
JetBrains MPS as a Tool for Extending Java

Vaclav Pech

JetBrains

vaclav@jetbrains.com

Alex Shatalin

JetBrains

alexander.shatalin@jetbrains.com

Markus Voelter

independent/Itemis

voelter@itemis.de

Abstract

JetBrains MPS is an integrated environment for language
engineering. It allows language designers to define new pro-
gramming languages, both general-purpose and domain-
specific, either as standalone entities or as modular exten-
sions of already existing ones. Since MPS leverages the con-
cept of projectional editing, non-textual and non-parseable
syntactic forms are possible, including tables or mathemat-
ical symbols. This tool paper introduces MPS and shows
how its novel approach can be applied to Java development.
Special attention will be paid to the ability to modularize
and compose languages.

Categories and Subject Descriptors D.2.6 [Software
Engineering ]: Programming Environments - Programmer
workbench

General Terms D.3.2 Extensible languages, D.3.4 Code
generation, D.3.4 Translator writing systems and compiler
generators

Keywords language extension, DSLs, development envi-
ronments, formal methods

1. Introduction

JetBrains MPS is an open-source language workbench based
on a projectional editor. It started as an experimental
project about ten years ago with the aim to test and vali-
date the ideas of Language Oriented Programming (LOP),
as summarized in [2]. In essence, MPS attempted to bring
code generation and projectional editing (also known as
structured editing, see [12] for a good definition) to the
programming mainstream, enabling easy language modular-
ization and composition. The approach blurs the distinction
between general-purpose (GPL) and domain-specific (DSL)
programming languages with an intended positive impact
on developer productivity. This paper introduces MPS, fo-
cusing on extensibility of languages and IDEs in general and
for Java, specifically.

The term Language Workbench was coined by Mar-
tin Fowler [4]. Besides MPS, there are several other lan-
guage workbenches including the Intentional Domain Work-

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PPPJ’13,, September 11–13, 2013, Stuttgart, Germany..
Copyright is held by the owner/author(s).
ACM 978-1-4503-2111-2/13/09.
http://dx.doi.org/10.1145/2500828.2500846

bench [8], MetaEdit+1, Eclipse Xtext 2 and Spoofax 3 (for a
brief comparison of some of these tools see Related Work in
Section 4). For a general overview of language workbenches,
please refer to the Language Workbench Competition4.

Real-world use of MPS As a real-world proof of MPS,
JetBrains has built YouTrack 5, a web-based bug tracking
application. It heavily relies on an MPS-based set of lan-
guages for web application development and database map-
ping – Webr-DNQ. In less than three years YouTrack became
an important part of JetBrains’ product portfolio, validating
the LOP idea as well as its implementation in MPS. More
on how YouTrack benefits from LOP can be found in [9].

The MPS team cooperated with several universities to
help them adopt MPS as a tool for language design research.
For example, a student at the Faculty of Mathematics and
Physics of Charles University in Prague implemented a real-
time Java development environment as part of his master
thesis in 2012 [3].

Although MPS is historically bound to Java and the
JVM, its principles are universal and can be applied to any
technological domain. The mbeddr project [11] successfully
built a powerful development stack for embedded C develop-
ment. They primarily target programmers who write C code
for micro-controllers in robots, avionics or car appliances.

Further plans Inspired by the success of YouTrack and
mbeddr, JetBrains has been gradually turning MPS into a
solid open-source language workbench that is ready for the
tasks in the mainstream of software development. The re-
cent 2.5 version can be considered a fully functional, stable
production-ready tool, targeting language and DSL design-
ers as well as programmers. The open source license facili-
tates adoption for open-source and academic use.

2. Language Engineering in MPS

Eating its own dog food, MPS, like many other language
workbenches, offers a set of DSLs for defining various aspects
of languages. These include the structure, editor, type sys-
tem, the generator as well as support for sophisticated IDE
functionality, such as code completion, intentions, refactor-
ings, debugger and dataflow analysis.

1 http://metacase.com
2 http://eclipse.org/Xtext
3 http://spoofax.org
4 http://languageworkbenches.net
5 http://youtrack.jetbrains.com



You may also check out two introductory screen-casts on
projectional editing in MPS 6 and on language definition7,
to get a concrete example of the discussed content.

Abstract Syntax As a first step when defining a new
language we specify the structure (aka abstract syntax or
meta model). This resembles object-oriented programming,
language concepts are similar to classes. Concepts in MPS
represent types of AST nodes and define the properties,
methods, children and references that instance nodes may
have. MPS offers three language aspects to define abstract
syntax: the structure aspect defines the concepts, their prop-
erties and relationships, constraints restrict the allowed set
of values for properties and references, and the behavior as-
sociates methods with concepts.

Concrete Syntax The second step is defining the editor
for the concepts. This reflects the projectional nature of
MPS. Since code in MPS is never represented as plain
text (neither on the screen nor on disk), MPS languages
are never parsed and thus no grammar is required. This
enables the use of non-parseable notations, such as tables or
mathematical symbols. Instead of a parser, we define editors
for language concepts – a visual representation for AST
nodes. MPS’ editor definition capabilities let the language
designer define editors for her new language constructs as
well as override editors of concepts from existing languages.
Editors can be modularized to support reuse of visual syntax
elements and multiple editors can be defined for a concept,
allowing the programmer to choose the notation that fits
best the task at hands.

The default MPS editor needs some getting used to
for programmers familiar with text editing. Building code
from predefined language concepts instead of from individual
characters definitely feels different. However, MPS goes a
long way towards the editing experience of text editors. The
editor’s behavior can be tuned by specifying many of its
dynamic characteristics using, for example, node factories,
side transformations, or replacement rules.

IDE Functionality Developers today expect the editor
to instantly assist them with code completion, smart navi-
gation, intentions, refactorings, hints and code analysis. Be-
ing able to quickly build an IDE for a language is one of the
most noteworthy advantages of MPS. The editor offers many
of its essential features out-of-the-box, the remainder can
be implemented by the language designer through appropri-
ate language aspects. For example, whenever the developer
hits Ctrl-Space, the code-completion pop-up menu is auto-
matically populated with all type-compatible nodes that are
in scope. The language designer can customize the scoping
rules of the language, which will be reflected in the content
of the code-completion menu. Also, if the language designer
defines a Dataflow aspect for her language, the user will then
get unreachable parts of the code highlighted as errors.

MPS seamlessly integrates with several version control
systems (VCS), such as Git and Subversion. Diff and merge
is provided on the concrete syntax level, so that, without
extra effort on the language designer’s side, code can be
properly maintained through the projectional editor.

The MPS debugger is also extensible, allowing languages
to be debugged in MPS. The user can set breakpoints and

6 http://tv.jetbrains.net/videocontent/your-first-date-with-
jetbrains-mps
7 http://tv.jetbrains.net/videocontent/your-second-date-with-
jetbrains-mps

inspect values in the high-level language (DSL), avoiding
exposure to the actual execution technology used.

Type System The next step is the definition of the
type system. For example, the type of a condition of an
IfStatement must be boolean, or a type of a return state-
ment must be compatible with the return type of the sur-
rounding method. MPS comes with a type system engine
that is capable of evaluating type system rules to assign
types to language elements (type inference) and to verify
correctness of types. Typing rules are specified as a set of
equations, such as the following:

infer typeof(ifStatement.condition) :<=: <boolean>;

where the :<=: symbol specifies equal type or a subtype. The
engine tries to assign values to the type variables so that all
equations are satisfied. The declarative approach (based on
unification8) enables easy extension of the type system by
adding additional equations and types.

MPS also support checks that are not directly related
to typing rules. A dedicated type of rules, called checking
rules, may analyze the model and report warnings or errors
whenever an incorrect construct is detected. Examples for
checking rules in Java include detecting the repetitive use
of the same string literal, assignment to a final variable,
ignoring a return value and many others. Language designers
may associate automated fixes with checking rules, which
users can choose to execute in order to fix the problem.

Code generation Languages in MPS also define transfor-
mation rules to lower-level languages or to plain text. The
generation process in MPS consists of two phases. Phase
one uses a template-based model-to-model transformation
engine to reduce the program code into the target language,
based on reduction rules specified in the generator. The tar-
get language may be further reduced based on its own re-
duction rules, and so on. When no further model-to-model
transformation is applicable to a model, the second phase
uses text generators to convert that final model into regular
program text that can be fed into a compiler.

A language generator aspect consists of two main build-
ing blocks. Mapping Configurations define which concepts
are processed with which templates and in which context.
Templates define the code in the target language that will re-
place the specified piece of the source concept(s). Templates
work differently from normal text generation templates such
as for example Xpand9, Jet10 or StringTemplate11, since in
MPS they do not define text output, but instead model-to-
model transformations. The generator developer first writes
a structurally correct example model using the target lan-
guage and then uses so called macros to tie the example
model to the actual input from which we generate. Both
templates and macros are well known concepts from other
tools, but in MPS they work on the AST level (see Fig. 1).

Another of key benefits of the MPS approach to language
definition is that the editor is capable of providing full IDE
support for the target language when defining the template.
A generator template is just another piece of code that mixes
several languages, as far as the editor is concerned. Language
modularization and mixing is discussed in [10].

8 http://en.wikipedia.org/wiki/Unification (computer science)
9 http://wiki.eclipse.org/Xpand
10 http://www.eclipse.org/modeling/m2t/?project=jet
11 http://www.stringtemplate.org



Figure 1. A template definition that replaces a
RoutineDefinition statement with a Java method defini-
tion. The COPY_SRC macro replaces the println statement
with the set of statements in the RoutineDefinition.

Java interoperability MPS has historically very strong
ties to Java. MPS is itself implemented in Java, it runs on the
JVM, and a Java dialect named BaseLanguage was the first
language implemented fully in MPS; the language definition
DSLs build on BaseLanguage. It is easy to import existing
Java source code into MPS or to use Java libraries in MPS
projects. MPS languages can be packaged as Java libraries
and used from within Java IDEs. This all combined makes
MPS feel very familiar to Java developers.

Over time MPS has collected numerous BaseLanguage
extensions, such as collections, closures, time/date manipu-
lation, regular expressions or builders, each enhancing its ca-
pabilities far beyond plain Java. Together with the fact that
developers can build their own domain-specific extensions of
BaseLanguage, this makes MPS an interesting solution for
Java developers. At the same time, MPS’ domain of applica-
bility is not limited to Java and JVM. The mbeddr project,
for example, successfully managed to expand MPS into the
domain of C-based embedded software development.

IDE interoperability The MPS workbench is primar-
ily a tool for language definition. Languages and DSLs get
designed, tested and debugged in MPS and then packaged
and distributed to language users, i.e. application develop-
ers. Since typical application developers do not need all the
MPS language design capabilities and prefer their existing
development environments, such as IntelliJ IDEA or Eclipse,
MPS languages can be packaged and distributed as Java IDE
plugins (IntelliJ IDEA supported already, Eclipse is planned
for the end of 2013). The upcoming 3.0 release of MPS will
support full cross-navigation between Java code in the Java
IDE and code managed by the MPS plugin.

For users of DSLs that are not programmers (system ad-
ministrators or business experts), MPS offers the possibility
to generate dedicated Java applications, whose sole purpose
is to support editing and maintain code using the packaged
languages. The YouTrack administrator workflow console is
an example of such a dedicated lightweight IDE.

3. Language Composition

Language modularization and composition is the core idea
behind LOP. MPS languages can easily refer, reuse and em-
bed one another. Since projectional editing disambiguates
constructs originating from different languages, MPS does
not require the construction of a unifying parser or the def-
inition of composite grammars. Languages can be extended
with new constructs and new ways to view and edit them.
See [10] for a detailed discussion of language modularization.

In order to successfully build modularized languages, all
aspects of language definition must be modularizable and
composable. We discuss the most important ones in the

Figure 2. A sample use of ParallelFor in Java.

following subsections. We use a parallel for loop to illustrate
the approach. Fig. 2 shows how it is used.

Abstract syntax Earlier in the paper we have made the
association between the language concepts and objects in
object orientation. This analogy also holds for language ex-
tension. Concepts can extend by other concepts, and sub-
concepts can be used polymorphically. Fig. 3 shows how the
parallel-for loop extends the AbstractLoopStatement con-
cept, which is defined in BaseLanguage. Since ParallelFor
can now be used wherever AbstractLoopStatement is ex-
pected, the new extension will seamlessly integrate into the
original language. Just like methods on objects in OOP, be-
havior methods attached to concepts can be overridden by
their subconcepts and their constraints may be altered.

The Adapter pattern [5] for language composition uses
this extension mechanism to allow for other types of lan-
guage integration – reuse, referencing and embedding. For
example, to embed an existing language of mathematical
formulas into Java, we’d have to create an adapter (lan-
guage) that wraps the formulas or parts of them into Java
language concepts, such as Statement or Expression. Once
wrapped, the formulas can become part of the Java abstract
model, can be rendered and edited on the screen and also
generated, using the reduction rules defined by the wrap-
pers. The adapter language would also define scoping rules
for the formulas so that they could refer to one another or
to, for example, Java variables in the surrounding Java code.

Concrete syntax The MPS editor assigns visual nota-
tions to language concepts; each concept is responsible for its
own rendering and user interaction. This mechanism works
irrespective of the language the concepts has been defined
in. So a math formula will render itself correctly, no mat-
ter whether it is part of a Java program or an electrical
circuit simulation model, for example. Subconcepts inherit
the editor of their parent concept, unless they define their
own, more specific editor. Extending languages may supply
their own editors for inherited concepts and thus override
the concrete syntax derived from the inherited editor.

IDE functionality It is possible to alter many of the
IDE aspects of a language through language extension. Lan-

Figure 3. Structure definition for ParallelFor.



guages may provide additional refactorings, intentions, edi-
tor actions and others.

Typesystem Together with new concepts, languages may
introduce new types and relate them to types of other
languages through subtyping rules. All type equations from
all used languages enter the pool of rules that the type
system engine resolves. This declarative approach makes the
type system easily extensible.

Generator By extending the generator, extensions can
alter the semantics of the original language. The MPS gen-
erator resolves the generator rules and mapping configura-
tions from all languages attached to the project and builds
a global generation plan. The plan specifies the execution
order for the generator rules based on their mutual relative
priorities expressed in mapping configurations. This enables
language extensions to inject their own desired generation
rules into the most suitable generation phase. Since priori-
ties are expressed as a collection of relative ordering between
mapping configurations, a language extension does not need
to know about all other generators involved in the genera-
tion of a particular model. Potential (and rare) clashes are
detected and left to the developer to resolve. Once created,
the generation plan is used to iteratively invoke the genera-
tors, potentially leveraging the parallelism of the underlying
hardware for mutually independent rules.

Providing additional reduction rules is one way to extend
a language. Using a generator switch is another option. If
the parent language uses a generator switch to choose the
right reduction rules, the language extension may extend
that generator switch with its additional logic for picking the
reduction rules – typically to include new rules contributed
by extension languages.

4. Related Work

Parser-based systems Projectional editing makes MPS
a rare species, together with the Intentional Domain Work-
bench and oomega12. Although it is not a new idea, text
editing is more widespread. To name a few workbenches
from the parser camp, we should definitely mention Xtext
and its related projects - Xbase, Xpand and Active anno-
tations. MetaEdit+ and Spoofax are also good examples of
workbenches built around parsing and text editing.

Text-based workbenches feel more familiar to today’s de-
velopers, as editing text is the mainstream approach to writ-
ing code. Also, integration with the existing development
tool chain, such as VCSs, code review tools or code shar-
ing facilities, is pretty straightforward when the sources are
text. On the other hand, text-based tools restrict the syn-
tax of languages to textual notations. Tables, math symbols
or graphical representations cannot easily be included. For
the same reasons, these tools typically do not let developers
switch between alternative notations. Finally, defining ro-
bust composable languages is extremely difficult to achieve
with grammars [1, 6]. In a similar vein, domain experts, who
typically are the target audience for DSLs, and who do not
necessarily have a strong background in programming, may
find projectional editing more convenient, as they do not
carry the baggage of old habits and since projectional edi-
tors can be easily made to resemble the tools or notations
these experts use in their daily practice. Refer to [11] for
more details on contrasting the two types of workbenches.

12 http://www.oomega.net/produkt/

Internal DSLs in modern GPLs The raising popularity
of alternative JVM languages, such as Kotlin, JRuby, Scala
or Groovy can be understood as an indication of Java, the
language, not satisfying today’s developers’ needs. Concise
syntax for collections and maps, closures, data/time manip-
ulations, regular expressions are a few examples of where
the newcomers beat Java in expressiveness and ease of use.
One important contribution of these languages is their flex-
ibility towards creating internal DSLs [7]. Internal DSLs are
a useful way to increase expressiveness of a GPL with lit-
tle or modest effort. Using the language-specific run-time
or compile-time mechanisms, the language can be extended
to express common idioms in a more concise way. However,
these DSLs are limited – to various degrees – by the host
language’s syntax and they cannot extend the host language
type system. Finally, the IDE support for such DSLs is either
ignored completely, or very limited.

5. Summary

MPS is a powerful tool for language development with spe-
cial focus on easy language modularization and composition.
In this paper we explored the way to extend languages in
MPS and to customize language IDE support. The MPS
projectional editor is an important advantage that not only
offers notational freedom, but also enables flexible composi-
tion of languages. Thanks to its rich set of existing Java ex-
tensions and tight integration with Java IDEs, MPS enables
easy interoperability between plain Java, BaseLanguage and
DSLs. Despite its relatively steep learning curve, MPS could
help the adoption of the LOP principles among software
practitioners and move the industry forward by making pro-
gramming languages truly customizable.

References
[1] M. Bravenboer and E. Visser. Parse table composition. In

R. L. In D. Gasevic and E. V. Wyk, editors, Revised Selected
Papers of SLE 2008, Toulouse, France. LNCS Vol. 5452,
2009.

[2] S. Dmitriev. LOP - Language Oriented Programming: The
Next Programming Paradigm. 2004.

[3] T. Fechtner. MPS-based Domain-specific Languages for real-
time Java development. 2004.

[4] M. Fowler. Language Workbenches: The Killer-App for
Domain Specific Languages?, 2005.

[5] M. Fowler. Domain-Specific Languages. Addison Wesley,
2010.

[6] T. Goldschmidt. Towards an incremental update approach
for concrete textual syntaxes for uuid-based model reposito-
ries. In R. L. In D. Gasevic and E. V. Wyk, editors, Revised
Selected Papers of SLE 2008, Toulouse, France. LNCS Vol.
5452, 2009.

[7] D. Gosh. DSL in Action. Manning Publications co., 2010.

[8] C. Simonyi, M. Christerson, and S. Clifford. Intentional
software. In OOPSLA, pages 451–464, 2006.

[9] V. P. Valeria Adrianova, Maxim Mazin. MPS use of
YouTrack case study, 2012.

[10] M. Voelter. DSL Engineering - Designing, Implementing and
Using Domain Specific Languages. Markus Voelter, 2012.

[11] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr:
an extensible C-based programming language and IDE for
embedded systems. In Proc. of SPLASH 2012. ACM.

[12] M. Voelter and K. Solomatov. Language Modularization
and Composition with Projectional Language Workbenches
illustrated with MPS. In M. van den Brand, B. Malloy, and
S. Staab, editors, SLE 2010, LNCS. Springer.


