before and
a�er 3-, 7-, 14-, 28-, 56-, and 112-hour treatments with the reference
	uid of 50/50% ethylene glycol in water and with nano	uid of 2%
nanoalumina in reference 	uid.

pitting (circled in Figure 9) becamemuch larger; some pitting
seems to cluster along original scratching lines (circled in
Figure 9).

�e presented studies show that all tested 	uids yield
substantial early modi�cations of the original surfaces, even
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Figure 7: Normalized Ra roughness for alloy 110 copper before and
a�er 3-, 7-, 14-, 28-, 56-, and 112-hour treatments with the reference
	uid of 50/50% ehtylene glycol in water and with nano	uid of 2%
nanoalumina in reference 	uid.

for low-speed jet-impingement and for relatively short times
(compared to operational times of actual cooling systems).
In particular, the microscope imaging studies suggest that
the mechanisms of surface change for the employed low-
speed 	uid-impact are di
erent from those reported in
the literature. �e fundamental case of high-speed single-
particle erosion on impacted surfaces is well known [33], and
multiple millimeter-size particle impact phenomena have
been extensively studied [34–38], where work hardening and
subsequent spalling a�er “incubation period” play important
roles in such dry-erosion cases. �e observed changes driven
by low-speed-	uid of this study, however, seem to relate to
mild abrasion and to 1 to 10 micrometer-size pitting erosion.

4. Conclusions

�e authors developed an instrument to employ a low-
speed jet for the testing of nano	uid interactions with typical
cooling-system material surfaces. �is research work shows
the feasibility of using roughness and removed-material (by
weighing)measurements and opticalmicroscopy imaging for
assessing the possible early surface changes.

�e low-speed tests with a reference 	uid of 50/50%
ethylene glycol in water and with the nano	uid obtained by
adding 2% of alumina in such reference 	uid allowed the
study of surface evolution of polished 3003-T3 aluminum
specimens for up to 112 hours of testing. For both 	uids Ra
roughness values increased (up to eightfold for the longest
tested time of 112 hours).�e evolution of roughness suggests
that cleaning the surface and removing loose material occur
during the �rst three hours of test, while smoothening
(removing deeper polishing scratch lines) would proceed
within the �rst 14 hours, followed by increased material
erosion a�er 28 hours of test.

For the 28- to 112-hour interval of jet-impingement-
test in aluminum there are no signi�cant di
erences on
the measured roughness values a�er treatment with the
reference 	uid (ethylene glycol/water), compared to the
same treatments with the 2%-alumina-nano	uid. But optical
microscopy imaging (magni�cation 5000x) showed di
erent
surface-modi�cationmechanisms:while reference 	uid com-
pletely removed polishing scratches and enlarged original
small pitting for the 112-hour test, the 2%-alumina-nano	uid
did not completely remove polishing scratches and it led
to widespread small pitting, which seems to cluster along
some original scratching lines. Since alumina is fairly chem-
ically inert, material removal in this early surface-modifying
mechanism in aluminum should be attributed tomainlymild
abrasion mechanisms, with no signi�cant chemical erosion
component; these mechanisms are in good agreement with
the �ndings of George et al. [28], which were obtained for
titanium-dioxide nano	uid jet-impinged on aluminum.

�e same low-speed tests (with reference 	uid of 50/50%
ethylene glycol in water, and with the nano	uid obtained by
adding 2% of alumina in such reference 	uid), allowed the
study of surface evolution of polished alloy 110 copper speci-
mens. �e two 	uids produced neither signi�cant roughness
di
erences nor signi�cant material removal by weight mea-
surements. But optical microscopy imaging (magni�cation
5000x) showed that both 	uids start surface changes on
copper. While neither 	uid treatment removed the initial
polishing scratches, widespread small pitting was observed
for the reference 	uid in 112 hours, while preexisting pitting
became much larger for the 2%-alumina-nano	uid in the
same test-time, with some pitting clustering along original
scratching lines. �e absense of signi�cant scratching-line
removal in copper suggests that the observed early surface-
modi�cation mechanism should be attributed to mainly
mild erosion, with a likely chemical component. However,
further studies are needed to clearly determine all involved
mechanisms for the materials and 	uids tested. �e authors
conducted some SEM observations of surfaces; however,
because of the relatively large size of the observed surface
scratches before treatments and of pitting a�er treatments (in
Figures 4, 5, 8, and 9), SEM images have not been useful to
investigate the phenomena.

Studies of nanoparticles attachment to the surfaces
require further research. E
ects of material heating and
cooling (as they may occur in an actual heat-exchanger
system) for longer periods are also the subjects of current
studies. Relative hardness of the nanopowders compared to
that of the impacted surfaces and their work hardening can
be factors in the studied phenomena, and they are included
in the authors’ follow-up current research work.

�ere are no published studies on the e
ects of nanopar-
ticle size in erosion rates; the work of Lynn et al. [39] on
micrometer-size-SiC-particle slurry erosion of steel found
that erosion rates decrease with particle size, but these
and other works [40] should not be extrapolated to the
nanometer-size scale, because nanosize-particle aggregation
and clustering are not yet well-understood, and they seem
to be dependent on powder and base-	uid properties. For
instance, a recent paper [41] reports substantial aggregation
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Before A�er

Figure 8: Optical microscopy images of alloy 110 copper before and a�er (112-hour) test with (reference 	uid, without nanoparticles) 50/50%
ethylene glycol/water (magni�cation: 5000x). Preexisting pitting and seemingly clustered ones a�er treatment are circled.

Before A�er

Figure 9: Optical microscopy images of alloy 110 copper before and a�er (112-hour) test with nano	uid of 2% alumina in 50/50% ethylene
glycol/water (magni�cation: 5000x). Preexisting pitting and enlarged ones a�er treatment are circled.

(up to the micrometer scale) for alpha-alumina–in-water
nano	uids, while gamma-alumina-in-water ones present no
aggregates (or if any, they would be of much less than
micrometer size). �erefore, studies of nanoparticle-size
e
ects in nano	uid erosion require further research.
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