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Abstract

Background: Interpretation of gene expression microarrays requires a mapping from probe set to gene. On many
Affymetrix gene expression microarrays, a given gene may be detected by multiple probe sets, which may deliver
inconsistent or even contradictory measurements. Therefore, obtaining an unambiguous expression estimate of a
pre-specified gene can be a nontrivial but essential task.

Results: We developed scoring methods to assess each probe set for specificity, splice isoform coverage, and
robustness against transcript degradation. We used these scores to select a single representative probe set for each
gene, thus creating a simple one-to-one mapping between gene and probe set. To test this method, we evaluated
concordance between protein measurements and gene expression values, and between sets of genes whose
expression is known to be correlated. For both test cases, we identified genes that were nominally detected by
multiple probe sets, and we found that the probe set chosen by our method showed stronger concordance.

Conclusions: This method provides a simple, unambiguous mapping to allow assessment of the expression levels
of specific genes of interest.

Background
Gene expression microarrays are designed to measure the
relative abundance of gene transcripts by detecting
sequence-specific hybridization between a fixed DNA
probe and a labeled RNA target. For intentional or unin-
tentional reasons, some probes may detect multiple
genes, and some genes may be detected by multiple
probes. For many types of analysis, this is not a problem.
For example, microarrays can be used as a screening tool
to identify differentially expressed genes associated with a
biological phenotype. In this case, a probe set with an
expression pattern of interest can be mapped to a parti-
cular gene or set of transcripts using annotations from
the manufacturer or from others [1-4].
However, some analyses require expression estimates

for a specific set of genes, where the abundance of speci-
fic splice isoforms is unimportant. For example, in stu-
dies of breast tumors it may be important to determine
the expression level of the genes ESR1 and ERBB2, which
correspond to the clinically important estrogen receptor

(ER) and Her2 proteins [5]. On the HG-U133A platform,
there are nine probe sets designed to detect ESR1, but
only one of these probe sets is strongly correlated with
ER status determined by immunohistochemical methods
[6]. As another example, one may wish to assess the
expression of a set of genes in a previously defined signa-
ture or module; each gene may correspond to multiple
Affymetrix probe sets.
At least three systematic approaches could be used to

estimate a single expression value for a particular gene: 1)
Use the average expression value of all probe sets that
map to the gene. 2) Redefine the mapping between indivi-
dual probes and probe sets, such that there is a one-to-
one mapping between genes and redefined probe sets
[4,7-11]. 3) From the set of probe sets that map to a parti-
cular gene, select a single, most representative probe set.
The disadvantage of the first approach is that the signal
from accurate probe sets can be corrupted by noise from
inaccurate probe sets. The disadvantages of the second
approach are a lack of a clear standard for defining the
probe sets, unstable probe set definitions that may change
as genome and transcriptome data are updated, and a
requirement for raw data that may not always be available.
Thus, the second approach adds a layer of complexity that
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may be acceptable when analyzing a single data set but
complicates the comparison with results generated at dif-
ferent times or with different remappings. However, the
third approach is conceptually simple, is likely to be more
accurate than the first approach, uses only the stable, man-
ufacturer-supplied identifiers, and can be readily applied to
expression data for which the original probe-level data is
unavailable. Therefore, we set out to produce a one-to-one
mapping from each gene to its single, optimal probe set.
To evaluate the suitability of a probe set, we consid-

ered three factors. First, the probes in the probe set
should respond specifically to the target gene and not to
other genes. Several studies have explored the specificity
of Affymetrix microarray probes and found that probe
sets are most effective when their individual probes
match their intended target [12]. Furthermore, probes
that partially match other, unintended targets may deli-
ver misleading results [13,14].
Second, the probe set should detect as many splice iso-

forms of the target gene as possible. The present work is
primarily concerned with analytical problems in which the
gene, but not the specific isoform, is specified. For this
purpose the overall expression level of a gene, counting all
functional splice isoforms, is the desired measurement. If
the expression level of individual splice isoforms is desired,
other tools are available [15].
Third, the probe set should query the target gene at a

position near the 3’ end of the corresponding transcripts.
The microarrays considered in this work are designed to
be used with an Eberwine-type target generation protocol.
Because the reverse transcription and in vitro transcription
steps are initiated at the poly-A tail, there is a 3’ bias in the
amount of labeled target that is generated [16]. Thus,
probes that are too far from the 3’ end of the target are
likely to have a lower signal intensity, and for this reason
most (but not all) probes are designed by Affymetrix to
query their target within 600 bases of the 3’ end of the
transcript, or within 300 bases for the X3P array. In addi-
tion to a weaker signal, probes far from the 3’ end of the
gene are susceptible to false signal changes resulting from
variations in RNA integrity [17].
We developed a method to score each probe set

according to the three criteria described above. For genes
that are detected by more than one probe set, we selected
the highest-scoring probe set to represent that gene. We
evaluated this one-to-one mapping by comparing mea-
sured gene expression levels to protein levels.

Results
Algorithm
We acquired probe sequences for four widely used human
gene expression microarrays from Affymetrix: U95Av2,
U133A, U133 Plus 2.0, and X3P. We used NCBI BLASTN
to search the 25-base probe sequences for matches to the

Refseq human cDNA database [18]. The BLASTN search
was run with the default parameters, except that the word
size was set to 8 to increase sensitivity. We used the maxi-
mum alignment score (bit score) between each probe and
cDNA as an indication of hybridization affinity. We
defined three levels of alignment: a strong alignment has a
score between 48 and 51, indicating that at least 24 bases
are identical and that the probe is very likely to detect the
target. A moderate alignment has a score between 32 and
47, corresponding to an uninterrupted alignment of length
16 to 23 bases; the probe may or may not respond to the
target. A weak alignment has a score less than 32 and is
unlikely to respond to the target.
Specificity
A probe was considered to specifically detect a given
gene if it strongly aligned to at least one transcript of the
gene, but did not have a strong or moderate alignment to
a transcript from any other gene. The gene specifically
detected by the largest number of probes in a probe set is
considered the targeted gene of the probe set. The specifi-
city score Ss of a probe set is the fraction of its probes
that specifically detect the targeted gene.
Coverage
A transcript of the targeted gene was considered detected
by a probe set if the transcript has a strong alignment to
the majority of the probes in the probe set. The coverage
score Sc of a probe set is the fraction of all transcripts
belonging to the targeted gene that are detected by the
probe set.
Robustness
The processivity requirement for a probe-transcript align-
ment is the number of bases between the 5’ end of the
alignment and the 3’ end of the transcript sequence; this
corresponds to the length of labeled target that must be
synthesized by in vitro transcription to reach the query
region. The overall processivity requirement N of a probe
set is the median processivity requirement for all strong
alignments between probes in the probe set and tran-
scripts in the targeted gene. We define the robustness score
Sr of a probe set as the probability that synthesis of the tar-
get up to the processivity requirement is achieved without
interruption:

Sr =
(
1 − p

)N

Here, p is the probability of the IVT synthesis being inter-
rupted at each base, due to either transcript degradation or
lack of enzyme processivity. The value of p is likely to be
variable in clinical specimens, but for simplicity we use a
value corresponding to the manufacturer’s design criteria:
1/300 for the X3P array, or 1/600 for the other arrays.
Overall score
We define the overall score So as the product of the
three scores described above:
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So = SsScSr

For a given gene, the probe set targeting this gene
with the highest overall score is selected to represent
the gene.

Testing
Calculation of jetset scores
We calculated scores corresponding to four Affymetrix
human gene expression microarray platforms that are
highly represented in the GEO database. In general, we
observed higher specificity scores for the newer (U133)
platforms than for the older HG-U95Av2 platform, likely
reflecting the more accurate genome data available when
the newer arrays were designed (Figure 1a). The coverage
scores were similar on each platform, with ~85% of
probe sets achieving a perfect coverage score (Figure 1b).
The robustness scores were notably lower in the X3P
platform, perhaps reflecting the difficulty of meeting the
design criteria for this platform by placing the probe set
within 300 bases of the 3’ end of the transcript (Figure
1c). Because of this, the overall score distribution was
also lower in the X3P platform (Figure 1d).
Comparison with ER and HER2 status in breast tumors
We evaluated the Jetset mappings using a publicly-avail-
able data set representing 286 breast tumor specimens
with HG-U133A microarray measurements and ER pro-
tein status as determined by ligand-binding assay,
enzyme immunoassay, or immunohistochemistry [19]. In
this data, we expected that the ER protein status should
correlate with the ESR1 gene expression level. Using
annotations from the manufacturer, from Bioconductor,
and from the analysis described here, we identified nine
probe sets that could possibly detect the ESR1 gene
(Table 1). Of these, the Jetset algorithm identified
205225_at as the best probe set to detect the ESR1 gene.
We observed that 205225_at was the only ESR1 probe set
to show strongly differential expression correlated with
protein levels (Figure 2a).
We also evaluated the performance of two alternative

probe set definitions: the Brainarray “hgu133ahsen-
trezgcdf” and the GATExplorer “genemapperh-
gu133acdf”, both of which redefine probe sets such that
each queries an individual gene [4,8]. In both cases, the
remapped probe set querying ESR1 failed to detect strong
differential expression between ER-positive and ER-nega-
tive tumors (Figure 2a).
We next evaluated a second publicly-available breast

cancer data set for which clinical HER2 status based on
protein immunohistochemistry or on fluorescence in situ
hybridization (FISH) was annotated in 132 breast tumors
[20]. Here we expected the HER2 status to correlate with
the ERBB2 gene, which encodes the HER2 protein. The
manufacturer, Bioconductor, and Jetset annotations agree

that ERBB2 is queried by two probe sets (Table 1). We
evaluated these two probe sets as well as two remapped
ERBB2 probe sets as described above, and found that the
probe set selected by the Jetset algorithm, 216836_s_at,
best distinguished between HER2-positive and HER2-
negative tumors (Figure 2b).
Concordance of a gene expression module in breast tumors
We previously identified a set of 70 co-expressed genes
whose expression is associated with chromosomal instabil-
ity (CIN) in cancer [21]. These “CIN70” genes were identi-
fied based on their correlation in multiple microarray data
sets using various platforms; therefore we expect the genes
in this module to be generally correlated with each other
in other cancer data sets. Furthermore, for any of the
CIN70 genes, we expect that the probe set selected by the
Jetset algorithm should be more likely to be correlated
with the other genes in the signature than a probe set with
a lower score. For each of the 286 tumors in the first
breast cancer data set, we defined the CIN70 score as the
median expression value of all 94 probe sets that query
the CIN70 genes. For the 23 CIN70 genes that were quer-
ied by more than one probe set, we calculated the Pearson
correlation between individual probe set expression values
and the CIN70 score. We compared these correlation
values between the highest-scoring probe set and the low-
est-scoring probe set, and found that the highest-scoring
probe sets (the ones selected by the Jetset algorithm) were
generally better correlated (Figure 3a).
We also performed a similar analysis using the indivi-

dual components of the overall score: specificity, cover-
age, and robustness. The specificity score alone did not
perform well in identifying highly-correlated probe sets
(Figure 3b). The coverage score alone did not vary
enough to perform meaningful analysis (data not shown).
However, the robustness score alone was able to essen-
tially reproduce the performance of the overall score
(Figure 3c).
Implementation
The individual scores calculated by these methods can be
found on the project website [22]. Additionally, we devel-
oped an R package called “jetset” that contains these
scores along with functions to retrieve the highest-
scoring probe set for a given gene. The R package is
available from our website and has been submitted to
Bioconductor [23]. The Jetset data and package will be
updated following the Bioconductor release cycle (~
every six months).

Discussion
We have developed a heuristic method for rating probe
sets and a tool for choosing a single representative probe
set for a given gene. The intended use of this tool is to
rapidly select probe sets to assess the expression of a pre-
viously-defined set of genes in a microarray data set. We
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do not necessarily expect that every probe set in our
mapping is the optimal choice, but our results suggest
that our mapping performs reasonably well at least in our
test cases.
Our approach is intended to complement, not replace,

probe-level remapping methods. We and others have
previously used probe-level remapping to redefine probe
sets such that each reflect a single gene, with generally
acceptable results. However, when performing analysis
across a large number of data sets, we found probe-level
remapping to be inconvenient because we were unable
to include many data sets for which we did not have the
raw probe-level data.

Our evaluation of ESR1 and ERBB2 probe sets indi-
cates that Jetset chooses the probe set that best matches
protein or FISH-based histological results, confirming
the utility of our method. Furthermore, the identifica-
tion of these specific probe sets is in agreement with
previous results [6]. Suprisingly to us, the probe-level
remapping approaches performed substantially worse for
the ESR1 gene, likely because this gene is queried by an
uncharacteristically large number of probe sets rendered
ineffective by their distance from the 3’ end of the tran-
script. We also evaluated our method by analyzing the
coherence of genes in the previously described CIN70
module and again found that the probe sets selected by
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Figure 1 Distribution of probe set scores. Probe set score distributions are displayed for four Affymetrix human gene expression microarray
platforms: a) Specificity score, b) Coverage score, c) Robustness score, and d) Overall score. Each platform features a different number of probe
sets; therefore the X-axis is plotted as a quantile to enable comparison.
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Jetset outperformed the probe sets with lower scores.
Interestingly, in both sets of evaluations, it appears to be
the robustness score that primarily drives the probe set

selection, likely because a large fraction of probe sets
have robustness scores that are very low.
Jetset is designed as a general tool, and thus it is not

necessarily optimized for specific projects. The specifi-
city score and coverage score are calculated without
consideration of the relative abundance of splice iso-
forms. This abundance varies from one tissue type to
another, and a sophisticated user may wish to consider
this aspect when selecting a probe set. Also, by provid-
ing the three individual scores, we have left the possibi-
lity for the user to decide on an overall scoring scheme
most suitable for a specific project. For example, the
robustness score might be more important for use with
samples that are known to be highly degraded, e.g. par-
affin-embedded tumor specimens. Furthermore, this
approach is not valid for data from all types of microar-
ray. For example, whole-transcript amplification meth-
odologies, as used in the newer arrays from Affymetrix,
do not require that the probe be located near the 3’ end
of the transcript.
It might be possible to use this method or similar to

identify probe sets as good or bad, regardless of the
mapped gene. However, sample quality can vary greatly

Table 1 Probe sets that query the ESR1 and ERBB2 genes

Gene annotation Jetset scores

Probe set Affy/Bioc Jetset Ss Sc Sr So

205225_at ESR1 ESR1 0.91 1.00 0.64 0.58

211233_x_at ESR1 ESR1 0.64 1.00 0.00 0.00

211234_x_at ESR1 ESR1 0.55 1.00 0.00 0.00

211235_s_at ESR1 ESR1 0.91 1.00 0.00 0.00

211627_x_at ESR1 – – – – –

215551_at ESR1 – – – – –

215552_s_at ESR1 ESR1 0.91 1.00 0.00 0.00

217163_at ESR1 ESR1 0.27 0.00 0.00 0.00

217190_x_at ESR1 ESR1 0.55 1.00 0.00 0.00

210930_s_at ERBB2 ERBB2 0.82 1.00 0.00 0.00

216836_s_at ERBB2 ERBB2 0.91 1.00 0.52 0.48

Gene annotations are from the manufacturer (Affy) or from Bioconductor
(Bioc) or derived in the present analysis (Jetset). Probe sets that did not meet
the Jetset annotation specificity criteria are indicated by “–”. Each probe set
was scored for specificity (Ss), coverage (Sc), robustness against mRNA
degradation (Sr), and a combined overall score (So). For each gene, the probe
set with the highest overall score (in bold) is selected to represent that gene.
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Figure 2 Comparison of gene expression with histological measurements. Publicly-available breast cancer data sets with histological
annotation were used to compare probe set accuracy. a) ESR1 expression levels were estimated using each of the nine manufacturer-defined
probe sets (Table 1), or by custom probe sets defined by BrainArray or GATExplorer. For each probe set, a pair of box plots indicates the
distribution of expression levels in 77 ER-negative tumors (white) and in 209 ER-positive tumors (red) by protein quantification. b) In a separate
data set, ERBB2 expression levels were estimated similarly, and compared in 99 HER2-negative (white) tumors and 33 HER2-positive (red) breast
tumors.
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depending on the type of specimen, and hybridization
specificity can vary due to choice of protocol; as dis-
cussed above both of these factors can affect the relative
importance of the scores. Therefore, deriving an abso-
lute score cutoff to separate good probe sets from bad
probe sets would not be generally applicable to all
experiments, and we did not attempt to do this.

Conclusions
We have described a method to calculate principled,
unbiased quality scores for Affymetrix probe sets, and to
use these scores to define a simple, unambiguous map-
ping from gene to probe set.

Methods
All analysis was performed using the R statistical envir-
onment and is recorded in Additional File 1.

Additional material

Additional file 1: Sweave document. This document contains the R
code used to generate the results and figures in the paper.
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