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1 Introduction

Jet vetoing is a crucial technique in particle physics that is used primarily to suppress
backgrounds in processes involving the production of W+W− final states (e.g. directly or
in Higgs decays). By identifying and removing events that contain energetic hadronic jets
(vetoing), the impact of the dominant top-quark pair production background is reduced.
The concrete jet-veto implementation depends on factors such as the jet algorithm and
its parameters, as well as the kinematic selection cuts applied to the identified jets. For
LHC analyses, the most common jet vetoing scheme is to impose a maximum transverse
momentum cut pveto

T on anti-kT jets.
The jet veto scale pveto

T can induce large logarithms if it is smaller than the hard
process scale Q, which then mandates resummation. In this paper we describe a coherent
implementation of jet veto resummation in processes involving the production of a color-
singlet boson (W,Z/γ∗ and H bosons) or a pair of bosons (ZZ, W±Z, and W+W−). Our
resummation operates at the level of N3LLp

1 matched to fixed order NNLO.
We build on the pioneering work of previous studies, which have demonstrated the

effectiveness of resummation methods for a jet veto [1–5]. General purpose implementations
include a numerical approach to resummation at NNLO+NNLL [6, 7] and an automated

1The last missing ingredient for N3LL resummation is the exact dveto
3 (the three-loop rapidity anomalous

dimension) which we approximate and take into account with an uncertainty estimate. We discuss this in
detail in the subsequent section.
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approach to jet veto studies at NLO+NNLL [8]. Publicly available codes operating at
NNLL and addressing the same issue are, JetVHeto [9], the code MCFM-RE [10] which is
derivative of both MCFM and JetVHeto, and MATRIX+RadISH [11]. Both JetVHeto and
RadISH implement the same analytic resummation formula of ref. [5].

Our research extends and improves upon these earlier results through detailed phe-
nomenological studies of specific final states, including Higgs boson production [5, 12–14],
W+W− production [15, 16], and ZZ and W±Z production [17]. Another important aspect
of our study is the performance of the resummation at N3LLp accuracy, which has not
always been the case in previous work. We also describe our approximation of the missing
dveto

3 that would be necessary to reach full N3LL accuracy. Finally, we include our results in
MCFM, a publicly distributed code, which allows users to easily perform studies in practice.

Resummation of jet-veto logarithms has a close relationship with the resummation of
transverse momentum logarithms. In the latter, one is interested in transverse momenta
all the way down to zero pT , so the logarithms can be larger than in jet-veto processes
where pveto

T in the range 25 to 30 GeV is used experimentally. In this paper we explore
which jet-veto processes actually require resummation at these values of pveto

T , supply the
best predictions for those processes where it is warranted, and confront our theoretical
predictions with experimental data where it is available.

In section 2 we discuss the jet-veto factorization theorem including its ingredients
that result in the resummation. We describe our setup for phenomenology including our
uncertainty procedure in section 3, compare with the public code JetVHeto in section 4, and
study the phenomenological implications for a wide range of processes in section 5. We
conclude in section 6.

2 Jet-veto factorization and resummation

We consider processes where jets have been defined using sequential recombination jet
algorithms [18] with distance measure

dij = min(k2n
Ti , k

2n
Tj)

∆y2
ij + ∆φ2

ij

R2 , diB = k2n
Ti , (2.1)

where the choice n = −1 is the anti-kT algorithm [19], n = 0 is the Cambridge-Aachen
algorithm [20, 21], and n = 1 is the kT algorithm [22, 23]. kT i denotes the transverse
momentum of (pseudo-)particle i with respect to the beam direction, and ∆yij and ∆φij
are the rapidity and azimuthal angle differences of (pseudo-)particles i and j.

To describe the resummation method we focus on the simplest case of quark-antiquark
induced Drell-Yan production of a lepton pair of invariant mass Q and rapidity y. The case
of gluon initiated processes is structurally the same, but with different ingredients that we
give below and in the appendices. In the presence of a jet veto over all rapidities we have a
factorization formula [3, 12, 13],
d2σ(pveto

T )
dQ2dy

= dσ0
dQ2

∣∣∣CV (−Q2, µ)
∣∣∣2

×
[
Bq(ξ1, Q, p

veto
T , R, µ, ν)Bq̄(ξ2, Q, p

veto
T , R, µ, ν)S(pveto

T , R, µ, ν)
]

+O
(
pveto
T

Q

)
(2.2)
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Approximation Nominal order Accuracy ∼ αnsLk⊥ Γcusp γcoll. H

LL α−1
s 2n ≥ k ≥ n+ 1 Γ0 tree tree

NLL+LO α0
s 2n ≥ k ≥ n Γ1, γ0 tree

N2LL+NLO α1
s 2n ≥ k ≥ max(n− 1, 0) Γ2 γ1 1-loop

N3LL +NNLO α2
s 2n ≥ k ≥ max(n− 2, 0) Γ3 γ2 2-loop

Table 1. Counting of orders in the resummation, adapted from ref. [26]. The second column
indicates the nominal order when counting L⊥ ∼ 1/αs. The third column states which logarithms
are included. The last three columns show the necessary additional anomalous dimensions and hard
function corrections in each successive order. The requisite anomalous dimensions are provided in
appendix B.

where ξ1,2 = (Q/
√
s) e±y and,

dσ0
dQ2 = 4πα2

3NcQ2s
. (2.3)

In this equation CV is a matching coefficient whose square is the hard coefficient function
that corrects the lowest order cross-section, see eq. (2.3). Bq and Bq̄ are the quark beam
functions which describe the emission of radiation collinear to the two beam directions in
the presence of a jet veto, and S describes the emission of soft radiation in the presence of
a jet veto. The quantity ν is a supplementary scale necessitated by the rapidity divergences
present in beam and soft functions. The main process-independent ingredients are the
beam and soft functions for both incoming quarks and gluons which have been published
recently at the two-loop level [24, 25]. The hard function is process specific. We have used
the existing two-loop fixed order implementations in MCFM.

Overall the factorization theorem achieves a separation of scales. The hard function
contains logarithms of the ratio Q2/µ2, which can be minimized by setting µ2 = µ2

h ∼ Q2.
However, inside the beam and soft functions, it is natural to choose µ = pveto

T to avoid large
logarithms. The resummation of large logarithms is achieved by choosing µ ∼ Q in the hard
function and evolving it down to the resummation scale µ ∼ pveto

T using the renormalization
group (RG). For the hard function the evolution is solved analytically, see appendix E.

In RG-improved power counting the logarithms L⊥ = 2 log(µh/pveto
T ), where µh is of

order Q, are assumed to be of order 1/αs. With this definition the counting of powers
of αs and of the large logarithm L⊥ is shown in table 1. The non-logarithmic terms
that the resummation does not provide are easily accounted for by adding the matching
corrections. The matching corrections are a finite contribution and add the effect of fixed-
order corrections while removing the logarithmic overlap through a fixed-order expansion of
the resummation.

2.1 Soft function

The jet veto soft function has been calculated using an exponential regulator [27] in ref. [25].
The calculation is divided into the sum of the soft function for a reference observable and a
correction factor,

S(pveto
T , R, µ, ν) = S⊥(pveto

T , µ, ν) + ∆S(pveto
T , R, µ, ν) . (2.4)

– 3 –
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In ref. [25] the reference observable is the transverse momentum of the color singlet system
denoted by S⊥. S⊥ can be derived from the expression given in refs. [28, 29] after performing
the Fourier transform to momentum space (see, for instance, the rules given in table 1 of
ref. [30]). ∆S depends on the jet algorithm and contributes for two or more emissions. It
thus depends only on double real emission diagrams.

2.2 Refactorization and reduced beam functions

For consistency with the transverse momentum resummation framework in CuTe-MCFM [31]
we cast the factorization theorem in terms of the collinear anomaly framework. In this
framework the rapidity logarithms are exponentiated directly instead of resummed by
solving rapidity RG equations [32, 33]. For this we rewrite the square bracket in eq. (2.2)
as follows,

Bq(ξ1, Q, p
veto
T , R, µ, ν)Bq̄(ξ2, Q, p

veto
T , R, µ, ν)S(pveto

T , R, µ, ν)

=
(

Q

pveto
T

)−2Fqq(pveto
T ,R,µ)

e2hF (pveto
T ,µ) B̄q(ξ1, p

veto
T , R, µ) B̄q̄(ξ2, p

veto
T , R, µ) . (2.5)

The ν dependence vanishes in this combination of beam and soft functions.
We have factored out ehF/A(pveto

T ,µ) from each beam function, resulting in the reduced
beam functions B̄. By construction hF/A are solutions of the RGE equation,

d

d lnµ h
F/A(pveto

T , µ) = 2ΓF/Acusp(µ) ln µ

pveto
T

− 2γq/g(µ) , (2.6)

with boundary condition hF/A(µ, µ) = 0. The superscripts F or A signify whether the color
is treated in the fundamental (F ) or adjoint (A) representation, corresponding to a quark
initiated process or a gluon initiated process, respectively. The exact form of hF/A(pveto

T , µ),
determined by solving eq. (2.6), is given in appendix C.1. In terms of the reduced beam
functions the jet-vetoed cross-section is now given by,

d2σ(pveto
T )

dQ2dy
= dσ0
dQ2 H̄(Q,µ, pveto

T )B̄q(ξ1, p
veto
T , R, µ) B̄q̄(ξ2, p

veto
T , R, µ) +O(pveto

T /Q) . (2.7)

The choice of hF/A in eq. (2.6) divides eq. (2.2) into two separately RG invariant pieces,
the product of the two reduced beam functions (B̄q B̄q̄), and the hard function, (H̄)

H̄(Q,µ, pveto
T ) =

∣∣∣CV (−Q2, µ)
∣∣∣2( Q

pveto
T

)−2Fqq(pveto
T ,R,µ)

e2hF (pveto
T ,µ) . (2.8)

For quark-initiated processes the functions CV and Fqq obey the following RG equations.

d

d lnµ C
V (−Q2, µ) =

[
ΓFcusp(µ) ln −Q

2

µ2 + 2γq(µ)
]
CV (−Q2, µ) , (2.9)

d

d lnµFqq(p
veto
T , R, µ) = 2ΓFcusp(µ) . (2.10)

eqs. (2.9) and (2.10) are structurally the same for the gluon case with different anoma-
lous dimensions.
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The function H̄ is RG invariant due to the RGE’s satisfied by CV and Fqq and hF :
d

dµ
H̄(Q,µ, pveto

T ) = O(α3
s) .

Consequently, the remaining product of reduced beam functions is also RG invariant, up to
the order calculated. In our case,

d

dµ
B̄q(ξ1, p

veto
T , R, µ) B̄q̄(ξ2, p

veto
T , R, µ) = O(α3

s) . (2.11)

The confirmation of eq. (2.11) and the confirmation of the R-dependence of the collinear
anomaly given in the next section are two simple checks of the results of refs. [24, 25]. Full
details of the formulas needed to perform this check are given in appendix C.

If the scale pveto
T is in the perturbative domain, the reduced beam function can be

written in terms of the matching kernels Ī as

B̄i(ξ, pveto
T , R, µ) =

∑
j=g,q,q̄

∫ 1

ξ

dz

z
Īij(z, pveto

T , R, µ)φj/P (ξ/z, µ) ,

where φ denotes the usual collinear parton distribution of a parton of flavor j in a proton
P . The matching coefficients Ī are extracted from I, the two-loop beam and soft functions
of refs. [24, 25] as,

Īij(z, pveto
T , R, µ) = e−h

F/A(pveto
T ,µ) Iij(z, pveto

T , R, µ) . (2.12)

The coefficients in ref. [24] are presented as a Laurent expansion in the jet radius parameter
R. Analytic expressions are presented for all flavor channels except for a set of R-independent
non-logarithmic terms which are presented as numerical grids. For our purposes we have
interpolated the numerical grids using a spline fit. We give further details on the reduced
beam functions in appendix A.

2.3 The collinear anomaly coefficient and its approximations

The missing ingredient for a complete N3LL resummation is the three-loop collinear anomaly
coefficient and therefore warrants a longer discussion. This limitation has been discussed in
the literature and approximated in various ways. Here we discuss the uncertainty associated
with the approximations and how we take it into account in our phenomenological predic-
tions.

As presented in eq. (2.10) the collinear anomaly coefficients obey the RG equations,
d

d lnµFqq(p
veto
T , R, µ) = 2ΓFcusp(µ) , (2.13)

d

d lnµFgg(p
veto
T , R, µ) = 2ΓAcusp(µ) , (2.14)

where, for example, Fqq has the expansion,

Fqq(pveto
T , R, µ) = αs

4πF
(0)
qq (pveto

T , R, µ) +
(
αs
4π

)2
F (1)
qq (pveto

T , R, µ)

+
(
αs
4π

)3
F (2)
qq (pveto

T , R, µ) +
(
αs
4π

)4
F (3)
qq (pveto

T , R, µ) + . . . (2.15)
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While the logarithmic structure is given by the RG equations, the constant boundary
parts dveto

k (R,B) where B = F or A need to be determined by separate calculations and
are also referred to as the rapidity anomalous dimensions in the framework of refs. [32, 33]:

F (0)
qq (pveto

T , R, µh) = ΓF0 L⊥ + dveto
1 (R,F ) ,

F (1)
qq (pveto

T , R, µh) = 1
2ΓF0 β0L

2
⊥ + ΓF1 L⊥ + dveto

2 (R,F ) ,

F (2)
qq (pveto

T , R, µh) = 1
3ΓF0 β2

0L
3
⊥ + 1

2
(
ΓF0 β1 + 2ΓF1 β0

)
L2
⊥

+
(
ΓF2 + 2β0d

veto
2 (R,F )

)
L⊥ + dveto

3 (R,F ) ,

F (3)
qq (pveto

T , R, µh) = 1
4β

3
0ΓF0 L4

⊥ + (ΓF1 β2
0 + 5

6ΓF0 β0β1)L3
⊥

+
(1

2ΓF0 β2 + ΓF1 β1 + 3
2ΓF2 β0 + 3dveto

2 (R,F )β2
0

)
L2
⊥

+
(
ΓF3 + 3dveto

3 (R,F )β0 + 2dveto
2 (R,F )β1

)
L⊥ + dveto

4 (R,F ) . (2.16)

The analogous expression for gluons (F → A) is given in eq. (D.1). The coefficients in the
expansion of the cusp anomalous dimension, ΓFk , are given in appendix B.2.

For single gluon emission dveto
1 (R,B) = 0. The function dveto

2 is defined below in
eq. (2.17). There is only partial information on dveto

3 from refs. [14, 34, 35], and we have to
rely on an approximation. To estimate the validity of this approximation we first study
similar approximations of dveto

2 .
The function dveto

2 is given by [12],

dveto
2 (R,B) = dB2 − 32CB f(R,B) , where

dB2 = CB

[(808
27 − 28ζ3

)
CA −

224
27 TFnf

]
. (2.17)

The function f(R,B), which gives the dependence on the jet radius R, is known as an
expansion about R = 0 up to terms including R4,

f(R,B) = CB
(
− π2R2

12 + R4

16
)

+CA
(
cAL lnR+ cA0 + cA2 R

2 + cA4 R
4 + . . .

)
+TFnf

(
cfL lnR+ cf0 + cf2R

2 + cf4R
4 + . . .

)
. (2.18)

The terms on the first line are due to independent emission, whereas the terms on the
second and third lines are due to correlated emission [4]. The expansion coefficients are
given in appendix D in analytic and numerical form.

– 6 –
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Figure 1. Approximations of dveto
2 (R,A) scaled by the constant dA

2 . The full result, eq. (2.17) is
plotted in red. The approximation retaining only constant terms and logarithms of R is shown in
blue. The approximation retaining constant terms and logarithms of R and R2 terms is shown in
green. The leading color ansatz, eq. (2.19), derived setting nf = 0, is 32C2

A ln(R/2) and is shown in
magenta. The red, blue and green curves are all plotted for nf = 5.

2.4 Approximations for dveto
2

Using eqs. (2.17) and (D.4) we have for the gluon case in the limit nf → 0 and retaining
only logarithmic and constant terms in R,

dveto
2 (R,A) = −32C2

A

[
− 1

32C2
A

dA2 + cAL lnR+ cA0

]
' −32C2

A

[
− 1.096259 lnR+ 0.7272641]

∼ 32C2
A × ln

(R
2
)
. (2.19)

This result was used as a basis for an approximation to dveto
3 in ref. [12]. However, the

leading color (nf = 0) approximation is rather poor. With full nf dependence, but retaining
only logarithmic and constant terms in R and setting nf = 5 we have

dveto
2 (R,B) = 32CBCA

[
(1.096 + 0.0295nf ) lnR− (0.72726 + 0.12445nf )

]
∼ 32CBCA

[
1.2435 ln

( R

2.96
)]
. (2.20)

In figure 1 we show dveto
2 (R,A) and its approximations in units of dA2 as a function of

the jet radius R. As a reminder, dA2 is the non-R dependent part of d2, see eq. (2.17). We
first compare the full result (red) with the inclusion of terms up order R2 (green). This
shows that the R expansion converges quickly and it is sufficient to consider only terms up
to R4 for practical applications. Including only the logarithm and the constant (blue) gives
a reasonable approximation for sufficiently small R, with percent-level deviations around
R = 0.4. The leading color approximation (magenta) works only crudely as a first guess
and could be used in the absence of any better estimate.

– 7 –
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Figure 2. Effect of R0 variation in dveto
3 as given by eq. (2.24) with Q = 125GeV and nf = 5,

compared to the case dveto
3 = 0: R0 = 1 (black), R0 = 0.5 (red, dashed), R0 = 2 (blue, dashed).

2.5 The function dveto
3

While the complete dveto
3 is unknown so far, we can extract the leading logarithmic term

from results in the literature. Given that this approximation works reasonably well for dveto
2

for R ∼ 0.4, it is reasonable to expect a similar behavior for dveto
3 . We further estimate the

uncertainty associated with such an approximation.
From eq. (2.15) the collinear anomaly coefficient at µ = pveto

T is given by,

Fgg(pveto
T , R, pveto

T ) =
(
αs
4π

)2
dveto

2 (R,A) +
(
αs
4π

)3
dveto

3 (R,A) + . . . (2.21)

Therefore, expanding the collinear anomaly we have that

( Q

pveto
T

)−2Fgg(pveto
T ,pveto

T )
= 1− 2

(
αs(pveto

T )
4π

)2

ln
(

Q

pveto
T

)
dveto

2 (R,A)

− 2 ln
(
αs(pveto

T )
4π

)3

ln
(

Q

pveto
T

)
dveto

3 (R,A) +O(α4
s). (2.22)

At order α3
s the leading term in the limit R→ 0 can be extracted from eq. (C.2) of ref. [14]

which reads,

Fcorrel
LLR,31(R) =

(
αs
4π

)3
ln
( Q

pveto
T

)
· 128CA ln2 R

R0

×
[
1.803136C2

A − 0.589237nf2TRCA + 0.36982CFnf2TR − 0.05893n2
f4T 2

R

]
.

(2.23)
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Comparing the third-order coefficient in the two equations we thus have for a general
color representation

dveto
3 (R,B) =−64CB ln2

(
R

R0

)
(1.803136C2

A+0.36982CFnf−0.589237CAnf−0.05893n2
f )

=−8.38188×64CB ln2
(
R

R0

)
for nf = 5 . (2.24)

Hence, the sign of the leading term in the small R limit is known. In this limit dveto
3 leads

to an increase in the cross-section. This approximation only gives the leading R behavior,
and it has been suggested that one may plausibly take 1

2 < R0 < 2 as an uncertainty
envelope [14].

Since dveto
3 enters through the collinear anomaly as an overall factor, we consider the

impact of varying R0 in figure 2. For typical values of pveto
T = 30 GeV (as considered in

this paper for the comparison with experimental studies) there is an effect of less than two
percent for R = 0.4. This is in agreement with the deviations we found for dveto

2 for this
approximation.

We take into account this variation in our uncertainty estimates, see section 3.3. A
definitive statement on this issue will have to await an exact calculation of dveto

3 .

3 Setup for phenomenology

Before discussing phenomenological results, we list our input parameters, the method for
matching to fixed order, and the approach for estimating uncertainties at fixed order and
at the resummed level.

3.1 Input parameters

The input values used in our numerical studies are shown in table 2. As indicated in
the table we use the complex mass scheme for the W and Z boson masses. The number
of light quarks, nf , is set equal to five, except for the case of W+W−-production where
nf = 4. We use the PDF distribution NNPDF31_nnlo_as_0118 except for W+W− where we
use NNPDF31_nnlo_as_0118_nf_4 [36]. Note that we use these NNLO parton distributions
even in our lower order predictions.

In the cases of WW and ZZ production, at O(α2
s) the cross-section receives contribu-

tions from processes with two gluons in the initial state. When performing the resummed
calculations we include such contributions at NLL relative to the leading order, which
is of order α2

s. For the complete process the terms included are of order αnsLk with
2n− 4 > k > max(n− 2, 0) and hence they contribute at N3LL. Because of the large flux
of gluons, one might worry that this formal counting is not appropriate. However, these
contributions only represent about 3% of the cross-section for pveto

T = 10GeV, rising to
about 6–8% for pveto

T = 60GeV. Therefore, neglecting higher order corrections to these
contributions, which are not implemented in our code, is justified.
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MW 80.385GeV ΓW 2.0854GeV
MZ 91.1876GeV ΓZ 2.4952GeV
Gµ 1.166390× 10−5 GeV−2

mt 173.2GeV mh 125GeV

m2
W = M2

W − iMWΓW (6461.748225− 167.634879 i)GeV2

m2
Z = M2

Z − iMZΓZ (8315.17839376− 227.53129952 i)GeV2

cos2 θW = m2
W /m

2
Z (0.7770725897054007 + 0.001103218322282256 i)

α =
√

2Gµ
π M2

W (1− M2
W

M2
Z

) 7.56246890198475× 10−3 giving 1/α ≈ 132.23 . . .

Table 2. Input and derived parameters used for our numerical estimates..

We match the resummation and fixed-order NkLO corrections using a naive additive
scheme as follows,

σN(k+1)LL+N(k)LO(pveto
T ) = σN(k+1)LL(pveto

T ) + σ∆,k(pveto
T ) , where (3.1)

σ∆(pveto
T ) = σNkLO(pveto

T )− dσN(k+1)LL(pveto
T )

∣∣∣∣
exp. to NkLO

. (3.2)

The matching correction σ∆(pveto
T ) is defined as a function of pveto

T , using the difference
between the fixed-order contribution and the resummed result expanded to the same fixed
order. The limit pveto

T → 0 of σ∆(pveto
T ) is finite, which also allows its use as a higher-order

subtraction scheme.
The use of a naive matching without a transition mechanism that switches off the

resummation at large pveto
T is justified since the matching corrections for all considered cases

in this paper are small; even in the most extreme case they are less than 20%. In other
words, the resummation alone provides a good description of the cross-sections and does not
need to be switched off. Any transition function to turn off the resummation at large pveto

T

would have a very small effect. This is in contrast to transverse-momentum resummation
where a transition function is necessary [31].

3.2 Uncertainty estimates at fixed order

Ultimately the resummed predictions should offer a practical advantage compared to the
fixed-order predictions. In many cases, the quantity log(Q/pveto

T ) is not very large, and
it may not seem worthwhile to use resummed results. However, as we will show, the
resummation works remarkably well on its own and has matching corrections of only up
to around 20%, often much less. The clear separation of scales and the resummation then
allow for smaller and more reliable uncertainty estimates. To set the stage, we first examine
perturbative convergence and uncertainties at fixed order for quark and gluon induced
boson processes, as well as for WW and ZZ production.

Constructing jet-vetoed cross-sections at fixed order requires the combination of different
cross-sections. However, if we naively subtract the jet cross-section from the inclusive result,
it can result in underestimated uncertainties and narrowing uncertainty bands. To avoid
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this, different methods have been proposed in the literature, of which we compare the
following two.

One strategy, which we term the “two-scale” approach, is to consider the different
relevant scales Q and pveto

T of the vetoed cross-section σ0, and include both of them in the
uncertainty estimate through a multi-point variation around both scales [8]. To compute this
uncertainty, we separately vary the renormalization scale µr and the factorization scale µf
over the values {µh, 2µh, µh/2, pveto

T , 2pveto
T , pveto

T /2}, where µh depends on the process under
consideration. An estimate of the uncertainty is then obtained by adding in quadrature the
maximum deviations from µr = µf = µh, from µr and µf variation separately.

Another approach, advocated by refs. [14, 37], takes the jet-veto efficiency (JVE) as
the central quantity, which is the ratio of jet-vetoed cross-section to total cross-section. By
combining the uncertainties of these two quantities in quadrature, one obtains a more robust
estimate of the uncertainty in the jet-vetoed cross-section. This is because the uncertainties
are considered uncorrelated: the uncertainties in the jet-veto efficiency are typically due to
non-cancellation of real and virtual contributions, while those in the total cross-section are
connected with large corrections from higher orders [14].

For our JVE approach, we follow the simplest formulation (“scheme (a)” of ref. [14])
to compute a JVE-based uncertainty. For this we consider variation over the scales
{µh, 2µh, µh/2} of σincl and combine in quadrature the uncertainty from the calculation of
the 0-jet efficiency (σ0/σincl) and the uncertainty from the inclusive calculation. Our final
fixed-order uncertainty band is the envelope of the two-scale and JVE approaches.

With these procedures, our fixed-order results for Z and H production are shown in
figure 3. For Z production we use the canonical choice µh = Q, where Q is the invariant
mass in the final state. For Higgs production we use µh = Q/2, guided by the calculation
of the inclusive cross-section where such a choice results in markedly-improved perturbative
convergence. We observe that for Z production the NNLO uncertainty band is wholly
contained within the NLO one, while for the Higgs case the bands at least overlap somewhat
throughout the range. For Higgs production following the combined two-scale and JVE
approach results in a significantly larger uncertainty at both NLO and NNLO, especially
at smaller values of pveto

T . On the other hand, for Z production the additional uncertainty
from the JVE approach is very small and negligible at NNLO.

Predictions for WW and ZZ production (with µh = Q) are shown in figure 4. The
limited overlap between the NLO and NNLO bands indicates that uncertainties are underes-
timated, even with the generous scale uncertainty procedure that we follow. The additional
uncertainty resulting from the JVE procedure is small, especially at NNLO, because the
scale uncertainty of the inclusive cross-sections is very small.

3.3 Uncertainty estimates at the resummed and matched level

For our central predictions, we set the resummation and factorization scales to µ = pveto
T

and the hard scale (corresponding to the renormalization scale) to µh = Q, where Q is the
invariant mass of the color-singlet final state. The exception is Higgs production, where we
choose µh = Q/2 as previously discussed. For the collinear anomaly coefficient dveto

3 , we
use the form given in eq. (2.24) [14] with R0 = 1.
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(a) Z production using the setup of ref. [38]. (b) H production.

Figure 3. Comparison of NLO and NNLO fixed order predictions as a function of the jet veto.
Central predictions solid, uncertainty estimates using either the two-scale approach (dotted) or the
envelope of that and the JVE approach (dashed).

(a) WW production using the setup of ref. [39]. (b) ZZ production using the setup of ref. [40].

Figure 4. Comparison of NLO and NNLO fixed order predictions as a function of the jet veto.
Central predictions solid, uncertainty estimates using either the two-scale approach (dotted) or the
envelope of that and the JVE approach (dashed).
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Complications arising at fixed order, described in section 3.2, are not present in the
resummed case and therefore we can follow a simpler approach where we vary all scales in
our formalism and take the envelope, as detailed below. While the matching of resummed
predictions to fixed-order could still introduce a complication, the matching corrections are
not dominant. The bulk of the cross-section comes from the resummation and it allows us
to follow the simple procedure of varying all scales in the naively obtained (without JVE)
jet-veto cross-section too.

The small and narrowing uncertainty bands at fixed order would typically appear in
regions where the resummation is found to be dominant, i.e. where fixed-order contributes
very little through the matching corrections. In practice we observe that the size of
uncertainties are overall uniform in both the resummation and large pveto

T fixed-order regions,
as can be seen in all of our following predictions. This supports the conclusion that our
procedure is sufficient.

Overall, our procedure for estimating uncertainties is as follows.

1. For the resummation (fixed-order) parts we vary both the resummation (factorization)
and hard (renormalization) scales by a factor of two about their central values, adding
the excursions in quadrature to obtain the total scale uncertainty.

2. For the resummation we re-introduce the rapidity scale in eq. (2.5) by re-writing the
collinear anomaly factor as follows [12, 41]:

(
Q

pveto
T

)−2Fii(pveto
T ,R,µ)

=
(
Q

ν

)−2Fii(pveto
T ,R,µ)( ν

pveto
T

)−2Fii(pveto
T ,R,µ)

. (3.3)

For ν ∼ pveto
T the second factor can be expanded since it does not contain a large

logarithm. We vary the rapidity scale ν in the range [pveto
T /2, 2pveto

T ] for gluon-initiated
processes and in the range [pveto

T /6, 6pveto
T ] for quark-initiated processes. The large

variation for quark-initiated processes ensures overlapping uncertainty bands at NNLL
and N3LLp; this is achieved by the range given above, as demonstrated explicitly in
sections 4 and 5.

3. The parameter R0 in dveto
3 is varied between 0.5 and 2.

We first combine the scale uncertainties (1 and 2) in quadrature and then, to obtain our
total uncertainty, add the variation of R0 (3) linearly.

3.4 Effects of cuts on rapidity at fixed order

The usual jet veto resummation described so far imposes no cut on the jet rapidity. This
is in contrast to experimental analyses, see table 3, which impose such a cut because of
limited detector acceptance and to diminish the effect of pileup. Ref. [42] identifies three
different regimes, depending on pt, Q and ycut.

• For pveto
T /Q� exp(−ycut) standard jet veto resummation should apply, effects due to

the rapidity cut are corrections power suppressed by Q exp(−ycut)/pveto
T .
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Process Ref. ycut
Higgs – no study
Z (CMS) [38] 2.4
W (ATLAS) [43] 4.4
WW (CMS) [39] 4.5
WZ (ATLAS) [44] 4.5
WZ (CMS) [45] 2.5
ZZ (CMS) – no study

Table 3. Jet rapidity cuts applied in the experimental studies examined later in this paper.

• For pveto
T /Q ∼ exp(−ycut) the effects of a rapidity cut must be treated as a leading

power correction.

• For pveto
T /Q� exp(−ycut) the logarithmic structure is changed already at leading log

level, and non-global logarithms appear.

We estimate the practical impact of experimentally used jet rapidity cuts at fixed order.
Including the rapidity cut in the resummation requires large changes and ingredients, which
are also only available a low order so far [42].

The effect of the jet rapidity cut for the Z and Higgs production cases is illustrated in
figure 5. These calculations are performed at NNLO for pveto

T = 30GeV. The rapidity cut
plays a bigger role for Higgs production: for example for ycut = 2.5 the cross-section is 11%
larger than the result with no rapidity cut, compared to only 2% for Z production. This
is due to the larger logarithm (log(mH/p

veto
T )/ log(mZ/p

veto
T ) ≈ 1.28) and the larger color

prefactor (CA/CF = 2.25) in Higgs production. However, for ycut = 4.5 the effect of the
rapidity cut is negligible in both cases.

The corresponding results for diboson processes are shown in figure 6. In this case, the
disparity between Q and pveto

T is much larger, so the rapidity cut can play a crucial role,
although the effect is still not as important as for Higgs production. For ycut = 2.5 the
WW and ZZ cross-sections 4% larger than the results with no rapidity cut, and the effect
of ycut = 4.5 is negligible.

4 Comparison with JetVHeto

While jet-veto resummed phenomenology has been extensively studied in the literature, the
only public codes that permit detailed predictions use JetVHeto or RadISH. For jet-veto
resummation RadISH implements the analytic JetVHeto resummation formula [5]. The codes
rely on the formalism of the CAESAR approach [4, 46] extended to NNLL [5]. An extension
of the RadISH code has been used to perform joint jet-veto and boson transverse momentum
resummation [47].

For our comparisons we use RadISH version 3.0.0 [48, 49] and JetVHeto version 3.0.0 [5,
14, 37] including small-R resummation [4, 35] as part of MCFM-RE [16]. Both codes operate
at the level of NNLL and we have checked that they give indeed the same results.
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(a) Z production following the setup of ref. [38]. (b) H production.

Figure 5. Effect of the jet rapidity cut at NNLO with pveto
T = 30GeV.

(a) WW production. (b) ZZ production.

Figure 6. Effect of the jet rapidity cut at NNLO with pveto
T = 30GeV.

In our comparison, we would like focus on the differences in the resummation part,
since the fixed-order part is identical in each calculation. We explore how central values
and uncertainties compare at NNLL to our results and in how far N3LLp results improve
the perturbative convergence. However, the matching to fixed-order is handled differently
in each formalism. Different matching schemes (e.g. additive or multiplicative schemes of
various types) probe higher-order effects. It has also been advocated to match at the level
of jet-veto efficiencies [14]. Fortunately, matching corrections are generally small for jet-veto
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scales of 30 to 40 GeV for all considered boson and di-boson processes. We therefore focus
on the resummation in our comparison.

The JetVHeto formalism considers three scales µR, µF and Q that are all similar in mag-
nitude to the hard scale. To ensure that the resummation switches off for pveto

T & Q, the re-
summed logarithms are modified through the prescription log(Q/pveto

T )→ 1/p log((Q/pveto
T )p+

1). For JetVHeto p has a default value of 5 [14], while for RadISH the default choice is 4.
For comparison purposes we use p = 5 in both cases. It is evident that for sufficiently small
pveto
T the precise value of p does not matter. Changing this parameter has a similar effect to
turning off the resummation with a transition function. In principle this demands a fully
matched calculation, but the matching corrections of our considered cases are small and we
have checked that the effect of changing p to 3 or 4 is subleading compared to the scale
uncertainties. Here we focus on those scale uncertainties.

In ref. [14] it has been argued that the Q should be varied by a factor of 3
2 around

its central value, based on new insights from convergence at N3LO for Higgs production.
For simplicity, we use a more conservative variation by a factor of two. We independently
vary µR, µF and Q by a factor of two around a central scale of m`` for Z-boson production
and around mH/2 for Higgs production. Our uncertainty bands for this comparison are
obtained by taking the envelope of these results.

Z-boson production. For the comparison of Z production we choose a central hard
scale of m`` with results shown in figure 7. We find that the uncertainty bands of our MCFM
NNLL predictions mostly contain those obtained by JetVHeto (as estimated according to our
procedure just described). Furthermore, the uncertainty bands of both NNLL predictions
overlap with our N3LLp results, indicating robust uncertainties.

At N3LLp uncertainties decrease dramatically compared to NNLL, but they are quite
asymmetric, which suggests that a symmetrization of uncertainties may be necessary in
this case. We also observe that without the large uncertainties at NNLL, there would be no
overlap between the N3LLp results and NNLL. This highlights the importance of carefully
estimating and comparing uncertainties to accurately assess the compatibility of different
methods and results.

H-boson production. In our study of Higgs production, we choose a central hard scale
of mH/2 and show results in figure 8. All results are computed in the mt →∞ theory and
rescaled by a factor of 1.0653 to account for finite top-quark mass effects, see eq. (G.5).

The Higgs case is distinct from Z production since it is gluon-gluon initiated instead of
quark-initiated. In this case, our predictions agree well with the JetVHeto results, but our
uncertainties at NNLL are again much larger.

Note that we vary the JetVHeto scale Q by a factor of two, while the JetVHeto authors
vary by a factor of 3/2 in the Higgs case. This difference in the amount of variation may
require some tuning in our formalism, at least at the NNLL level. However, the perturbative
convergence is again excellent with small uncertainties at N3LLp and central predictions
that agree well with NNLL.
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qq → Z → e
+
e

−
, s = 13 TeV, µh = me+e−
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Figure 7. Comparison of JetVHeto NNLL resummation with our NNLL and N3LLp results for Z
production with cuts as in table 4.

gg → H,  s = 13.6 TeV, µh = mH 2
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Figure 8. Comparison of JetVHeto NNLL resummation with our NNLL and N3LLp results for
non-decaying H production.
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lepton cuts ql1T > 30 GeV, ql2T > 20 GeV, |ηl| < 2.4
lepton pair mass 71 GeV < ml−l+ < 111 GeV

jet veto anti-kT , R = 0.4, 0-jet events only

Table 4. Cuts used in the analysis of Z production, adapted from ref. [38].

5 Phenomenological results

In this section, we present the results of our phenomenological studies, which are based
on the uncertainty procedure, matching to fixed-order, and input parameters described
in section 3. We compare our findings with experimental results from the literature and
discuss their implications.

5.1 Z and W production

The process of Z production has already been extensively studied in the literature, thus
enabling a variety of cross-checks of our calculation. The implementation of the hard
function and its evolution has been verified by comparison with the explicit results given in
table 1 of ref. [50]. The full machinery of the resummation and matching procedure can
also be compared with the results of ref. [5], with which we find excellent agreement within
uncertainties, see also section 4.

We first investigate the impact of choosing a time-like hard scale in the resummed result
for Z production. Previous work has shown that choosing a space-like hard scale (µ2

h = Q2)
can lead to significant corrections in the perturbative expansion of some processes, while a
time-like hard scale (µ2

h = −Q2) can resum certain π2 contributions [51] using a complex
strong coupling.

For this comparison we consider purely resummed results at NNLL and N3LLp, only
considering uncertainties originating from scale variation (items 1 and 2 of our uncertainty
procedure in section 3.3). We consider the process pp → Z/γ∗ → `−`+, i.e. a final state
of definite lepton flavor. We use the same set of cuts and vetoes as in the

√
s = 13 TeV

CMS analysis [38], but extend the veto to jets of all rapidities, rather than only those with
|y| < 2.4. This difference, and the effect of matching to NNLO, is discussed in detail in
section 5.1.1.

Our results are shown in figure 9a as a function of the value of the jet veto. We observe
that the results do not depend strongly on the choice of hard scale, with a difference of
about 4% at NNLL and only 1% at N3LLp. This indicates that resumming the π2 terms
results in only a small enhancement of the cross-section for W and Z production. Based on
these findings, we use the space-like hard scale (µ2

h = Q2) in our subsequent studies of Z
and W boson production, as it is the more commonly used choice in the literature.

5.1.1 CMS Z production

As previously mentioned, the CMS measurement we are comparing to includes a jet rapidity
cut of |y| < 2.4. To assess the importance of this restriction, we first compare the NNLO
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(a) Predictions are computed using a central choice
for the hard scale given by either µ2

h = Q2 or µ2
h =

−Q2. The lower panel shows the ratio of the result
for µ2

h = −Q2 to the one for µ2
h = Q2.

(b) Predictions and CMS measurement as ratio to
matched result.

Figure 9. Comparison of NNLL and N3LLp predictions for Z production as a function of the jet
veto, using the setup of ref. [38] (central predictions solid, uncertainty estimate according to the
text, dashed).

predictions with and without the rapidity cut, as a function of the jet veto value. This
comparison, shown in table 5, helps us better understand the limitations of our analysis.

We use the quantity ε(pveto
T ) to quantify the increase in the cross-section when the

rapidity cut is applied, defined as

ε(pveto
T ) = σ0−jet(ycut = 2.4)

σ0−jet(no ycut)
− 1 . (5.1)

The experimental measurement we are comparing to uses a jet veto of pveto
T = 30 GeV,

for which the rapidity cut has only a 3% effect on the cross-section. This suggests that our
calculation with an all-rapidity jet veto is appropriate for comparing to the experimental
measurement. However, as pveto

T decreases, the impact of the rapidity cut becomes more
significant, until at pveto

T = 5 GeV it is no longer appropriate to neglect the rapidity cut.
This is consistent with the arguments of ref. [42], which suggest that the standard jet
veto resummation formalism should suffice as long as ln(Q/pveto

T ) � ycut. In our case,
ln(Q/pveto

T ) ranges from 0.8 to 2.9 for pveto
T from 40 down to 5GeV, so the standard jet veto

resummation should be appropriate, albeit with sizeable power corrections, for ycut = 2.4
except for the smallest values of pveto

T .
We now turn to a comparison with the CMS result [38], which uses a jet threshold of

30GeV. Our comparison with fixed-order, purely resummed and matched predictions is
shown in figure 10. We find that the fixed-order and resummed results differ by only a few
percent, indicating that resummation is not necessary for this value of the jet veto. This
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pveto
T [GeV] 5 10 20 30 40
σ0−jet(no ycut) [pb] 140 347 539 627 675
σ0−jet(ycut = 2.4) [pb] 242 411 569 643 685
ε 0.73 0.18 0.06 0.03 0.01

Table 5. The Z + 0-jet cross-section prediction at NNLO (µ = Q), with and without a jet
rapidity cut.

qq → Z → l
+
l
−
, s = 13 TeV, CMS cuts, arXiv:2205.02872

618 ± 17 pb 592
−14
+11

 pb
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Figure 10. Comparison of Z-boson jet-vetoed predictions with the CMS [38] 13 TeV measurement.
Shown are results at fixed-order, purely resummed and matched.

is because the quantity ln(MZ/p
veto
T ) = 1.1 is not large enough to require resummation.

The CMS measurement yields a cross-section of 618± 17 pb, while our best prediction
is 592+11

−14 pb.
We study the production of Z bosons as a function of the jet veto in figure 9b. We

observe that the difference between the resummed and central fixed-order results is small,
even for the smallest values of pveto

T considered. However, the uncertainties in the fixed-order
prediction are larger across the whole range, particularly for small pveto

T . For values of
pveto
T in the range of 20 to 40 GeV, which are of practical interest, the N3LLp uncertainty is

smaller than the NNLO uncertainty by about a factor of 1.5.

5.1.2 ATLAS W production

We now perform a comparison with
√
s = 8 TeV ATLAS data on W production [43]. For

this study, jets were identified using the anti-kT algorithm with R = 0.4 and must satisfy
pT > 30GeV and |y| < 4.4. We have checked at fixed order that this large rapidity cut
has a negligible impact of a few per mille, i.e. results are unchanged within the numerical
precision to which we work.

Summing over both W charges and including only the decay into electrons we compare
our predictions in figure 11. We show results at fixed order, at the resummed level, and at
the matched level. The effect of matching is large and we thus conclude that this value for
the jet veto is outside the sensible range for a purely resummed result, unlike for the Z
study in the previous subsection.

We observe excellent agreement with the theoretical prediction, albeit with a larger
experimental uncertainty. The experimentally measured cross-section is 4.72± 0.30 nb while
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qq' → W
±

→ eν, s = 8 TeV, ATLAS cuts, arXiv:1711.03296       

  4.72 ± 0.3 nb 4.71
−0.11
+0.09

 nb   
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Figure 11. Comparison of W -boson jet-vetoed predictions with the ATLAS [43] 8 TeV measurement.
Shown are results at fixed-order, purely resummed and matched.

pveto
T [GeV] 10 25 30 35 45 60
σ0−jet(no ycut) [fb] 535 963 1004 1054 1145 1237
σ0−jet(ycut = 4.5) [fb] 548 963 1004 1054 1145 1237
ε 0.02 0.00 0.00 0.00 0.00 0.00

Table 6. The pp → W−W+ → 2`2ν+0-jet cross-section at NNLO, with and without a jet
rapidity cut.

our best prediction is 4.71+0.09
−0.11 nb. Since this measurement corresponds to an integrated

luminosity of only 20 fb−1 it is clear that the high-luminosity LHC will eventually be able
to provide a much keener test of perturbative QCD in this process.

5.2 W+W− production

Experimental studies of WW production were performed by both ATLAS [52, 53] and
CMS [39, 54]. Here we focus on the CMS analysis of ref. [39] since it provides a measurement
of the 0-jet cross-section as a function of the jet pT veto. This cross-section measurment
corresponds to a sum over both electron and muon decays of the W bosons, which we
denote by the label pp→W−W+ → 2`2ν. In order to account for this in our calculation,
we compute the result for pp → e−µ+ν̄eνµ at NNLO and multiply it by the factor that
accounts exactly for all lepton combinations through NLO. The impact of ZZ contributions
in the same-flavor case results in a slight enhancement over the naïve factor of four. We
find that, independent of the value of the jet veto in the range that we consider, this factor
is equal to 4.15.

The CMS analysis only imposes a jet rapidity cut of ycut = 4.5, so our expectation is
that the standard jet veto resummation formalism should be appropriate for pveto

T values
between 60 and 10GeV, since in this case the logarithm of the ratio of Q to pveto

T are in the
range of 1.3 to 3.1. This expectation is supported by the NNLO analysis in table 6, which
shows only a small 2% effect from the rapidity cut for pveto

T = 10GeV (and none for values
above that). Unlike the processes considered so far, Q is no longer set by a resonance mass
but is instead a distribution with a peak slightly above the 2MW threshold. For illustration,
we have used an average value of Q ∼ 220 GeV.
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(a) Jet radius R dependence of fixed-order and purely
resummed results.

(b) Predictions and CMS measurement as a ratio to
the matched result.

Figure 12. Comparison of NNLO, N3LLp and matched N3LLp+NNLO results for W+W−

production.

We first fix the value of pveto
T = 30 GeV and study the sensitivity of the pure fixed-order

and resummed calculations to the jet-clustering parameter R. The results are shown in
figure 12a. At NLO, there is at most one additional parton, so the NLO result does not
depend on the value of R. However, the NNLL result exhibits a mild dependence on R,
which is most noticeable in the size of the uncertainties. These uncertainties are much
larger for smaller values of R, as was previously observed and discussed in the context
of Higgs production in ref. [12]. At NNLO, the fixed-order calculation becomes sensitive
to the value of R, although the dependence is very small. At N3LLp, the dependence is
reduced compared to NNLL, especially at small R. Overall, these results suggest that
the jet-clustering parameter has a mild effect on the predictions of the fixed-order and
resummed calculations for WW production. We have not investigated the effect of small R
resummation [14] on these results.

In figure 12b, we extend our previous analysis of the jet-veto dependence of WW

production, which was presented in ref. [55]. The effect of matching is substantial for
values of pveto

T greater than 20 GeV, so for typical jet vetoes in the range of 20 to 40 GeV,
matched predictions are important. We find that the fixed-order description is only
capable of providing an adequate result for the highest value of pveto

T studied here. A
comparison with the CMS measurement shows better agreement with the matched resummed
calculation, although the experimental uncertainties are still substantial, corresponding
to an integrated luminosity of 36 fb−1. A breakdown of the estimated uncertainty on
the matched N3LLp+NNLO prediction, into the categories described in section 3.3, is
shown in figure 13. The uncertainty from the variation of the hard (renormalization) and
resummation (factorization) scales dominates, except for the very lowest values of pveto

T

where the uncertainty on dveto
3 becomes significant.
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Figure 13. Uncertainty breakdown of the N3LLp+NNLO results for W+W− production.

We eagerly anticipate a measurement with more statistics in order to hone this com-
parison. Future measurements with higher precision and larger data samples will provide a
more stringent test of the theoretical predictions and help to refine our understanding of
WW production at the LHC.

5.3 W±Z production

5.3.1 ATLAS

For W±Z production, we first compare our results with an analysis from the ATLAS
collaboration at

√
s = 13 TeV [44]. The 0-jet cross-section is measured with jets defined by

the anti-kT algorithm with pT > 25GeV, |y| < 4.5, and R = 0.4.
Since ln(Q/pveto

T ) = 2.3 (for pveto
T = 25 GeV, using an average Q of about 240 GeV), we

expect that standard jet veto resummation should be applicable in this case, since ycut = 4.5.
We have checked that the effect of the rapidity cut is at the per mille level, which is less
than our numerical precision.

The ATLAS result is presented for a single leptonic channel and summed over both W
charges. The corresponding theoretical predictions at fixed order, at the resummed level,
and at the matched level are shown in figure 14.

Overall, the measurement is in good agreement with both the N3LLp+NNLO and NNLO
predictions, within the mutual uncertainties. Only a more precise measurement would be
able to definitively support the need for resummation in this case. Since the ATLAS analysis
includes only 36 fb−1 of data, it is likely that a more precise measurement will be possible
in the near future.
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qq' → W
±
Z, s = 13 TeV, ATLAS cuts, arXiv:1902.05759     

  31 ± 2.5 fb

29.7
−1.3
+1.1

 fb   

27
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36

ATLAS NLO NNLL NNLL+NLO NNLO N3LLp N3LL+NNLO

σ
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to
 [
p
b
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Figure 14. Comparison of W±Z jet-vetoed predictions with the ATLAS 13 TeV measurement [44].
Shown are results at fixed order, purely resummed and matched.

qq' → W
±
Z, s = 13 TeV, CMS cuts, arXiv:2110.11231     

  166 ± 6 fb
128 ± 8 fb, ycut < ∞

120

140

160

180

CMS NLO NNLL NNLL+NLO NNLO N3LLp N3LL+NNLO

σ
ve

to
 [
p
b
]

Figure 15. Comparison of W±Z jet-vetoed predictions with the CMS [45] 13 TeV measurement.
Shown are results at fixed-order, purely resummed and matched, all without a rapidity cut.

5.3.2 CMS

We now contrast the ATLAS study of the W±Z process with one from CMS [45]. In the CMS
study, jets are defined by the anti-kT algorithm with pT > 25GeV, |y| < 2.5, and R = 0.4.

To assess the applicability of the jet-rapidity inclusive resummation framework, we
must compare ln(Q/pveto

T ) = 2.3 with ycut = 2.5. This suggests that the standard jet
veto resummation formalism may not be appropriate in this case, and that the use of
ycut-dependent beam functions [42] may be necessary to provide a reliable theoretical
prediction. Despite this, we still pursue the comparison here, without using ycut-dependent
beam functions, to examine the limitations of our approach.

The CMS result for W±Z production is presented after summing over all lepton flavors
and both W charges. On the theoretical side, we perform a similar analysis, but ignore
same-flavor effects that only enter at the 2% level. To construct the jet-vetoed cross-section
for the CMS measurement, we combine the differential results in figure 14(c) of ref. [45]
with the inclusive cross-sections reported in table 6 of the same reference. Our results are
shown in figure 15.

We find that neither the resummed prediction nor the NNLO one are in good agreement
with the CMS data, even when the NNLO calculation takes the jet rapidity cut into account
(increasing the NNLO result from 128 fb to 137 fb). This suggests that resummation is
required in this case, and that the use of ycut-dependent beam functions is necessary to
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lepton cuts ql1T > 20 GeV, ql2T > 10 GeV,
q
l3,4
T > 5 GeV, |ηl| < 2.5

lepton pair mass 60 GeV < ml−l+ < 120 GeV
jet veto anti-kT , R = 0.5

Table 7. Fiducial cuts used for the ZZ analysis, taken from the CMS study in ref. [40].

pveto
T [GeV] 10 20 30 40 50 60
σ0−jet(no ycut) [fb] 13.3 21.5 25.8 28.4 30.3 31.6
σ0−jet(ycut = 4.5) [fb] 13.4 21.5 25.8 28.4 30.3 31.6
σ0−jet(ycut = 2.5) [fb] 14.9 22.4 26.3 28.8 30.6 31.8
ε(ycut = 4.5) 0.01 0.00 0.00 0.00 0.00 0.00
ε(ycut = 2.5) 0.12 0.04 0.02 0.01 0.01 0.01

Table 8. The ZZ + 0-jet cross-section at NNLO (µ = Q), with and without a jet rapidity cut.

provide a reliable theoretical prediction. Overall, these results highlight the importance of
using appropriate resummation techniques to accurately predict W±Z production at the
LHC with a small jet rapidity cut.

5.4 ZZ production

In the absence of jet-vetoed cross-sections for comparison, we use the cuts from a recent
CMS study [40] to investigate our theoretical predictions for ZZ production as a function
of pveto

T . In the results that follow we consider a sum over Z decays into both electrons and
muons, which we denote by pp→ ZZ → 4 leptons, and apply the cuts shown in table 7.

We expect that standard jet veto resummation should provide good predictions for
ycut = 4.5, since ln(Q/pveto

T ) is in the range of 1.4 to 3.2 for pveto
T values between 60 and

10 GeV, using an average Q of about 240 GeV. For ycut = 2.5, we expect larger rapidity
effects for the smallest values of pveto

T . This is supported by our analysis in table 8, which
shows only a very small (1%) effect from a rapidity cut of ycut = 4.5 for pveto

T = 10 GeV
(and no effect for higher values). Even for ycut = 2.5, the rapidity cut has a relevant effect
only for pveto

T values below 30 GeV, and is mostly insignificant beyond that.
Figure 16a shows a comparison of the dependence on pveto

T for purely-resummed results
at two different logarithmic orders. The central predictions are very similar at NNLL and
N3LLp and are consistent within uncertainties for all values of pveto

T . Figure 16b compares the
matched N3LLp+NNLO and NNLO results. The NNLO prediction has large uncertainties over
the whole range of pveto

T and only overlaps with N3LLp+NNLO around 40 GeV and higher.
The difference between the central resummed and fixed-order results is significant (around
10%) for typical values of pveto

T around 30 GeV. For most relevant values of pveto
T at the LHC,

resummation is clearly important for providing a precision prediction for this process.
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(a) Purely resummed results. (b) Ratio to matched result.

Figure 16. Comparison of NNLO, N3LLp and matched N3LLp+NNLO results for ZZ production as
a function of the jet veto.

5.5 Higgs production

For gluon fusion Higgs production an important topic is the inclusion of finite top-quark
mass effects. Although at NNLO these could be included exactly [56, 57], the mass effects
are not relevant in the jet-vetoed case [58] at the current level of precision. A simple overall
one-loop rescaling factor that takes into account the full mass dependence is sufficient to
introduce mass effects into mt →∞ EFT predictions. In the resummation formalism, the
coefficient for the matching of Higgs production in QCD onto SCET can be calculated in
two ways, referred to as one-step and two-step procedures.

5.5.1 One-step and two-step schemes

The one-step procedure is based on the observation that the ratio mH/mt is not large in a
logarithmic sense (cf. ρ = m2

H/m
2
t ≈ 1/2 and αs log 1/ρ ≈ 0.07). This procedure matches

the full QCD result, typically obtained at higher orders as an expansion in the parameter r,
onto SCET at the scale µh ∼ mH . In this way, terms of order ρ are retained, but logs of
mt/mH are neglected.

In the two-step procedure outlined in refs. [59–62], the top quark is first integrated out
at a scale µt u mt, and then the QCD effective Lagrangian is matched onto the SCET at a
scale µh u mH . Running between µt and µh allows one to sum logarithms of mt/mH , and
finite top-mass effects are included by scaling the result by a correction factor obtained at
leading order (an increase with respect to the EFT result by a factor of 1.0653, see eq. (G.5)).
Terms enhanced by powers of mH/mt are thus only included in an approximate fashion at
NLO and beyond. The one-step procedure is described in detail in appendix G.1 and the
two-step procedure is described in appendix G.2.
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(a) Results in the one- or two-step scheme. The
lower panel shows the ratio of the one-step to the
two-step result.

(b) Results using a central scale of either µ2
h = Q2

or µ2
h = −Q2. The lower panel shows the ratio of

the result for µ2
h = −Q2 to the one for µ2

h = Q2.

Figure 17. Comparison of NNLL and N3LLp predictions for Higgs production at
√
s = 13.6TeV as

a function of the jet veto.

We compare the numerical difference between the one- and two-step schemes, computed
at
√
s = 13.6TeV and for R = 0.4 in figure 17a. Guided by fixed-order results, and in accord

with previous studies of this process [14], we set the hard (renormalization) scale using
µh = Q/2. We observe that the one-step scheme results in a cross-section that is about
1.7–2.3% larger at NNLL and only 1.6% larger at N3LLp. This small difference occurs if one
works rigorously at a fixed order of αs. Working at a fixed order in αs in the component
parts of the two-step scheme can lead to larger differences, as described in more detail in
appendix G.3.

5.5.2 Time-like vs. space-like µ2
h

We now study the impact of choosing a time-like hard scale for the calculation of the Higgs
cross-section. To do this, we compare µ2

h = (Q/2)2 (the space-like scale) with µ2
h = −(Q/2)2

(the time-like scale). The use of a time-like hard scale allows us to resum certain π2 terms,
by employing a complex strong coupling [51]. For this comparison, we consider purely
resummed results at NNLL and N3LLp accuracy.

Results are shown in figure 17b, for the two-step scheme computed at
√
s = 13.6TeV

with R = 0.4. We observe that at NNLL, the resummation of the π2 terms significantly
enhances the cross-section by 17%. However, at N3LLp accuracy, this resummation only
leads to a small increase of 2% in the cross-section.

Results for the matched vetoed cross-section are shown in figure 18a. After match-
ing, we observe substantial agreement between the NNLO and N3LLp+NNLO calculations
within uncertainties. The central predictions differ by about 5% across the range, but the
uncertainties are substantially smaller in the resummed calculation.
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(a) Comparison of NNLL, N3LLp and N3LLp+NNLO
predictions.

(b) Uncertainty breakdown of the N3LLp+NNLO
prediction.

Figure 18. Results for Higgs production at
√
s = 13.6TeV as a function of the jet veto.

The estimated uncertainty on the matched N3LLp+NNLO prediction, broken down into
the various sources that we consider, is shown in figure 18b. Although the uncertainty from
the variation of dveto

3 reaches 2% for pveto
T = 20GeV, the uncertainty from the variation of

the hard (renormalization) and resummation (factorization) scales dominates across the
entire range.

6 Conclusions

We have presented a comprehensive study of jet-veto resummation in the production of color
singlet final states using the most up-to-date theoretical ingredients and achieving N3LLp

accuracy. Our implementation in MCFM improves upon previous public NNLL calculations
by reducing theoretical uncertainties, as demonstrated by comparisons with ATLAS and
CMS results. Once the one remaining theoretical element, dveto

3 , becomes available, it will
be simple to upgrade our predictions to full N3LL accuracy.

The primary motivation for this work comes from the need for reliable and accurate
predictions of jet-veto cross-sections in processes such as Higgs boson and W+W− produc-
tion, which are commonly used to study new physics at the LHC. In these processes, the
imposition of a jet veto is often necessary to suppress backgrounds and enhance sensitivity
to new physics signals. Experimental results going beyond these two processes are much
less frequent. We encourage the experimental collaborations to consider measurements of
more Standard Model processes with a jet veto, as larger data samples become available, to
better understand the dependence of these processes on the jet veto parameters pveto

T and R.
In addition to providing improved predictions for jet-veto cross-sections, our work

also serves as a valuable tool for testing and validation of general purpose shower Monte
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Carlo programs. Our code allows for a detailed investigation of the dependence on the jet
parameters pveto

T and R, providing a benchmark for assessing the logarithmic accuracy and
reliability of Monte Carlo simulations in this important class of processes.

Our analysis shows that at the currently experimentally used values of pveto
T in W and Z

production, the logarithms are not large enough to justify the use of jet-veto resummation.
In these cases, fixed-order perturbation theory, which can be used to give the results with a
jet veto over a limited range of rapidities, is simpler and sufficient. We have also found that
attempts to resum π2 terms using a timelike renormalization point have little numerical
importance at N3LLp if the pveto

T scale is around 20 to 30 GeV.
The production of a Higgs boson is an exception among single-boson processes. In

this case, the combination of larger corrections from color factors and slightly larger values
of the scale (mH) appearing in the jet veto logarithms make resummation an important
tool for improving the accuracy of predictions. In the appendix we have investigated the
differences between the one-step and two-step procedures for calculating the hard function
at the scale of pveto

T . We find agreement within 2% of these two approaches.
The W+W− production process, where the jet veto has experimental importance,

requires both resummation and matching to NNLO. For the ZZ process resummation is
mandatory but the matching to fixed order is less important. Although this reflects the
expectation that the resummed prediction is more accurate for systems of higher invariant
mass, these findings depend on the exact nature of the cuts for each process. Our work
provides a comprehensive theoretical framework for studying jet vetoes in vector boson pair
processes, and as data becomes available, a comparative experimental study would be of
great interest and could help to validate our theoretical predictions.
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A Reduced beam functions

We have used the two loop beam function in the presence of a jet veto calculated in ref. [24].
Their calculation, together with the corresponding soft function [25] has been performed in
SCET using the exponential rapidity regulator [27]. The beam function for quark initiated
processes in the presence of a jet veto has also been presented in Mellin space in ref. [63].
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The calculation in ref. [24] has a perturbative expansion,

Iij =
∞∑
k=0

(αs
4π
)k
I

(k)
ij . (A.1)

The beam functions with a jet veto are decomposed into a reference observable, the beam
function for the transverse momentum of a color singlet observable and a remainder term
accounting for the effects of jet clustering,

Iij(x,Q, pveto
T , R;µ, ν) = I⊥ij (x,Q, pveto

T ;µ, ν) + ∆Iij(x,Q, pveto
T , R;µ, ν) . (A.2)

Since the divergence structure of the reference observable is the same as the beam function
with a jet veto, ∆Iij can be calculated in four dimensions. Results for the reference
observable are available in refs. [64, 65].

The reduced beam function kernels Ī as used in our setup are extracted from the
coefficient I as

Īij(z, pveto
T , R, µ) = e−h

A(pveto
T ,µ) Iij(z, pveto

T , R, µ) . (A.3)

They similarly follow a perturbative expansion

Īik(z, pveto
T , R, µ) = δik δ(1− z) + αs

4π Ī
(1)
ik (z, pveto

T , µ) +
(αs

4π
)2
Ī

(2)
ik (z, pveto

T , R, µ) +O(α3
s) .
(A.4)

Contributions at order αs. The αs contributions to Ī were first obtained in refs. [3, 50]
and read,

Īij(z, pveto
T , R, µ) = δ(1− z) δij + αs

4π
[
−2P (1)

ij (z)L⊥ +R
(1)
ij (z)

]
+O(α2

s) , (A.5)

where L⊥ = 2 ln(µ/pveto
T ). R is the jet measure used in eq. (2.1) and R(1)(z) is a remainder

function given below. At this order there is no dependence on the jet radius, R.
Throughout this paper we expand in powers of αs/(4π). The one exception to this rule

are the perturbative DGLAP splitting functions,

Pij(z) = αs
2πP

(1)(z) +
(αs

2π
)2
P (2)(z) + . . . (A.6)

Explicit expressions for P (1) and P (2) are given in appendices C.2 and C.3. The remainder
functions at order αS are [66]

R(1)
qq (z) = CF

[
2(1− z)− π2

6 δ(1− z)
]
, R(1)

qg (z) = 4TF z(1− z) ,

R(1)
gg (z) = −CA

π2

6 δ(1− z) , R(1)
gq (z) = 2CF z , (A.7)

where CA = 3, CF = 4
3 , TF = 1

2 .
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Contributions at order α2
s . At order α2

s we have

Ī
(2)
ik (z, pveto

T , R, µ) =
[
2P (1)

ij (x)⊗ P (1)
jk (y)− β0P

(1)
ik (z)

]
L2
⊥

+
[
−4P (2)

ik (z) + β0R
(1)
ik (z)− 2R(1)

ij (x)⊗ P (1)
jk (y)

]
L⊥ +R

(2)
ik (z,R) .

(A.8)

In this equation ⊗ represents a convolution,

f(x)⊗ g(y) =
∫ 1

0
dx

∫ 1

0
dyf(x) g(y) δ(z − xy) =

∫ 1

z

dy

y
f(z/y) g(y) . (A.9)

Explicit expressions for P (1) and P (2) are given in appendices C.2 and C.3. The expressions
for P (1) ⊗ P (1), R(1) ⊗ P (1) are given in appendix C.4.

The results from refs. [24, 25] recast in the language of reduced beam functions allow
us to extract R(2)

ik (z,R). We have checked that the reduced beam functions have the form
predicted by eqs. (A.5) and (A.8). In addition, we have confirmed the known results for
the α2

s R-dependent contribution to the collinear anomaly exponent. The result for the
collinear anomaly exponent is given in section 2.3.

A.1 Structure of the two-loop reduced beam function

While a numerical evaluation of the analytical formulas for the reduced beam functions is
possible, we choose to perform a spline interpolation for improved numerical efficiency.

The reduced beam functions contain distributions of the following structure,

Ī
(2)
ij (z, pveto

T , R, µ) = Ī
(2)
ij,−1(pveto

T , R, µ) δ(1− z) + Ī
(2)
ij,0(pveto

T , R, µ)D0(1− z)

+Ī(2)
ij,1(pveto

T , R, µ)D1(1− z) + Ī
(2)
ij,2(z, pveto

T , R, µ) , (A.10)

where,
D0(1− z) = 1

[1− z]+
, D1(1− z) =

[ ln(1− z)
(1− z)

]
+
. (A.11)

Ī
(2)
ij,2(z, pveto

T , R, µ) contains terms which are regular at z = 1.
The analytic results for the beam function of ref. [24] are presented as a power series in

R up to powers of R8. The functions themselves contain powers of 1/(1− z)n, in certain
cases up to n = 7 or 8. However, these singularities at z = 1 are fictitious as can be seen
by explicit expansion. The beam functions require special treatment in this region for
numerical stability.

The dominant region in the convolution of the function Ī with the parton distributions
is precisely the region z ∼ 1. If we assume a parton distribution f(x) ∼ 1/x we have,

Ī ⊗ f =
∫ 1

x

dz

z
Ī(z) f(x/z) ∼ 1

x

∫ 1

x
dz Ī(z) , (A.12)

showing that all regions of z contribute equally to the integral. However if, as expected,
the parton distribution function falls off more rapidly as x→ 1, say f(x) ∼ (1− x)n/x,

Ī ⊗ f =
∫ 1

x

dz

z
Ī(z) f(x/z) ∼ 1

x

∫ 1

x
dz Ī(z) (1− x/z)n . (A.13)
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Thus, it is precisely the large values of z which are crucial for the integral. In other words,
the parton shower process is dominated by cascade from nearby values of x. Larger cascades
from more distant points are suppressed by the fall-off of the parton distributions. In view
of the importance of the region z = 1, for numerical stability we perform an expansion
about z = 1.

The absolute value of R(2) for the various parton transitions is shown in figure 19.
Individual R-dependent terms contain expressions of the form R2n/(1− z)k where k can be
a high power. However, the singularity at z = 1 is only apparent. The resultant limiting
forms obtained by series expansion about z = 1 are shown by the dashed lines in the figures.
In practice, we switch to the expanded form at z = 0.9, although the figures demonstrate
that the expanded forms are accurate down to much smaller values of z.

B Definition of the beta function and anomalous dimensions

The coefficients βn, ΓAn and γgn have perturbative expansions in powers of the renormalized
coupling. Details are presented below.

B.1 Expansion of β-function

The beta function is defined as,

dαs(µ)
d lnµ = β(µ) = −2αs(µ)

∞∑
n=0

βn

(
αs
4π

)n+1

= −2αs(µ) αs(µ)
4π

[
β0 + β1

αs(µ)
4π + β2

(αs(µ)
4π

)2
+ β3

(αs(µ)
4π

)3
+ . . .

]
. (B.1)

The coefficients of the MS β function to four loops are [67–69],

β0 = 11
3 CA −

4
3 TF nf ,

β1 = 34
3 C2

A −
(20

3 CA + 4CF
)
TF nf ,

β2 = 2857
54 C3

A +
(
C2
F −

205
18 CFCA −

1415
54 C2

A

)
2TF nf +

(11
9 CF + 79

54 CA
)

4T 2
F n

2
f ,

β3 = C4
A

(150653
486 − 44

9 ζ3

)
+ C3

ATFnf

(
−39143

81 + 136
3 ζ3

)
+C2

ACFTFnf

(7073
243 −

656
9 ζ3

)
+ CAC

2
FTFnf

(
−4204

27 + 352
9 ζ3

)
+46C3

FTFnf + C2
AT

2
Fn

2
f

(7930
81 + 224

9 ζ3

)
+ C2

FT
2
Fn

2
f

(1352
27 − 704

9 ζ3

)
+CACFT 2

Fn
2
f

(17152
243 + 448

9 ζ3

)
+ 424

243CAT
3
Fn

3
f + 1232

243 CFT
3
Fn

3
f

+dabcdA dabcdA

NA

(
−80

9 + 704
3 ζ3

)
+ nf

dabcdF dabcdA

NA

(512
9 − 1664

3 ζ3

)
+n2

f

dabcdF dabcdF

NA

(
−704

9 + 512
3 ζ3

)
. (B.2)
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(a) gg case. (b) qq case.

(c) gq case. (d) qg case.

(e) q̄q case. (f) q′q case.

Figure 19. Absolute value of R(2) for jet measure R = 0.5. The q̄′q case is the same as the q′q
case. The sign of the contribution in the various regions is indicated.
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For the normalization of the SU(N) generators, the conventions of refs. [69, 70] are,

dabcdA dabcdA

NA
= N2(N2+36)

24 ,
dabcdF dabcdA

NA
= N(N2+6)

48 ,
dabcdF dabcdF

NA
= N4−6N2+18

96N2 ,

NA =N2−1 , NF =N. (B.3)

Numerical values for the β-function coefficients are,

β0 = 11− 2
3 nf ,

β1 = 102− 38
3 nf ,

β2 = 2857
2 − 5033

18 nf + 325
54 n2

f ,

β3 = 149753
6 + 3564ζ3 −

(1078361
162 + 6508

27 ζ3

)
nf +

(50065
162 + 6472

81 ζ3

)
n2
f

+1093
729 n3

f . (B.4)

B.2 Cusp anomalous dimension

The cusp anomalous dimension depends on the label B which takes the two values, B = A,F

for gluons and quarks, respectively. Its perturbative expansion is,

ΓBcusp(µ) =
∞∑
n=0

ΓBn
(
αs
4π

)n+1
. (B.5)

The coefficients up to four loops are [71, 72],

ΓB0 = 4CB , (B.6)

ΓB1 = 16CB
{
CA

(
67
36 −

π2

12

)
− 5

9nfTF
}
, (B.7)

ΓB2 = 64CB
{
C2
A

(
11ζ3
24 + 245

96 −
67π2

216 + 11π4

720

)
+ nfTFCF

(
ζ3 −

55
48

)

+ nfTFCA

(
−7ζ3

6 −
209
216 + 5π2

54

)
− 1

27(nfTF )2
}
, (B.8)

ΓB3 = 256CB
{
C3
A

(
1309ζ3

432 − 11π2ζ3
144 − ζ2

3
16 −

451ζ5
288 + 42139

10368 −
5525π2

7776 + 451π4

5760 −
313π6

90720

)

+ nfTFC
2
A

(
−361ζ3

54 + 7π2ζ3
36 + 131ζ5

72 − 24137
10368 + 635π2

1944 −
11π4

2160

)

+ nfTFCFCA

(
29ζ3

9 − π2ζ3
6 + 5ζ5

4 −
17033
5184 + 55π2

288 −
11π4

720

)

+ nfTFC
2
F

(37ζ3
24 −

5ζ5
2 + 143

288

)
+ (nfTF )2CA

(
35ζ3
27 −

7π4

1080 −
19π2

972 + 923
5184

)
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+ (nfTF )2CF

(
−10ζ3

9 + π4

180 + 299
648

)
+ (nfTF )3

(
− 1

81 + 2ζ3
27

)}

+ 256d
abcd
B dabcdA

NB

(
ζ3
6 −

3ζ2
3

2 + 55ζ5
12 −

π2

12 −
31π6

7560

)

+ 256nf
dabcdB dabcdF

NB

(
π2

6 −
ζ3
3 −

5ζ5
3

)
. (B.9)

In addition to the relations in eq. (B.3) we need the related quantities,

dabcdF dabcdA

NF
= (N2 − 1)(N2 + 6)

48 ,
dabcdF dabcdF

NF
= (N2 − 1)(N4 − 6N2 + 18)

96N3 . (B.10)

B.3 Non-cusp anomalous dimension

The non-cusp anomalous dimension has the expansion,

γq,g(µ) =
∞∑
n=0

γq,gn

(
αs
4π

)n+1
. (B.11)

We take the coefficients up to three loops from ref. [73] eq. I.4,

γq0 = −3CF , (B.12)

γq1 = C2
F

(
2π2 − 3

2 − 24ζ3

)
+ CFCA

(
26ζ3 −

961
54 −

11π2

6

)

+ CFTFnf

(
130
27 + 2π2

3

)
, (B.13)

γq2 = C3
F

(
−29

2 − 3π2 − 8π4

5 − 68ζ3 + 16π2

3 ζ3 + 240ζ5

)

+ C2
FCA

(
−151

4 + 205π2

9 + 247π4

135 − 844
3 ζ3 −

8π2

3 ζ3 − 120ζ5

)

+ CFC
2
A

(
−139345

2916 − 7163π2

486 − 83π4

90 + 3526
9 ζ3 −

44π2

9 ζ3 − 136ζ5

)

+ C2
FTFnf

(
2953
27 − 26π2

9 − 28π4

27 + 512
9 ζ3

)

+ CFCATFnf

(
−17318

729 + 2594π2

243 + 22π4

45 − 1928
27 ζ3

)

+ CFT
2
Fn

2
f

(
9668
729 −

40π2

27 − 32
27ζ3

)
. (B.14)
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From ref. [74], eq. A5 we take,

γg0 = −β0 , (B.15)

γg1 = C2
A

(11π2

18 − 692
27 + 2ζ3

)
+ CATFnf

(
256
27 −

2π2

9

)
+ 4CFTFnf

= C2
A

(
2ζ3 −

59
9

)
+ CAβ0

(
π2

6 −
19
9

)
− β1 , (B.16)

γg2 = C3
A

(
−97186

729 + 6109π2

486 − 319π4

270 + 122
3 ζ3 −

20π2

9 ζ3 − 16ζ5

)

+ C2
ATFnf

(
30715
729 − 1198π2

243 + 82π4

135 + 712
27 ζ3

)

+ CACFTFnf

(
2434
27 − 2π2

3 − 8π4

45 −
304
9 ζ3

)

− 2C2
FTFnf + CAT

2
Fn

2
f

(
−538

729 + 40π2

81 − 224
27 ζ3

)
− 44

9 CFT
2
Fn

2
f . (B.17)

Primary references for the calculation of these coefficients can be found in ref. [73].
We now present results for γS and γt which are needed for the implementation of the

two-step calculation of the hard function for Higgs boson production. Following ref. [61] we
have, for the first three expansion coefficients of the anomalous dimension γS that enters
the evolution equation of the hard matching coefficient CS (see also [59, 60]),

γS0 = 0 , (B.18)

γS1 = C2
A

(
−160

27 + 11π2

9 + 4ζ3

)
+ CATFnf

(
−208

27 −
4π2

9

)
− 8CFTFnf , (B.19)

γS2 = C3
A

[
37045
729 + 6109π2

243 − 319π4

135 +
(

244
3 − 40π2

9

)
ζ3 − 32ζ5

]

+C2
ATFnf

(
−167800

729 − 2396π2

243 + 164π4

135 + 1424
27 ζ3

)

+CACFTFnf
(

1178
27 − 4π2

3 − 16π4

45 − 608
9 ζ3

)
+ 8C2

FTFnf

+CAT 2
Fn

2
f

(
24520
729 + 80π2

81 − 448
27 ζ3

)
+ 176

9 CFT
2
Fn

2
f . (B.20)

The function γt is given by,

γt(αs) = α2
s

d

dαs

(
β(αs)
α2
s

)
= −2β1

(
αs
4π

)2
− 4β2

(
αs
4π

)3
− 6β3

(
αs
4π

)4
+O(α5

s) . (B.21)

As shown in eq. (G.22) µ independence provides the constraint,

2γg(αs) = γt(αs) + γS(αs) + β(αs)/αs , (B.22)

leading to the simple relationship between the coefficients in γg and γS ,

γS0 = 2γg0 + 2β0 , γ
S
1 = 2γg1 + 4β1 , γ

S
2 = 2γg2 + 6β2, γ

S
3 = 2γg3 + 8β3 . (B.23)
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C Definitions for beam function ingredients

C.1 Exponent h

We define the auxiliary functions hB for B = F,A which, when combined with the hard
function and the collinear anomaly factor, will yield a renormalization group invariant hard
function. hF/A is defined to satisfy the RGE equation,

d

d lnµ h
F/A(pveto

T , µ) = 2 ΓF/Acusp(µ) ln µ

pveto
T

− 2 γq/g(µ) , (C.1)

The factor h removes logarithms from the beam function and has a perturbative expansion
in terms of the renormalized coupling,

hB(pveto
T , µ) = αs

4πh
B
0 +

(
αs
4π

)2
hB1 +

(
αs
4π

)3
hB2 +

(
αs
4π

)4
hB3 + . . . . (C.2)

Thus for the particular case B = F we have that,

hF0 (pveto
T , µ) = 1

4ΓF0 L2
⊥ − γ

q
0L⊥ ,

hF1 (pveto
T , µ) = 1

12ΓF0 β0L
3
⊥ + 1

4(ΓF1 − 2γq0β0)L2
⊥ − γ

q
1L⊥ ,

hF2

(
pveto
T , µ

)
= 1

24ΓF0 β2
0L

4
⊥ +

( 1
12ΓF0 β1 + 1

6ΓF1 β0 −
1
3γ

q
0β

2
0

)
L3
⊥

+
(1

4ΓF2 −
1
2γ

q
0β1 − γq1β0

)
L2
⊥ − γ

q
2L⊥ ,

hF3

(
pveto
T , µ

)
= + 1

40ΓF0 β3
0L

5
⊥ +

( 5
48ΓF0 β0β1 + 1

8ΓF1 β2
0 −

1
4γ

q
0β

3
0

)
L4
⊥

+
( 1

12ΓF0 β2 + 1
6ΓF1 β1 + 1

4ΓF2 β0 −
5
6γ

q
0β0β1 − γq1β

2
0

)
L3
⊥

+
(1

4ΓF3 −
1
2γ

q
0β2 − γq1β1 −

3
2γ

q
2β0

)
L2
⊥ − γ

q
3L⊥ , (C.3)

where L⊥ = 2 ln(µ/pveto
T ). The corresponding result for B = A, q = g, (i.e. for incoming

gluons) is given by a similar expression mutatis mutandis. The expansion coefficients of the
β-function, ΓF/Acusp and γq/g, used in eq. (C.3), are as given in appendices B.1, B.2 and B.3.

C.2 One loop splitting functions

The one-loop DGLAP splitting functions as defined in [75] are

P (1)
qq (z) = CF

(
1 + z2

1− z

)
+
, (C.4)

P (1)
qg (z) = TF

[
z2 + (1− z)2

]
, (C.5)

P (1)
gg (z) = 2CA

[
z

(1− z)+
+ 1− z

z
+ z(1− z)

]
+ β0

2 δ(1− z) , (C.6)

P (1)
gq (z) = CF

1 + (1− z)2

z
, (C.7)
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C.3 Two loop splitting functions

Now we turn to the two-loop anomalous dimensions that contribute at sub-leading log level
to the transitions between parton types. In the quark sector there are four independent
transitions that we must produce values for (viz. q′ ← q,q̄′ ← q,q ← q and q̄ ← q). They
are expressed in terms of four functions,

P
(2)
q′q = PS(2)

qq , P
(2)
q̄′q = P

S(2)
q̄q , P (2)

qq = P V (2)
qq + PS(2)

qq , P
(2)
q̄q = P

V (2)
q̄q + P

S(2)
q̄q . (C.8)

At next-to-leading order, the functions PSqq and PSq̄q are non-zero, but we have the additional
relation, PSqq = PSq̄q. To facilitate the presentation we define the auxiliary functions,

pqq(z) = 2
1− z − 1− z , p(r)

qq (z) = −1− z , (C.9)

pqg(z) = z2 + (1− z)2 , (C.10)

pgq(z) = 1 + (1− z)2

z
, (C.11)

pgg(z) = 1
1− z + 1

z
− 2 + z(1− z), p(r)

gg (z) = 1
z
− 2 + z(1− z) . (C.12)

The two valence functions needed for the quark sector are, [76–78],

P V (2)
qq (z) = C2

F

{
−
[
2 ln z ln(1− z) + 3

2 ln z
]
pqq(z)

−
(

3
2 + 7

2z
)

ln z − 1
2(1 + z) ln2 z − 5(1− z)

}

+ CFCA

{
(1 + z) ln z + 20

3 (1− z) +
[

1
2 ln2 z + 11

6 ln z
]
pqq(z)

+
[

67
18 −

π2

6

]( 1
(1− z)+

+ p(r)
qq (z)

)}

− CFTFnf

{
4
3(1− z) + 2

3pqq(z) ln z + 10
9
( 1

(1− z)+
+ p(r)

qq (z)
)}

+
{
C2
F

[
3
8 −

π2

2 + 6ζ3

]
+ CFCA

[
17
24 + 11π2

18 − 3ζ3

]

− CFTFnf

[
1
6 + 2π2

9

]}
δ(1− z) , (C.13)

P
V (2)
q̄q (z) = CF

(
CF −

CA
2

){
2pqq(−z)S2(z) + 2(1 + z) ln z + 4(1− z)

}
, (C.14)

and for the singlet function we have,

PS(2)
qq = CFTF

{
20
9z − 2 + 6z − 56

9 z
2 + (1 + 5z + 8

3z
2) ln z − (1 + z) ln2 z

}
. (C.15)
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The other three transitions are simply given by,

P (2)
qg =CFTF

{
2− 9

2z−(1
2−2z) lnz−(1

2−z) ln2 z+2ln(1−z)

+
[

ln2
(

1−z
z

)
−2ln

(
1−z
z

)
−π

2

3 +5
]
pqg(z)

}

+CATF

{
91
9 + 7

9z+ 20
9z+

(
68
3 z−

19
3

)
lnz

−2ln(1−z)−(1+4z) ln2 z+pqg(−z)S2(z)

+
[
− 1

2 ln2 z+ 22
3 lnz−ln2(1−z)+2ln(1−z)+ π2

6 −
109
9

]
pqg(z)

}
, (C.16)

P (2)
gq (z) =C2

F

{
− 5

2−
7z
2 +

(
2+ 7

2z
)

lnz−
(

1− 1
2z
)

ln2 z

−2z ln(1−z)−
[

3ln(1−z)+ln2(1−z)
]
pgq(z)

}

+CFCA

{
28
9 + 65

18z+ 44
9 z

2−
(

12+5z+ 8
3z

2

)
lnz

+(4+z) ln2 z+2z ln(1−z)+S2(z)pgq(−z)

+
[

1
2−2lnz ln(1−z)+ 1

2 ln2 z+ 11
3 ln(1−z)+ln2(1−z)−π

2

6

]
pgq(z)

}

+CFTFnf

{
− 4

3z−
[

20
9 + 4

3 ln(1−z)
]
pgq(z)

}
, (C.17)

P (2)
gg (z) =CFTFnf

{
−16+8z+ 20

3 z
2+ 4

3z−(6+10z) lnz−(2+2z) ln2 z

}

+CATFnf

{
2−2z+ 26

9

(
z2− 1

z

)
− 4

3(1+z) lnz

− 20
9
( 1

(1−z)+
+p(r)

gg (z)
)}

+C2
A

{
27
2 (1−z)+ 67

9

(
z2− 1

z

)
−
(

25
3 −

11
3 z+ 44

3 z
2

)
lnz

+4(1+z) ln2 z+2pgg(−z)S2(z)

+
[

ln2 z−4lnz ln(1−z)
]
pgg(z)+

[
67
9 −

π2

3

]( 1
(1−z)+

+p(r)
gg (z)

)}

+
{
C2

A

[8
3 +3ζ3

]
−CFTFnf−

4
3CATFnf

}
δ(1−z) . (C.18)

The function S2(z) is defined by

S2(z) =
∫ 1

1+z

z
1+z

dy

y
ln
(1− y

y

)
. (C.19)
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In terms of the dilogarithm function

Li2(z) = −
∫ z

0

dy

y
ln(1− y) , (C.20)

we have
S2(z) = −2Li2(−z) + 1

2 ln2 z − 2 ln z ln(1 + z)− π2

6 . (C.21)

C.4 P (1) ⊗ P (1) and R(1) ⊗ P (1)

We give here expressions for the convolutions of functions appearing in the beam functions.
The convolutions are defined as in eq. (A.9). Similar expressions have been given in [1, 12]
The convolutions of the one-loop DGLAP kernels from eqs. (C.4) are,

P (1)
qq ⊗ P (1)

qg = CFTF

(
2z − 1

2 +
(
2z − 4z2 − 1

)
ln z + (2− 4z (1− z)) ln (1− z)

)
, (C.22)

P (1)
qg ⊗ P (1)

gg = CATF

(
2 (1 + 4z) ln z + 4

3z + 1 + 8z − 31
3 z

2
)

+
(

2CA ln (1− z) + β0
2

)
P (1)
qg (z) , (C.23)

P (1)
gq ⊗ P (1)

qq = C2
F

(
2− 1

2z + (2− z) ln z
)

+ 2CFP (1)
gq (z) ln (1− z)

)
, (C.24)

P (1)
gg ⊗ P (1)

gq = CACF

(
8 + z +

(
4z3 − 31

)
3z − 4

(
1 + z + z2)

z
ln z

)

+
(

2CA ln (1− z) + β0
2

)
P (1)
gq (z) , (C.25)

P (1)
qg ⊗ P (1)

gq = CFTF

(
2 (1 + z) ln z + 1− z + 4

3

(
1− z3)
z

)
, (C.26)

P (1)
qq ⊗ P (1)

qq = C2
F

(
8
[ ln (1− z)

(1− z)

]
+
− 4 (1 + z) ln (1− z)− 2 (1− z)

+
(

3 + 3z − 4
(1− z)

)
ln z

)
+ 3CFP (1)

qq (z)− C2
F

(9
4 + 4ζ2

)
δ (1− z) ,

(C.27)

P (1)
gg ⊗ P (1)

gg = 4C2
A

(
2
[ ln (1− z)

(1− z)

]
+

+ 2
((1− z)

z
+ z (1− z)− 1

)
ln (1− z) + 3 (1− z)

−
( 1

1− z + 1
z
− z2 + 3z

)
ln z − 11

(
1− z3)
3z

)
+ β0P

(1)
gg (z)− (β

2
0

4 + 4C2
Aζ2)δ(1− z) . (C.28)

The convolutions of lowest order DGLAP kernels, eq. (C.4) with the one-loop finite terms
in the beam functions, eq. (A.7) are,

R(1)
gg ⊗ P (1)

gg = −CAζ2P
(1)
gg (z) , (C.29)
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R(1)
gq ⊗ P (1)

qg = 2CFTF
(
(1− z)(1 + 2z) + 2z ln z

)
, (C.30)

R(1)
qq ⊗ P (1)

qq = CF
(
CF (1− z)(4 ln(1− z)− 2 ln z − 1)− ζ2P

(1)
qq (z)

)
, (C.31)

R(1)
qg ⊗ P (1)

gq = −4CFTF
(

1 + z ln z − (1 + 2z3)
3z

)
, (C.32)

R(1)
qg ⊗ P (1)

gg = −CATF
(

16z ln z − 68
3 z

2 + 20z + 4− 4
3z

)
+
(

2CA ln(1− z) + β0
2

)
R(1)
qg (z) , (C.33)

R(1)
qq ⊗ P (1)

qg = CFTF (2z2 + 2z − 4− (2 + 4z) ln z)− CF ζ2P
(1)
qg (z) , (C.34)

R(1)
gq ⊗ P (1)

qq = −C2
F (2z ln z − 4z ln(1− z)− z − 2) , (C.35)

R(1)
gg ⊗ P (1)

gq = −CAζ2P
(1)
gq (z) . (C.36)

D Rapidity anomalous dimension

Solving the collinear anomaly RG equation (eq. (2.13)) as an expansion in αs (eq. (2.15))
we have that,

F (0)
gg (pveto

T , µh) = ΓA0 L⊥ + dveto
1 (R,A) ,

F (1)
gg (pveto

T , µh) = 1
2ΓA0 β0L

2
⊥ + ΓA1 L⊥ + dveto

2 (R,A) ,

F (2)
gg

(
pveto
T , µh

)
= 1

3ΓA0 β2
0L

3
⊥ + 1

2
(
ΓA0 β1 + 2ΓA1 β0

)
L2
⊥

+
(
ΓA2 + 2β0d

veto
2 (R,A)

)
L⊥ + dveto

3 (R,A) ,

F (3)
gg

(
pveto
T , µh

)
= 1

4β
3
0ΓA0 L4

⊥ +
(

ΓA1 β2
0 + 5

6ΓA0 β0β1

)
L3
⊥

+
(1

2ΓA0 β2 + ΓA1 β1 + 3
2ΓA2 β0 + 3dveto

2 (R,A)β2
0

)
L2
⊥

+
(
ΓA3 + 3dveto

3 (R,A)β0 + 2dveto
2 (R,A)β1

)
L⊥ + dveto

4 (R,A) ,(D.1)

where L⊥ = 2 ln(µh/pveto
T ). The corresponding result for Fqq is given in eq. (2.16). Because

Fgg appears in the exponent, we see that dveto
1 contributes in NLL, dveto

2 in NNLL, and dveto
3

in N3LL.

D.1 dveto
2 expansion

The expansion coefficients for dveto
2 , which is defined in eq. (2.18), are given by [4, 5, 12],

cAL = 131
72 −

π2

6 −
11
6 ln 2 = −1.096259 ,

cA0 = −805
216 + 11π2

72 + 35
18 ln 2 + 11

6 ln2 2 + ζ3
2 = 0.6106495 ,
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cA2 = 1429
172800 + π2

48 + 13
180 ln 2 = 0.263947 ,

cA4 = − 9383279
406425600 −

π2

3456 + 587
120960 ln 2 = −0.0225794 ,

cA6 = 74801417
97542144000 −

23
67200 ln 2 = 5.29625 · 10−4 ,

cA8 = − 50937246539
2266099089408000 −

π2

24883200 + 28529
1916006400 ln 2 = −1.25537 · 10−5 ,

cA10 = 348989849431
243708656615424000 −

3509
3962649600 ln 2 = 8.18201 · 10−7 , (D.2)

and

cfL = −23
36 + 2

3 ln 2 = −0.1767908 ,

cf0 = 157
108 −

π2

18 −
8
9 ln 2− 2

3 ln2 2 = −0.03104049 ,

cf2 = 3071
86400 −

7
360 ln 2 = 0.0220661 ,

cf4 = − 168401
101606400 + 53

30240 ln 2 = −4.42544 · 10−4 ,

cf6 = 7001023
48771072000 −

11
100800 ln 2 = 6.79076 · 10−5 ,

cf8 = − 5664846191
566524772352000 + 4001

479001600 ln 2 = −4.20958 · 10−6 ,

cf10 = 68089272001
83774850711552000 −

13817
21794572800 ln 2 = 3.73334 · 10−7 . (D.3)

We see that for values of the jet radius R < 1 the terms c6, c8 and c10 can be dropped.
For the gluon case the expansion of the function in numerical form is,

f(R,A) = − (1.0963CA + 0.1768TFnf ) lnR+ (0.6106CA − 0.0310TFnf )
+ (−0.5585CA + 0.0221TFnf )R2

+ (0.0399CA − 0.0004TFnf )R4 + . . . , (D.4)

whereas for the quark case we have

f(R,F ) = − (1.0963CA + 0.1768TFnf ) lnR+ (0.6106CA − 0.0310TFnf )
+ (−0.8225CF + 0.2639CA + 0.0221TFnf )R2

+ (0.0625CF − 0.02258CA − 0.0004TFnf )R4 + . . . . (D.5)

E Renormalization group evolution

The evolution equation matching for a generic hard matching coefficient C has the form,

d

d lnµ lnC(Q2, µ) =
[
Γcusp(αs(µ)) ln Q

2

µ2 + γ(αs(µ))
]
. (E.1)
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Following ref. [26] the solution to the evolution equation eq. (E.1) is,

C(Q2, µ) = exp [2S(µh, µ)− aγ(µh, µ)]
(
Q2

µ2
h

)−aΓ(µh,µ)

C(Q2, µh) , (E.2)

lnC(Q2, µ) = 2S(µh, µ)− aγ(µh, µ)− aΓ(µh, µ) ln
(
Q2

µ2
h

)
+ lnC(Q2, µh) , (E.3)

where µh ∼ Q is a hard matching scale at which the Wilson coefficient C is calculated using
fixed-order perturbation theory. The Sudakov exponent S and the exponents aγ , aΓ are the
solutions to the auxiliary differential equations,

d

d lnµ S(ν, µ) = −Γcusp
(
αs(µ)

)
ln µ
ν
, (E.4)

d

d lnµ a
Γ(ν, µ) = −Γcusp

(
αs(µ)

)
, (E.5)

d

d lnµ a
γ(ν, µ) = −γ

(
αs(µ)

)
, (E.6)

with the boundary conditions S(ν, ν) = aΓ(ν, ν) = aγ(ν, ν) = 0 at µ = ν. Differentiating
eq. (E.3) we recover eq. (E.1).

The solutions to the evolution equation are conveniently expressed in terms of the
running coupling,

aΓ(ν, µ) = −
αs(µ)∫
αs(ν)

dα
Γcusp(α)
β(α) , (E.7)

S(ν, µ) = −
αs(µ)∫
αs(ν)

dα
Γcusp(α)
β(α)

α∫
αs(ν)

dα′

β(α′) . (E.8)

Substituting the values for the beta function coefficients in the MS scheme given in ap-
pendix B.1 and the values for cusp anomalous dimension given in appendix B.2 into eq. (E.7)
we obtain,

aΓ(µh, µ) = aΓ
0 + aΓ

1 + aΓ
2 + aΓ

3 , (E.9)

where the coefficients in the expansion are,

aΓ
0 = Γ0 ln(r)

2β0
, r = αs(µ)/αs(µh) , (E.10)

aΓ
1 = αs(µh)(r − 1)(β0Γ1 − β1Γ0)

8πβ2
0

, (E.11)

aΓ
2 = α2

s(µh)(r2 − 1)
(
−β0β1Γ1 + β0(β0Γ2 − β2Γ0) + β2

1Γ0
)

64π2β3
0

, (E.12)

aΓ
3 = −α3

s(µh)
(
r3 − 1

)
×
(
β2

0(−β0Γ3 + β2Γ1 + β3Γ0)− β0β
2
1Γ1 + β0β1(β0Γ2 − 2β2Γ0) + β3

1Γ0
)

384π3β4
0

. (E.13)
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The solution for aγ follows from the one for aΓ by making the replacement Γk → γk. The
non-cusp anomalous dimensions γ are given in appendix B.3.

Evaluating eq. (E.8) to obtain the evolution for S we get,

S(µh, µ) = S0 + S1 + S2 , (E.14)

with,

S0 = 1
8β3

0

(
8πβ0Γ0(r + r(− ln(r))− 1)

αs(µh)r + 2(r − 1)(β1Γ0 − β0Γ1)

+ ln(r)(2β0Γ1 + β1Γ0 ln(r)− 2β1Γ0)
)
, (E.15)

S1 = −αs(µh)
32πβ4

0

(
2 ln(r)

(
−β0β1Γ1r + β0β2Γ0 + β2

1Γ0(r − 1)
)

+ (r − 1)
(
−β0β1Γ1(r − 3) + β0(β0(r − 1)Γ2 − β2Γ0(r + 1)) + β2

1Γ0(r − 1)
))

,

(E.16)

S2 = α2
s(µh)

256π2β5
0

(
2 ln(r)

(
β1r

2
(
−β0β1Γ1 + β0(β0Γ2 − β2Γ0) + β2

1Γ0
)

− Γ0
(
β2

0β3 − 2β0β1β2 + β3
1

) )
+ (r − 1)

(
β2

0(2(β0(r + 1)Γ3 − 2β2Γ1)− β3Γ0(r + 1)) + β0β
2
1Γ1(r + 5)

+ β0β1(β2Γ0(r + 5)− 3β0(r + 1)Γ2)− 4β3
1Γ0

))
. (E.17)

E.1 Recovery of the double log formula

As we have seen S satisfies a RGE given by eq. (E.4) with a solution given by eq. (E.8).
The leading term in S0, eq. (E.15) is

S0 ≈
πΓ0

β2
0αs(µh)

(
1 + ln

(1
r

)
− 1
r

)
, (E.18)

where r = αs(µ)/αs(µh). In this form the presence of a double log is obscured. We can
easily recover the double log by retaining only the leading terms. The leading expression
for r is given by solving the equation for the beta function,

1
r

= 1− αs(µh)
2π β0 ln

(
µh
µ

)
, (E.19)

S0 ≈
πΓ0

β2
0αs(µh)

[
αs (µh)

2π β0 ln
(
µh
µ

)
+ ln

(
1− αs (µh)

2π β0 ln
(
µh
µ

))]
. (E.20)

Expanding for small αs(µh) ln(µh/µ) we get,

S(µh, µ) ≈ −Γ0
2
αS(µh)

4π ln2 (µh
µ

)
. (E.21)

This gives the expected log squared with a negative sign.
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F The hard function for the Drell-Yan process

The form factors of the vector current have been presented several places in the literature [79–
84]. The bare form factor is given as,

F q,bare(q2, µ2) = 1 +
(
αbare
s

4π

)
(∆)εFq1 +

(
αbare
s

4π

)2

(∆)2εFq2 +O(α3
s) , (F.1)

where,

∆ = 4πe−γE
(

µ2

−q2 − i0

)
. (F.2)

In the following we will drop 4πe−γE , so that all poles should be understood in the MS
sense. The values found for the bare coefficients are,

Fq1 = CF

[
− 2
ε2
− 3
ε

+ ζ2 − 8 + ε

(3ζ2
2 + 14ζ3

3 − 16
)

+ ε2
(

47ζ2
2

20 + 4ζ2 + 7ζ3 − 32
)]

+O(ε3) , (F.3)

Fq2 = C2
F

[
2
ε4

+ 6
ε3
− 1
ε2

(
2ζ2 −

41
2

)
− 1
ε

(64ζ3
3 − 221

4

)

−
(

13ζ2
2 −

17ζ2
2 + 58ζ3 −

1151
8

)]

+ CFCA

[
− 11

6ε3 + 1
ε2

(
ζ2 −

83
9

)
− 1
ε

(11ζ2
6 − 13ζ3 + 4129

108

)

+
(

44ζ2
2

5 − 119ζ2
9 + 467ζ3

9 − 89173
648

)]

+ CFnf

[
1

3ε3 + 14
9ε2 + 1

ε

(
ζ2
3 + 353

54

)
+
(14ζ2

9 − 26ζ3
9 + 7541

324

)]
+O(ε) . (F.4)

The renormalized form factor can then be written as,

F q(µ2, q2, ε) = 1 +
(
αs(µ)

4π

)
F q1 (µ2, q2, ε) +

(
αs(µ)

4π

)2
F q2 (µ2, q2, ε) +O(α3

s) , (F.5)

where,

F q1 (µ2, q2, ε) = ∆εFq1 ,

F q2 (µ2, q2, ε) = ∆2εFq2 −
β0
ε

∆εFq1 . (F.6)

In the full theory the matrix element between on-shell massless quark and gluon states,
after charge renormalization is given by F q(µ2, q2, ε). Charge renormalization has removed
the UV poles, but the renormalized form factor still contains IR poles.

The matrix element in the effective theory involves only scaleless, dimensionally regu-
lated integrals and hence is equal to zero. This vanishing can be interpreted as a cancellation
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between ultra-violet and infrared poles:
1
εIR
− 1
εUV

. (F.7)

After matching, the IR poles in the on-shell matrix element are effectively transformed into
UV poles and need to be renormalized as follows,

CV (αs(µ2), µ2, q2) = lim
ε→0

(
ZV (ε, µ2q2)

)−1
F q(µ2, q2, ε) ,

ln
[
CV (αs(µ2), µ2, q2)

]
= ln

[
Fq(µ2, q2, ε)

]
− ln

[
ZV (ε, µ2, q2)

]
. (F.8)

The renormalization constant, ZV contains only pure pole terms,

lnZV (ε,µ2, q2) =
(
αs
4π

)[
− ΓF0

2ε2 + 1
2ε
(
ΓF0 L+2γq0

)]

+
(
αs
4π

)2
[

3ΓF0 β0
8ε3 − 1

ε2

[
ΓF0 β0

4 L−CF
(
CA

(16
9 +ζ2

)
+ 4

9nf
)]

+ 1
4ε
(
ΓF1 L+2γq1

)]
, (F.9)

where L = ln((−q2 − i0)/µ2).
The matching coefficients have a perturbative expansion in terms of the renormal-

ized coupling,

CV (αs(µ2), µ2, q2) = 1 +
∞∑
n=1

(
αs(µ2)

4π

)n
CVn (µ2, q2). (F.10)

The matching coefficients, which are known to two loop order [85, 86] (and beyond [84]) for
Drell-Yan production, can be obtained from eq. (F.8):

CV
1 = CF

(
− L2 + 3L− 8 + ζ2

)
, (F.11)

CV
2 = C2

F

(
1
2L

4 − 3L3 +
(25

2 − ζ2

)
L2 +

(
− 45

2 + 24ζ3 − 9ζ2

)
L

+ 255
8 − 30ζ3 + 21ζ2 −

83
10ζ

2
2

)

+ CFCA

(11
9 L

3 +
(
− 233

18 + 2ζ2

)
L2 +

(2545
54 − 26ζ3 + 22

3 ζ2

)
L

− 51157
648 + 313

9 ζ3 −
337
18 ζ2 + 44

5 ζ
2
2

)
+ CFnf

(
− 2

9L
3 + 19

9 L
2 +

(
− 209

27 −
4
3ζ2

)
L+ 4085

324 + 2
9ζ3 + 23

9 ζ2

)
, (F.12)

where L = ln((−q2 − i0)/µ2). CV satisfies the renormalization group equation,

d

d lnµ ln[CV (αs(µ2), µ2, q2)] = ΓFcusp(µ) ln
(
−q2 − i0

µ2

)
+ 2γq(µ) , (F.13)

with the anomalous dimensions as given in appendix B.2 and appendix B.3.
The derivation of the hard function for boson pair processes has been described

in ref. [87].
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G The hard function for Higgs production

G.1 Implementation of one-step procedure

The one-step procedure [1, 13] is based on the observation that the ratio mt/mH is not large.
For an on-shell Higgs boson the parameter, m2

H/m
2
t ≈ 1

2 whereas αs ln(m2
t /m

2
H) ≈ 0.65αs,

indicating that power corrections should be more important than resumming logarithms.
The matching is performed at a scale µh by integrating out the top quark and all gluons
and light quarks with off-shellness above µh.

The hard Wilson coefficient so defined satisfies the RGE,

µ
d

dµ
lnCH(m2

t , q
2, µ2) = ΓAcusp(αs(µ)) ln −q

2 − i0
µ2 + 2γg[αs(µ)] , (G.1)

where Γcusp and γg are given in eqs. (B.5) and (B.11). As a consequence of eq. (G.1) the
Wilson coefficient has the following structure,

CH(m2
t , q

2, µ2
h) = αs (µh)FH0

(
q2

4m2
t

){
1 + αs (µh)

4π

[
CH1

(
−q2 − i0
µ2
h

)
+ FH1

(
q2

4m2
t

)]

+
(
αs (µh)

(4π)

)2 [
CH2

(
−q2 − i0
µ2
h

,
q2

4m2
t

)
+ FH2

(
q2

4m2
t

)]}
. (G.2)

The finite terms can be derived from ref. [88],

FH0 (z) = 3
2z −

3
2z
∣∣∣1− 1

z

∣∣∣
arcsin2(

√
z) , 0 < z ≤ 1 ,

ln2[−i(
√
z +
√
z − 1)] , z > 1 ,

(G.3)

≈ 1 + 7z
30 + 2z2

21 + 26z3

525 + 512z4

17325 +O(z5), z < 1 . (G.4)

For the values of mt and mH in table 2,

|FH0 (z0)|2 = 1.0653 , z0 = m2
H

4m2
t

. (G.5)

The coefficients CH1 and CH2 are fixed by the eq. (G.1).

CH1 (L) = CA

(
−L2 + π2

6

)
, (G.6)

CH2 (L, z) = 1
2C

2
AL

4 + 1
3CAβ0L

3 + CA

[(
−4

3 + π2

6

)
CA −

5
3β0 − F1 (z)

]
L2

+
[(59

9 − 2ζ3

)
C2
A +

(
19
9 −

π2

3

)
CAβ0 − F1 (z)β0

]
L , (G.7)

where z = q2/4/m2
t and L = ln[(−q2 − i0)/µ2

h].
The full analytic mt dependence of the virtual two-loop corrections to gg → H in terms

of harmonic polylogarithms were obtained in refs. [89–91]. For our purposes the results
expanded in m2

H/m
2
t from refs. [88, 92, 93] will be sufficient. The functions FH1 (z), FH2 (z)
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which, together with FH0 (z) in eq. (G.4) encode the mt dependence of the hard Wilson
coefficient in eq. (G.2). Following the procedure described in appendix F they are easily
extracted from ref. [88],

FH
1 (z) =

(
5− 38

45 z−
1289
4725 z

2− 155
1134 z

3− 5385047
65488500 z

4
)
CA

+
(
−3+ 307

90 z+ 25813
18900 z

2+ 3055907
3969000 z

3+ 659504801
1309770000 z

4
)
CF +O(z5) (G.8)

FH
2 (z) =

(
7C2

A+11CACF−6CFβ0
)
ln(−4z−i0)+

(
−419

27 + 7π2

6 +π4

72−44ζ3

)
C2

A

+
(
−217

2 −
π2

2 +44ζ3

)
CACF +

(2255
108 + 5π2

12 + 23ζ3

3

)
CAβ0−

5
6CATF

+ 27
2 C

2
F +

(41
2 −12ζ3

)
CFβ0−

4
3CFTF

+z
[
C2

A

(11723
384 ζ3−

404063
14400 −

223
108 ln(−4z−i0)− 19

135π
2
)

+CFCA

(2297
16 ζ3−

1099453
8100 − 242

135 ln(−4z−i0)− 953
540π

2+ 28
15π

2 ln2
)

+C2
F

(13321
96 ζ3−

36803
240 + 7

3π
2− 56

15π
2 ln2

)
+CF

(77
12ζ3−

4393
405 −

7337
2700β0+ 39

10 ln(−4z−i0)β0+ 28
45π

2+ 7
15π

2β0

)
+CA

( 77
384ζ3−

64097
129600−

269
75 β0+ 2

15 ln(−4z−i0)− 31
180 ln(−4z−i0)β0

)]

+z2

[
C2

A

(110251
9216 ζ3−

3084463261
254016000 −

2869
4536 ln(−4z−i0)− 1289

28350π
2
)

+CFCA

(2997917
23040 ζ3−

55535378557
381024000 −

18337
28350 ln(−4z−i0)− 128447

113400π
2+ 1714

1575π
2 ln2

)
+C2

F

(36173
192 ζ3−

95081911
453600 + 857

630π
2− 3428

1575π
2 ln2

)
+CA

( 265053121
1524096000−

16177
92160ζ3−

45617
47250β0+ 16

315 ln(−4z−i0)− 623
5400 ln(−4z−i0)β0

)
+CF

(
21973
7680 ζ3−

8108339
1555200−

509813
3969000β0−

8
15 ln(−4z−i0)+ 29147

18900 ln(−4z−i0)β0

+ 1714
4725π

2+ 857
3150π

2β0

)]
+O(z3) . (G.9)

We can assess the quality of the expansion in z by numerical evaluation,

CH
(
m2

t , q
2, q2)=αs (q)F0 (z)

[
1+15.9348αs

4π
(

1+0.0158(8z)+.00098312(8z)2
)

+97.0371
(αs

4π
)2(

1+0.1883(8z)+0.0120(8z)2
)

+143.466
(αs

4π
)2 ln(−8z−i0)

π

(
1+0.0288(8z)+0.001462(8z)2)] . (G.10)
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In the vicinity of the Higgs boson pole (8z ≈ 1) subsequent terms in the z expansion are
expected to contribute below the percent level.

G.2 Implementation of the two-step procedure

In the two-step procedure of refs. [59–62] one first integrates out the top quark at a scale
µt u mt and subsequently matches from the QCD effective Lagrangian onto SCET at
µh u mH . Running between µh and µt allows one to sum logarithms of mt/mH , but one
neglects power of mH/mt.

G.2.1 Ct(m2
t , µ

2
t )

For a heavy top quark the effective Lagrangian for the production of a top quark is given by,

Leff = Ct(m2
t , µ

2
t )
H

v

αs(µ2
t )

12π Gµν aG
µν
a , (G.11)

where v ≈ 246GeV is the Higgs boson vacuum expectation value. The hard matching scale
µt at which the Wilson coefficient can be computed perturbatively is of order mt. The short
distance coefficient Ct(m2

t , µ
2) obeys the RGE,

d

d lnµC
t(m2

t , µ
2) = γt(αs)Ct(m2

t , µ
2), γt(αs) = α2

s

d

dαs

(β(αs)
α2
s

)
. (G.12)

The expressions for the short-distance coefficient Ct(m2
t , µ

2
t ) at NNLO is,

Ct(m2
t , µ

2
t ) = 1 + αs(µt)

4π Ct1 +
(
αs(µt)

4π

)2
Ct2(m2

t , µ
2
t ) + . . . , (G.13)

where (cf. eq. (12) of ref. [61]),

Ct1 = 5CA − 3CF

Ct2(m2
t , µ

2
t ) = 27

2 C
2
F +

(
11 ln m

2
t

µ2
t

− 100
3

)
CFCA −

(
7 ln m

2
t

µ2
t

− 1063
36

)
C2
A

− 4
3CFTF −

5
6CATF −

(
8 ln m

2
t

µ2
t

+ 5
)
CFTFnf −

47
9 CATFnf . (G.14)

The evolution of these coefficients to the resummation scale µ is described in appendix A of
ref. [3]. The solution to the evolution equation eq. (G.12) for Ct at scale µ is,

Ct(m2
t , µ

2) = β(αs(µ))
α2
s(µ)

α2
s(µt)

β(αs(µt))
Ct(m2

t , µ
2
t ) . (G.15)

The result at NNLO for the square of the coefficient function is,[
Ct(m2

t , µ
2)
]2 = 1 +

(
αs
4π

) [
2Ct1 + 2(rt − 1)β1

β0

]
+
(
αs
4π

)2 [
(Ct1)2 + 2Ct2(m2

t , µ
2
t ) + (2β2β0 + β2

1)
β2

0
(rt − 1)2

+ 2(2β2β0 + 2β1β0C
t
1 − β2

1)
β2

0
(rt − 1)

]
, (G.16)

where rt = αs(µ)/αs(µt). This extends the NLO result in eq. (2) of ref. [3].
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G.2.2 CS(−q2, µh)

CS is the Wilson coefficient matching the two gluon operator in eq. (G.11) to an operator
in SCET in which all the hard modes have been integrated out. The result for the matching
coefficient CS from eqs. (16) and (17) of ref. [61]. It is given by,

CS(−q2, µ2
h) = 1 +

∞∑
n=1

CSn (L)
(
αs(µ2

h)
4π

)n
. (G.17)

The coefficient CS obeys the renormalization equation,

d

d lnµ C
S(−q2 − iε, µ2) =

[
ΓAcusp(αs) ln −q

2 − iε
µ2 + γS(αs)

]
CS(−q2 − iε, µ2) , (G.18)

with L = ln(−q2 − i0)/µ2
h and γS is given in eq. (B.20).

The logarithmic terms are determined by eq. (G.18). The full results for the one- and
two-loop coefficients are,

CS1 = CA

(
−L2 + π2

6

)
, (G.19)

CS2 = C2
A

[
L4

2 + 11
9 L3 +

(
−67

9 + π2

6

)
L2 +

(
80
27 −

11π2

9 − 2ζ3

)
L

+ 5105
162 + 67π2

36 + π4

72 −
143
9 ζ3

]
+ CFTFnf

(
4L− 67

3 + 16ζ3

)

+ CATFnf

[
−4

9 L
3 + 20

9 L2 +
(

104
27 + 4π2

9

)
L− 1832

81 − 5π2

9 − 92
9 ζ3

]
. (G.20)

The full result for the renormalization group invariant hard function in the two-step
scheme is,

H̄(mt,mH , p
veto
T ) =

(
αs(µ)
αs(pveto

T )

)2

(Ct(m2
t , µ))2

∣∣∣CS(−m2
H , µ)

∣∣∣2
×
(
mH

pveto
T

)−2Fgg(pveto
T ,µ)

e2hA(pveto
T ,µ) . (G.21)

The µ-independence of this hard function can be used to constrain γS ,

d

d lnµH̄(mt,mH , p
veto
T ) = 0 . (G.22)

Using eqs. ((B.1), (G.12), (G.18), (2.13), (C.1)) we can derive the relation between the
collinear anomalous dimensions,

2γg(αs) = γt(αs) + γS(αs) + β(αs)/αs . (G.23)
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This relation could be cast in a more transparent form by noting that the quantity
(αsCS) obeys a similar evolution equation to eq. (G.18),

d

d lnµ
[
αs(µ)CS(−m2

H − iε, µ2)
]

= αs(µ)
[
ΓAcusp(αs) ln −m

2
H − iε
µ2 + γS(αs)

]
CS(−m2

H − iε, µ2) + β(αs)CS(−m2
H − iε, µ2)

=
[
ΓAcusp(αs) ln −m

2
H − iε
µ2 + γS

′(αs)
] [
αs(µ)CS(−m2

H − iε, µ2)
]
, (G.24)

but with anomalous dimension γS′(αs) = γS(αs) + β(αs)/αs. We then have the relation
2γg(αs) = γt(αs) + γS

′(αs). This indicates that after the second matching, the evolution
down to a lower scale satisfies the same renormalization equation in both the one-step and
the two-step schemes.

G.3 Assessment of the two schemes for the Higgs hard function

The two schemes for the calculation of the hard function have application in jet veto resum-
mation but also in the resummation of the Higgs boson transverse momentum. A complete
discussion of the error budget for Higgs boson production including scale dependence, parton
distribution dependence, the influence of loops of b-quarks and electroweak corrections is
beyond the scope of this paper. Here we shall simply compare and contrast the one-step
and the two-step scheme, in the Higgs on shell region where m2

H ≈ m2
t /2.

It is easy to check the internal consistency of the two schemes in the limit where we
drop terms of order q2/(4m2

t ). Setting z = 0 in eq. (G.2) and evaluating all coefficient
functions at a common scale µ, we have that,

αs(µ)Ct(m2
t , µ

2)CS(−q2, µ2) = CH(m2
t , q

2, µ2)z=0 +O(α4
s) . (G.25)

We can test this equivalence numerically. We start by fixing µ2 = q2 and consider the
quantities that enter the calculation of the cross-section, i.e. the square of the absolute
values. In the two-step scheme we have,

|Ct(m2
t , q

2)|2 = 1 + 0.1957 + 0.0204 ,
|Cs(−q2, q2)|2 = 1 + 0.6146 + 0.2155 , (G.26)

where the second and third terms represent the O(αs) and O(α2
s) terms respectively,

evaluated using αs(q2) = 0.1118. In the one-step case we get,

|CHz=0(m2
t , q

2, q2)/αs(q)|2 = 1 + 0.8104 + 0.3563 . (G.27)

Performing a strict fixed-order truncation of the product of the two-step result we have,[
|Ct(m2

t , q
2)|2|Cs(−q2, q2)|2

]
expanded

= 1 + 0.8104 + 0.3563 , (G.28)
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which is in perfect agreement with the one-step case. This indicates that the numerical
implementation of the two procedures is correct. If we instead evaluate the product after
the individual expansions have been performed, a choice of equal formal accuracy, we have,

|Ct(m2
t , q

2)|2expanded |Cs(−q2, q2)|2expanded = 1 + 0.9306 + 0.2953 . (G.29)

This results in a significant difference. We therefore work with the strict fixed-order
truncation throughout this paper.

We now restore the z-dependence in FH1 and FH2 in eq. (G.2), but still keep z = 0
in the overall factor FH0 (z). We then find that the ratio of the one-step to the two-step
becomes 1.0028 at NLO and 1.0053 at NNLO, i.e. these corrections are very small. Now we
allow the matching scale for the top quark, µt to take its natural value, µt = mt and find
one/two-step ratios of 1.0054 at NLO and 1.0073 at NNLO, again a small effect. Finally,
we reinstate the hard evolution down to the resummation scale and find that the ratio of
the one-step to the two-step (at pveto

T = 25GeV) is 1.0177 at NLO and 1.0125 at NNLO.
The cumulative effect at this point is noticeable but still small. However, we note that we
have so far kept z = 0 in the overall factor FH0 (z). The one-step procedure is recovered
by re-instating FH0 (z). This implies that, in order to obtain the level of agreement quoted
above between the two schemes, the overall factor of FH0 (z) must also be applied to give a
modified version of the two-step scheme. Neglecting this step would result in a significant
difference, since |FH0 (z)|2 = 1.0653 see eq. (G.5).

Our overall conclusion on the two schemes is in line with the known result that Higgs
boson production has substantial corrections. Accounting for the most important mass
effects by rescaling the two-step result by the exact result at leading order, the one-step
procedure gives a larger result than the two-step procedure for pveto

T = 25GeV at the level of
1.3%. Any substantial difference between the two methods beyond this level is most likely
due to uncontrolled higher order effects.
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