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ABSTRACT

The easily-accessible computation power offered by cloud
infrastructures coupled with the revolution of Big Data are
expanding the scale and speed at which data analysis is per-
formed. In their quest for finding the Value in the 3 Vs of
Big Data, applications process larger data sets, within and
across clouds. Enabling fast data transfers across geograph-
ically distributed sites becomes particularly important for
applications which manage continuous streams of events in
real time. Scientific applications (e.g. the Ocean Observa-
tory Initiative or the ATLAS experiment) as well as com-
mercial ones (e.g. Microsoft’s Bing and Office 365 large-scale
services) operate on tens of data-centers around the globe
and follow similar patterns: they aggregate monitoring data,
assess the QoS or run global data mining queries based on in-
ter site event stream processing. In this paper, we propose
a set of strategies for efficient transfers of events between
cloud data-centers and we introduce JetStream: a prototype
implementing these strategies as a high performance batch-
based streaming middleware. JetStream is able to self-adapt
to the streaming conditions by modeling and monitoring a
set of context parameters. It further aggregates the available
bandwidth by enabling multi-route streaming across cloud
sites. The prototype was validated on tens of nodes from
US and Europe data-centers of the Windows Azure cloud
using synthetic benchmarks and with application code from
the context of the Alice experiment at CERN. The results
show an increase in transfer rate of 250 times over individual
event streaming. Besides, introducing an adaptive transfer
strategy brings an additional 25% gain. Finally, the transfer
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rate can further be tripled thanks to the use of multi-route
streaming.

Categories and Subject Descriptors

H.3.5 [Online Information Services]: Data sharing; D.2.4
[Distributed Systems]: Distributed applications
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1. INTRODUCTION
On-demand resource provisioning, coupled with the pay-

as-you-go model, have redefined the way data is processed
nowadays. Scientific applications, simulations, monitoring,
networks of sensors, trading or commercial data mining are
all areas which have benefited from and supported the emer-
gence of cloud computing infrastructures. Cloud providers
like Microsoft, Amazon, Google, Rackspace have built their
cloud solutions at a global scale with data-centers spread
across numerous geographical regions and continents. At
the same time, the versatility of data analysis has increased
with applications running on multiple sites, which have to
process larger data sets coming from remote locations and
distinct sources. The services dealing with such computa-
tions have to face important challenges and issues regard-
ing the management of data across these geographically dis-
tributed environments.

Stream data processing is becoming one of the most sig-
nificant subclass of applications in the world of Big Data.
Vast amounts of stream data are collected at increasing rates
from multiple sources [20, 29] in many areas: climate moni-
toring, large-scale sensor-based systems, transactional anal-
ysis, financial tickers, monitoring and maintenance systems
for web services, large-scale science experiments. Acquiring,
processing and managing this data efficiently raise impor-
tant challenges, especially if these operations are not limited
to a single geographical location. There are several scenar-
ios which created the need to geographically distribute the



computation on clouds. The size of the data can be so big
that data have to be stored across multiple data-centers. It
is the case of the ATLAS CERN experiment which generates
40 PB of data per year. Furthermore, even incremental pro-
cessing of such a data set as a stream of events will overpass
the capacity of local scientific infrastructure, as it was the
case of the Higgs boson discovery which had to extend the
computation to the Google cloud infrastructure[2]. Another
scenario is given by the data sources which can be phys-
ically distributed in wide geographical locations as in the
Ocean Observatory Initiative [5, 12] in which the collected
events are streamed to Nimbus [9] clouds. Finally, the na-

ture of the analysis, for an increasing number of services,
requires aggregating streams of data from remote applica-
tion instances. Large-scale services like Microsoft’s Bing and
Office 365 operate on tens of data-centers around the Globe.
Maintenance, monitoring, asserting the QoS of the system or
global data mining queries all require (near) real-time inter
site event stream processing. All such computations carried
on continuous streams of events across resources from differ-
ent geographical sites are highly sensitive to the efficiency
of the data management.

An extended survey over thousands of commercial jobs
and millions of machine hours of computation, presented
in [23], has revealed that the execution of queries is event-
driven. Furthermore the analysis shows that the input data
accounts only for 20% of the total IO, the rest corresponding
to the replication of data between query services or to the in-
termediate data passed between them. This emphasizes that
the processing services, be they distributed, exchange large
amounts of data. Additionally, the analysis highlights the
sensitivity of the performance of the processing of streams
to the management and transfer of events. This idea is dis-
cussed also in [20], in which the authors stress the need for a
high performance transfer system for real-time data. A sim-
ilar conclusion is drawn in [10], where the issues which come
from the communication overhead and replication are exam-
ined in the context of state-based parallelization. Finally, in
[40], the authors emphasize the importance of data freshness,
which improves the Quality of Service of a stream manage-
ment system and implicitly the quality of the data (QoD).
All these research efforts support and motivate the growing
need for a high performance system for event streaming.

In this paper, we address challenges like latency, transfer
rate, throughput and performance variability for support-
ing high performance event transfers in the context of ge-
ographically distributed applications. Our solution, called
JetStream, is a novel approach for streaming events across
cloud data-centers. In order to enable a high performance
transfer solution, we leverage batch-based transfers. The
size of the batches and the decision on when to stream the
events are controlled by modeling the latency based on a
set of parameters which characterize the streaming in the
context of clouds. To further improve performance, we ag-
gregate inter-data-center bandwidth as we extend our ap-
proach to provide multi-route streaming across cloud nodes.
Furthermore, we developed a prototype that can be used
on clouds, either public or private, which is environment-
aware by means of light monitoring. The information gath-
ered and inferred about the environment is coupled with the
streaming model, allowing the system to adapt the transfer
decisions to all context changes. The system was validated
on the Windows Azure [6] cloud using synthetic benchmarks

and in a real life scenario using the MonALISA [33] monitor-
ing system of the CERN Alice experiment [1]. The experi-
ments show performance improvements of 250 times over in-
dividual event streaming and 25% over static batch stream-
ing, while multi-route streaming can further triple the trans-
fer rate.

The rest of the paper is structured as follows. Section 2
introduces the terminology and present the problems which
appear in the context of streaming across cloud data-centers.
Section 3 presents our approach for adapting the batch size
by modeling the latency for clouds, while considering the
cost of multi-routing. We continue with the description
of the system architecture and its implementation in Sec-
tion 4 and discuss the evaluation of the approach across
Azure data-centers from different continents (i.e. Europe
and America) in Section 5. In Section 6, we present an exten-
sive state of the art in several domains tangent to streaming
and data management and position the contributions of our
approach with respect to these directions. Finally, Section
7 concludes the paper.

2. BACKGROUND: EVENT STREAMING ON

CLOUDS
We start by defining the terminology related to stream

processing on clouds and discuss the main problems which
need to be addressed in this context.

2.1 Context

Cloud computing is a recent paradigm which enables re-
sources (e.g. compute power, storage capacity, network
bandwidth) to be easily leased on-demand, following a pay-
as-you-go pricing model. From the infrastructure point
of view, clouds are built across several data-centers dis-
tributed around the globe. The proximity of the geograph-
ical repartition of resources to users enables high QoS and
fast query responses by means of content delivery networks
(CDN). From the user point of view, all these resources
are harvested transparently by means of virtualization. A
typical cloud usage scenario consists of a user deployment

through which an application is run within virtual ma-

chines (VMs) on several cloud nodes from a data-center.
Large-scale applications and web services typically run mul-
tiple deployments across several data-centers, enabling ge-
ographical proximity to users and load balancing. Besides
the local computations answering to user requests, sev-
eral global operations (e.g., monitoring, QoS enhancement,
global data mining) require inter-site transfers between ge-
ographically distant nodes, most often in (near) real-time.
The cloud support for such transfers is rather rudimentary:
it relies on the cloud storage (e.g., Azure Blobs, Queues,
Tables or Amazon S3, SQS) as a global shared point which
incurs high transfer latencies [24, 45].

Stream computing refers to the processing of continuous
sequences of relatively small data items [20], otherwise re-
ferred to as events. According to [17], the characteristics
of data streams are: 1) a stream is formed of events, which
are tuples of records; 2) it is a potentially infinite sequence
of events ordered by time (e.g., acquisition time, genera-
tion time); and 3) the events can be produced by multi-
ple external sources at variable rates, independent of the
constraints of the stream processing engine. The stream
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Figure 1: The performance of transferring events in
batches between North Europe and North US Azure
data-centers. The measurements show the correla-
tion between (a) the transfer rate and (b) the aver-
age event latency for increasing batch sizes.

processing engines are systems which treat the events from
the stream by applying the user’s queries. As it is generally
infeasible to store the streams entirely, the queries are ap-
plied continuously and iteratively over windows of events.
The computation is event-driven, therefore most of the data
management is done at the granularity of an event. Gen-
erally, the size of an event is small, in the range of bytes
to kilobytes, which allows to handle them in-memory, but
also makes their transfer sensitive to any overhead.

2.2 Problem statement
Achieving high performance event streaming across data-

centers requires new cloud-based solutions, since currently
there are no adequate tools to support data streaming or
transfers across sites. Most of the existing stream process-
ing engines only focus on event processing and provide little
or no support for efficient event transfers, simply delegating
this functionality to the event source. Today, the typical
way to transfer events is individually (i.e., event by event).
This is highly inefficient, especially across WAN, due to the
incurred latencies and overheads at various levels (e.g., ap-
plication, technology tools, virtualization, network).

A better option is to transfer events in batches. While this
improves the transfer rate, it also introduces a new problem,
related to selecting the proper batch size. Figure 1 presents
the dependency between the batch size and the transfer rate,
and the transfer latency per event, respectively. We notice
that the key challenge here is the choice of an optimal batch
size and the decision on when to trigger the batch sending.
This choice strongly relies on the streaming scenario and
on the sensed environment (i.e. the cloud). We aim to
tackle these problems by proposing an environment-aware
solution, which enables optimum-sized batch streaming of
events in the clouds. To achieve this, we model the latency
of the event transfer with respect to the cloud environment,
dynamically adapt the batch size to the context and enable
multi-route streaming across clouds nodes.

3. MODELING THE STREAMING OF DATA

IN THE CONTEXT OF CLOUDS
The cloud variability and the fluctuating event generation

rates require an appropriate model for event streaming, able
to capture the cloud specificities. In this section, we intro-
duce such a model and present the decision mechanisms for
selecting the number of events to batch.

3.1 Design Principles
JetStream relies on the following set of design principles:

Time between events

Batch

Serializer

Event
Source

Network

Destination - Site 2

Sender - Site 1

Stream
Processing
EngineDe-Serializer

LatencyBatching LatencyTransfer

LatencyDecodingLatencyEncoding

MTBE= 1
RateAcquisition

Figure 2: Breaking down the latency to deliver an
event from source to stream processing engine across
cloud nodes

Environment awareness - The cloud infrastructures are
subject to performance variations due to multi-tenancy
and network instability on the communication links
within and across sites. Monitoring and detecting such
performance changes allows the system to react ac-
cordingly and schedule the transfer of events efficiently.

Decoupling the transfer from processing - The event
transfer module needs to be designed as a stand-alone
component, decoupled from the stream processing en-
gine. We advocate this solution as it allows seamless
integration with any engine running in the cloud. At
the same time, it provides sustainable and predictable
performance, independent on the usage setup.

Self-optimization - User configurations do not guarantee
optimal performance, especially in dynamic environ-
ments. Moreover, when it comes to large-scale sys-
tems, the tasks of configuring and tuning the service
tends to become complex and tedious. The alterna-
tive is to design autonomic cloud middleware, able to
self-optimize. Coupled with an economic model, these
systems could also regulate the resource consumption
and enforce service-level agreements (SLAs).

Generic solution - Building specific optimizations which
target precise applications is efficient, but limits the
applicability of the solution. Instead, we propose a set
of techniques which can be applied in any cloud con-
text, independent of the application semantics. Jet-
Stream does not depend on the nature of the data,
nor on the query types.

3.2 Zoom on the event delivery latency
We express the latency of the events based on a set of

cloud parameters which can be monitored. Such a technique
allows to bind the batch size corresponding to the minimal
event latency both to the stream and the environment infor-
mation. We start by breaking down the end-to-end latency
of an event in four components, depicted in Figure 2: form-
ing the batch, encoding (e.g., serializing), transferring the
batch and decoding (e.g., de-serializing). The set of param-
eters able to describe the context and define the latency is:
the average acquisition rate (RateAcquisition) or mean time
between events (MTBE), the event size (EventSizeMB), the
serialization/deserialization technique, the throughput (thr)
and the number of events to put in the batch (i.e., batch size
- batchSize). The goal is to determine the latter dynamically.
In the following, we will model the latency components using
these parameters.
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Figure 3: The proposed schema for multi-route
streaming across cloud nodes.

The batching latency corresponds to the delay introduced
by an event waiting in the batch for other events to
arrive, before they are all sent as a batch. The param-
eters which describe this latency are the average ac-
quisition rate of the events and the number of events
in the batch. As the delay depends on the position
of the event in the batch, we chose to use the av-
erage latency per event. This can be computed by
averaging the sum of the delays of all events in the
batch: Latencybatching = batchSize

2×RateAcquisition
. Intuitively,

this corresponds to the latency of the middle event.

The transformation latency groups the times to encode
and to decode the batch using a specific serialization
library. It depends on the used format (e.g. binary,
JSON etc.), the number of bytes to convert and the
number of events in the batch. To express this, we rep-
resent the transformation operation as an affine func-
tion (i.e. f(x) = ax + b) where a corresponds to the
conversion rate (i.e. amount of bytes converted per sec-
ond - tDs), while the b constant gives the time to write
the metadata (tHs). The latency per event can then be

expressed as: Latencytransformation = tHs+tDs×batchSizeMB

batchSize
,

which holds both for the encoding and decoding oper-
ations. This formula can also be applied to express the
size of the data to be transferred by simply replacing
the time constants with data related constants (i.e.
size of the metadata and the compression/extension
ratio).

The transfer latency models the time required to trans-
fer an event between cloud nodes across data-centers.
To express it, we consider both the amount of data in
the batch as well as the overheads introduced by the
transfer protocol (e.g. HTTP, TCP) - sOt and the en-
coding technique - sOe. Due to the potentially small
size of data transferred at a given time, the through-
put between geographically distant nodes cannot be
expressed as a constant value. It is rather a func-
tion of the total batch size (SizeTotal = batchSizeMB ×

batchSize), since the impact of the high latency be-
tween data-centers depends on the batch size. The
cloud inter data-center throughput - thr(Size) is dis-
cussed in more detail in the following section. The
average latency for transferring an event can then be
expressed as Latencytransfer =

sOt+sOe+batchSizeMB

thr(SizeTotal)

3.3 Multi-route streaming
The throughput is one of the most peculiar aspects when

considering communication in the clouds. On the one hand,
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Figure 4: a) The value of the throughput with re-
spect to the number of routes across cloud Small
VMs for increasing size of the data chunk. b) Ap-
proximating with one pattern the cloud throughput,
independent of the number of routes. The approxi-
mation is built from the averages of the normalized
throughput functions for each number of routes.

the intra-data-center throughput (between the nodes within
one’s single site deployment) is relatively stable and a pri-
ori known, as it is specified by the cloud provider within
the SLA (e.g., 100 Mbps for Small Azure VMs). On the
other hand, there are no guarantees when it comes to the

inter-data-center throughput (between the data-centers). In
fact, the high latency and generally low throughput network
connecting the sites is not owned by the cloud provider, as
the packet routing is done across multiple internet service
providers (ISPs). This makes it more unstable, unknown in
advance and subject to poor performance.

In order to address the issue of low inter-data-center through-
put, we designed a transfer strategy suitable for a typical
cloud setup (i.e., application running across several nodes in
different cloud data-centers deployments), which can harvest
extra bandwidth by using additional intermediate nodes. The
idea is to use multiple routes for streaming across sites, as
depicted in Figure 3. We build this strategy on two obser-
vations: the virtual inter data-center routes do not map to
identical physical paths and the latency of intra-site com-
munication is low (less than 10%) compared to inter site
communication [45]. These observations allow to aggregate
additional bandwidth by sending data from the sender nodes
to intermediate nodes within the same deployment (i.e. be-
longing to the same application space), which will then for-
ward it towards the destination. With this approach, the
system aggregates extra physical bandwidth from the dif-
ferent paths and routes established when connecting dif-
ferent nodes across the ISP infrastructures. This generic
method of aggregating inter-site bandwidth is further dis-
cussed in [45], in the context of bulk multi-hop data trans-
fers across multiple cloud data-centers. To integrate this
approach within our model, we extend the set of parameters
that are used to characterize the stream context with the
number of channels.

Independent of the number of routes used for streaming,
the value of the throughput function has to be known at
runtime. In order to limit the number of network samples
that need to be performed to obtain it, and to reduce the
monitoring intrusiveness, we approximate this function. In
Figure 4 a) we present measurements of the throughput for
a number of routes between North Central US and North
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Figure 5: The architecture and the usage setup of
the adaptive batch streamer

Europe Azure data-centers. In Figure 4 b) we normalize
these values (i.e., % of the corresponding stable throughput)
and approximate them using a polynomial function, which
we determined empirically that it gives the most accurate
approximation. Hence such a model can in fact represent
the throughput pattern, with an error introduced by the
cloud variability of less than 15%. Using this approximation,
the entire function can be extrapolated by measuring only
the asymptotic stable throughput. This will be used as the
amplitude which multiplied with the normalized estimation
will give the throughput for any size.

The downside of using multiple routes for sending batches
is that the ordering guarantees offered by the communication
protocol for one link do not hold anymore. This translates
into batches arriving slightly out of order due to changing
conditions on the communication links (e.g., packet drops,
congestions etc.). It is mandatory to maintain the integrity
of the communication and avoid dropping data just because
another link was faster so that batches need to be reordered
at the destination. We achieve this by buffering the batches
at the destination until their turn to be delivered to the
streaming engine arrives. This introduces a new component
for the latency: latency for reordering. It can be modeled

using the Poisson distribution (Poisson(k, λ) = λk
×e−λ

k!
) to

estimate the probability of having k number of batches ar-
riving before the expected batch, which fixes λ to 1, as
we consider as reference the time to transfer one batch .
This probability can then be correlated with a penalty as-
signed to each unordered batch, given by its latency. Finally,
summing these probabilities over the number of channels
and normalizing based on the events will give an estima-
tion of the worst case expected latency: Latencyreordering =
∑channels

i=2

∑L
j Poisson(j,1)×j×Latency

×batch

×batch×size×L
. Here, L gives the

maximum number of batches (e.g., 10) regarded as poten-
tially arriving before the reference one through a channel,
giving the upper limit for iterating the k Poisson parameter.

3.4 Adaptive cloud batching
In Algorithm 1 we wrap up everything and present the de-

cision mechanism in JetStream for selecting the number of
events to batch and the number of channels to use. The al-
gorithm estimates the average latency per event for a range
of batch sizes and channels, retaining the best one. As an
optimization, a simulating annealing technique can be used
to perform the search faster, by probing the space with large
steps and performing exhaustive searches only around local
optima. Depending on the magnitude of the optimal batch

Algorithm 1 The selection of the optimal batch size and
the number of channels to be used
1: procedure BatchAndChannelsSelection

2: getMonitoredContextParameters()
3: ESTIMATE MaxBatched from [MaxTimeConstraint]
4: while channels < MaxNodesConsidered do

5: while batchsize < MaxBatched do

6: ESTIMATE latencybatching from

[RateAcquisition, batchsize]
7: ESTIMATE latencyencoding from

[overheads, batchsizeMB]
⊲ Estimate the transfer latency for 1 channel

8: ESTIMATE latencytransfer1 from
[batchsizeMB, thrRef, 1channel]

9: COMPUTE RatioCPU from
[latencyencoding, latencybatching, V M Cores]

⊲ Prevents idle channels
10: if RatioCPU ∗ latencybatching × channels <

latencytransfer1 + latencyencoding then

11: ESTIMATE latencydecoding from

[overheads, batchsizeMB]
12: ESTIMATE latencytransfer from

[batchsizeMB, thrRef, channels]
13: ESTIMATE latencyreordering from

[channels, latencytransfer]
14: latencyperEvent =

∑
latency

∗

15: if latencyperEvent < bestLatency then

16: UPDATE [bestLatency,Obatch,Ochannels]
17: end if

18: end if

19: end while

20: end while

21: end procedure

size, the maximal end-to-end event latency introduced by
batching can be unsatisfactory for a user, as it might vio-
late application constraints, even if the system operates at
optimal transfer rates. Hence, the users can set a maximum
acceptable delay for an event, which will be converted in a
maximum size for the batch (Line 3). As for the number
of channels selection, we estimate how many batches can be
formed while one is being transferred (Lines 6-8).

Once the transfer of a batch is completed, adding ad-
ditional channels to distribute the batches become useless.
The condition on Line 10 prevents the system from creat-
ing idle routes. Finally, the CPU usage needs to be also
integrated in the decision process. Sending frequent small
batches will increase the CPU consumption and artificially
decrease the overall performance of the cloud node. We
therefore assign a penalty based on the ratio between the
time to form a batch and the time used by the CPU to en-
code it, according to the formula RatioCPU =

latencyencoding
(latencybatching+latencyencoding)×V M Cores

. To sum up, JetStream

collects a set of context parameters (Line 2) and uses them to
estimate the latency components according to the formulas
presented above. Based on these estimations, it selects the
optimal batch size and the number of channels for streaming.

4. SYSTEM OVERVIEW
We designed JetStream as a proof of concept of the pre-

vious approach. Its conceptual schema is presented in Fig-
ure 5. The events are fed into the system at the sender side,
as soon as they are produced, and they are then delivered to
the stream processing engine at the destination. The pro-
totype which implements this architecture was developed in



C# using the .NET 4.5 framework. The distributed modules
and their functionality are described bellow:

The Buffer is used both as an input and output endpoint
for JetStream. The sender application or the event
source adds the events to be transferred, as they are
produced, while the receiver application (i.e., the stream
processing engine) pops (synchronously) the events or
it is notified (asynchronously) when the events have
been transferred. The module relies on two queues
for synchronization purposes in a producer-consumer
fashion. The Buffer is also in charge of monitoring the
input stream in order to assert in real time the acqui-

sition rate of the events and their sizes.

The Batch Oracle stays at the core of JetStream, as it en-
forces the environment-aware decision mechanism for
adaptively selecting the batch size and the amount of
channels to use. It implements Algorithm 1 and col-
lects the monitoring information from the Buffer and
the Transfer Module. It further controls the moni-
toring intrusiveness by adjusting the frequency of the
monitor samples according to the observed variability.

The Transfer Module implements the multi-route stream-
ing. On the intermediate nodes, its role is to forward
the packets towards the destination. Currently, the
modules is agnostic of any streaming scenario and can
integrate any transfer protocol. It provides several im-
plementations on top of TCP: synchronous and asyn-
chronous, single- or multi-threaded. It is also in charge
of probing the network and measuring the throughput
and its variability. The batches are sent in a round-
robin manner across the channels, balancing the load.
As future work, the transfer performance can be im-
proved by integrating additional transfer techniques
among which the system can automatically switch based
on the streaming pattern and the context information.

The Event Sender coordinates the event transfers by man-
aging the interaction between all modules. It queries
the Batch Oracle about when to start the transfer of
the batch. Next, it setups the batch by getting the
events from the Buffer and adding the metadata (e.g.,
batch ID, streams IDs etc.). The batch is then serial-
ized by the Serialization module and the data trans-
ferred across data-centers by the Transfer Module.

The Event Receiver is the counterpart of the Event Sender
module. The arriving batches are de-serialized, re-
ordered and delivered to the application as a stream
of events, in a transparent fashion for the stream pro-
cessing engine. The module issues acknowledgements
to the sender or makes requests for re-sending lost or
delayed batches. Alternatively, based on users’ poli-
cies, it can decide to drop late batches, supporting
the progress of the stream processing despite potential
cloud-related failures. Users configure when such ac-
tions are performed by means of waiting times, number
of batches, markers or current time increments (CTI).

Serialization/De-Serialization has the role of convert-
ing the batch to raw data, which can be afterwards
sent over the network. We integrate in our prototype
several libraries: Binary (native), JSON (scientific) or
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Figure 6: The latency components per event with
respect to the batch size for a single streaming chan-
nel, for inter-sites event transfers

Avro (Microsoft HDInsight), but others modules can
be easily integrated. This module can host additional
functionalities (e.g., data compression or deduplica-
tion) in the future.

5. EVALUATION
The goal of the experimental evaluation presented in this

section is to validate the JetStream system in a real cloud
setup and discuss the main aspects that impact on its per-
formance.

5.1 Experimental setup
The experiments were run in the Microsoft’s Windows

Azure cloud in the North-Central US and the North Eu-
rope data-centers. We chose these sites in order to create a
geographical-distributed setup which permits to analyze the
ability of the system to adapt to changing factors generated
both by the cloud itself (i.e., multi-tenancy, virtualization)
and the wide area communication across multiple ISPs. All
the experiments were run with Small Web Role VMs having
1 CPU, 1.75 GB of memory, 225 GB local storage and 100
Mbps bandwidth. When using multi-route streaming, up
to 5 additional nodes were used within the sender deploy-
ment, implementing the transfer scheme discussed in Sec-
tion 3.3. Each experiment sends between 100,000 and 3.5
million events, which, given the size of an event, translates
into a total amount of data ranging from tens of MBs to 3.5
GB. Each sample is computed as the average of at least ten
independent runs of the experiment performed at various
moments of the day (morning, afternoon and night).

The performance metrics considered are the transfer rate

and the average latency of an event. The transfer rate is
computed as the ratio between a number of events and the
time it takes to transfer them. More specifically, we mea-
sured, at the destination side, the time to transfer a fixed set
of events. For the average latency of an event, we measured
the number of events in the sender buffer, the transfer time
and reported the normalized average per event based on the
latency formulas described in Section 3.2.

The evaluation is performed using a synthetic benchmark
and a real-life application. We created a synthetic bench-
mark in order to have full control over the sizes and the gen-
eration rate of the events. The generation rates are varied
between hundred of events per second to tens of thousands
of events per second, as indicated by the scale of the transfer
rates. Such a predictable and configurable setup allows us
to analyze and to understand the results better when test-
ing the behavior of JetStream in several scenarios. Finally,
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Figure 7: Comparing the estimation of the worst-
case latency (i.e., the penalty) of unordered batches
with actual measurements, while increasing the
number of channels used for the transfers

we use the events collected by the MonALISA monitoring
systems from the Alice LHC experiment to assert the gains
brought by our approach in a real setup.

5.2 Accuracy
We depict in Figure 6 the total latency and its compo-

nents, per event, with respect to the number of batched
events. Selecting the optimal size of the batch comes down
to finding the value corresponding to the minimal latency
(e.g. ∼ 200 for the scenario illustrated in Figure 6). The
search for the batch size that minimizes the latency per event
is at the core of the JetStream algorithm presented in Sec-
tion 3.4. The selection of the optimal value from this type
of representation for the latency is computed from the esti-
mations about the environment (e.g. network throughput,
CPU), which may not be exact. Indeed, the cloud variability
can lead to deviations around the optimal value in the selec-
tion process of the amount of events to batch. Considering
that the performance around the optimum is rather flat (as
seen in Figure 6), JetStream delivers more than 95% of the
optimal performance even in the case of big and unrealistic
shifts from the optimum batch size (e.g. selecting a batch
size of 150 or 250 instead of 200 in Figure 6 will decrease the
performance with 3%). The solution for further increasing
the accuracy, when selecting the batch size, is to monitor
the cloud more frequently. These observations show that
accuracy can be traded for monitoring intrusiveness at the
level of cloud resources (e.g. network, memory and CPU).

In order to validate the penalty model proposed for the
latency of reordering when using multiple routes, we com-
pare the estimations of our approach with actual measure-
ments. The results are presented in Figure 7. The delay for
unordered batches was measured as the time between the
moment when an out of order batch (not the one next in se-
quence) arrives, and the moment when the actual expected
one arrives. The experiment shown in Figure 7 presents
the average of this maximum unordered delay over tens of
independent trials in which a fixed amount of events (i.e.
1 million events of size 2.5 KB) is transferred. We notice
that the proposed model gives a good estimation of this de-
lay, which can be used as a penalty latency for multi route
streaming. The accuracy in this case is 90%–95%, because
the penalty model for multi-routing does not integrate the
variability of the cloud. Yet, such errors can be tolerated
as they are not determinant when selecting the number of
channels to use.
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Figure 8: Comparing the performance (transfer rate
- top and average latency per event - bottom) of in-
dividual event streaming and static batches with the
adaptive batch of JetStream for different acquisition
rates, while keeping the size of an event fixed (224
bytes). The latency and transfer rates for individual
event streaming (i.e., batch of size 1) are between
50 to 250 times worse than the ones of JetStream
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Figure 9: The performance (transfer rate – left and
average latency per event – right) of individual event
streaming, static batches and JetStream for events
of size 800 bytes. The latency and transfer rates for
individual event streaming (i.e. batch of size 1) are
from 40 up to 150 times worse than JetStream

5.3 Individual vs. batch event transfers
The goal of this set of experiments is to analyze the per-

formance of individual event streaming compared to batch-
based streaming, with static and adaptive (i.e., JetStream)
sizes. In the static case, the number of events to be batched
is fixed a priori, with a batch of size 1 representing inde-
pendent event streaming. These setups are compared to
JetStream, which adapts the batch size to the context at
runtime, for varying event sizes or generation rates.

The experiments presented in Figure 8 use an event of
size 224 bytes and evaluate the transfer strategies consider-
ing low (left) and high (right) event generation rates. The
experiments were repeated for different number of routes
for streaming: 1, 3 and 5, and measure the transfer rates
(top) and average latency per event (bottom). The first ob-
servation is that batch-based transfers clearly outperform
individual event transfers for all the configurations consid-



ered. The results confirm the high overhead and the low
throughput with small sizes for the transfers between data-
centers. Grouping the events increases the transfer rate tens
to hundred of times (up to 250 times for JetStream) while
decreasing the average latency per event. Two aspects de-
termine the performance: the size of the batch with respect
to the stream context and the performance changes of the
cloud. Static batches cannot handle these variations, mak-
ing certain batch sizes good in one context and bad in others
(e.g. batches of size 10 give poor performance for 1 route
and high event acquisition rate and good performance for 5
routes and low acquisition rates). Selecting the correct size
at runtime brings an additional gain between 25% and 50%
over static batch configurations. We repeated the same set
of experiments for bigger event sizes, all showing the same
behavior. Due to space constraints, we only illustrate the
transfer rate and average event latency for an event size of
800 bytes in Figure 9.

5.4 Adapting to the context changes
The data acquisition process in a streaming scenario is not

necessarily uniform. Fluctuations in the event rates of an ap-
plication running in the cloud can appear due to the nature
of the data source, the virtualized infrastructure or the cloud
performance variability [16]. To analyze the behavior of Jet-
Stream in such scenarios, we performed an experiment in
which the event generation rate randomly changes in time.
For the sake of understanding, we present in Figure 10 a
snapshot of the evolution of the transfer rate in which we
use fine grain intervals (10 seconds) containing substantial
rate changes. JetStream is able to handle these fluctua-
tions by appropriately adapting the batch size. In contrast,
static batch transfers either are introducing huge latency
from waiting for too many events, especially when the event
acquisition rate is low (e.g., batches of size 1000 or 5000 at
time moment 9) or are falling behind the acquisition rate
which leads to increasing amount of memory used to buffer
the untransferred events (e.g., batch of size 100 at moment
5). Reacting fast to such changes is crucial for delivering
high performance in the context of clouds; this is also the
reason why we chose to consider such sudden rates changes.
The number of used resources (e.g. the extra nodes which
enable multiple route streaming) is reduced by 30% when
taking into account the stream context. These resource sav-
ings are justified by the fact that low event acquisition rates
do not require multiple route streaming as higher ones do.
Additionally, as shown in [23], the fluctuations in the ap-
plication loads have certain patterns across the week days.
Hence, in long running applications, our approach will make
substantial savings by detecting these daily or hourly trends
and using such knowledge to scale up/down the number of
additional nodes used for transfers.

5.5 Benefits of multiple route streaming
Figure 11 shows the gain obtained in transfer rate with

respect to the number of routes used for streaming, for Jet-
Stream and for a static batch of a relatively small size (i.e.
100 events). Multiple route streaming pays off when increas-
ing the amount of data sent for both strategies (i.e. static
and adaptive). In fact, by aggregating extra bandwidth from
the intermediate nodes, we are able to decrease the impact
of the overhead (batch metadata, communication headers,
serialization headers etc.) on smaller batches. More pre-
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ber of routes used for streaming

cisely, a larger bandwidth allows to send more data, and
implicitly, the additional data carried with each batch does
not throttle the network anymore. This brings the trans-
fer rate of smaller, and consequently more frequent, batches
closer to the maximum potential event throughput. It is the
case of the static batch of size 100 on Figure 11, delivering a
throughput close to JetStream for higher number of routes.
With higher throughput and a lower overhead, the optimal
batch size can be decreased. When selecting it, JetStream
is able to decrease the end to end latency. We conclude that
sustaining high transfer rates under fixed time constraints is
possible by imposing upper bounds for the batch sizes, which
enables JetStream to integrate users’ time constraints for
maximum delay. As discussed in Algorithm 1, it does this
by considering a maximum limit on the batch.

5.6 Experimenting with ALICE: a real-life
High Energy Physics application

In a second phase, our goal was to assess the impact of
JetStream in a real-life application. We opted for ALICE
(A Large Ion Collider Experiment) [1], one of four LHC
(Large Hadron Collider) experiments at CERN (European
Organization for Nuclear Research), as its scale, volume and
geographical distribution of data require appropriate tools
for efficient processing. Indeed, the ALICE collaboration,
consisting of more than 1,000 members from 29 countries
and 86 institutes, is strongly dependent on a distributed
computing environment to perform its physics program. The
experiment collects data at a rate of up to four petabytes
per year, produce more than 109 data files per year, and



require tens of thousands of CPUs to process and analyze
them. The CPU and storage capacities are distributed over
more than 80 computing centers worldwide. These resources
are heterogeneous in all aspects, from CPU model and count
to operating system and batch queuing software.

Our focus, in these series of experiments, is on the moni-
toring information collected in real-time about all ALICE re-
sources. We used the MonALISA [33] service to instrument
the huge amount of monitoring data issued from this exper-
iment. More than 350 MonALISA services are running at
sites around the world, collecting information about ALICE
computing facilities, local and wide area network traffic, and
the state and progress of the many thousands of concurrently
running jobs. This yields more than 1.1 million parameters
published in MonALISA, each with an update frequency of
one minute. Using ALICE-specific filters, these raw pa-
rameters are aggregated to produce about 35,000 system-
overview parameters in real time. These overviews are usu-
ally sufficient to identify problems or to take global actions
in the system and they are the fuel for the JetStream event
streaming platform. The MonALISA framework and its
high frequency updates for large volumes of monitoring data
matched closely with JetStream’s architecture so the pieces
fit naturally together, but it also provided us a major oppor-
tunity to fullfill the system’s initial goal: using the (moni-
toring) data to take automated decisions in real time (in this
context, improve the observed system).

Based on the monitoring data collected and stored by
MonALISA as of December 2013, we have replayed a se-
quence of 1.1 million events considering their creation times
at the rate they were generated by Alice. The measure-
ments were performed using 2 additional VMs as intermedi-
ate nodes at the sender side (i.e. 3 streaming routes). Ini-
tially, the experimental setup considered 5 streaming routes.
However, during the transfer of the data using JetStream, we
observed that maximum 3 such routes were used, as the sys-
tem determined that the performance cannot be increased
beyond this point. The same number of nodes is recom-
mended if we query the system based on the stream context
(i.e. event size and acquisition rate). The accuracy of this
decision was in fact validated as our adaptive approach was
obtaining the same transfer performance using 3 nodes as
the static batch configurations which were using 5. Fur-
thermore, the static configurations also obtained the same
transfer performances when switched to 3 nodes, showing
that indeed this streaming context was not requiring more
than 3 streaming routes. This observation shows the im-
portance of an environment-aware adaptive approach, not
subject to arbitrary human configuration choices.

Figure 12 displays the total latency of the events at the
sender (Figure 12 a) and the transfer rate (Figure 12 b) when
comparing JetStream with static configurations for varying
batch sizes. The transfer performances of static batches with
more than 100 events are similar with JetStream. Consid-
ering that the generation rate of the events varies from low
to high, sub-optimal batch sizes will in fact lead to an ac-
cumulation of the events in the sender queue during the
peak rates. These buffered events will artificially increase
the performance, at the expense of extra memory, during
the periods when the acquisition rate of events is low. All in
all, this behavior will produce a stable transfer performance
over a wide range of static batch sizes, as it can be observed
in Figure 12 b; but on the other hand, it will increase the
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Figure 12: The total latency (a) and the trans-
fer rate (b) measured when transferring 1.1 million
events from MonALISA monitoring the Alice exper-
iment. The latency for independent event transfer
(i.e. batch of size 1) in a) is not represented because
it would modify the scale greatly due its magnitude,
having a value of 30900 seconds as opposed to 80
seconds for JetStream

latency of the events as depicted in Figure 12 a. As our ap-
proach selects the appropriate batch size at each moment,
it consequently reduces the amount of events waiting in the
sender queue and decreases the overall latency of the events.
Compared to the static batch strategies providing constant
transfer performance, the latency of JetStream is decreased
from 2.2 (100-event batches) down to 17 times (10000-event
batches).

6. RELATED WORK
The existing works can be grouped into 5 categories based

on their application domains and features. We discuss them
in this section.

Systems for data transfers.
Several solutions have been proposed in the last years for

managing data transfers at large scale. StorkCloud [30] in-
tegrates multi-protocol transfers in order to optimize the
end-to-end throughput based on a set of parameters and
policies. It adapts the parallel transfers based on the clus-
ter link capacity, disk rate and CPU capacity, using the
algorithm proposed in [47]. The communication between
StorkCloud components is done using textual data repre-
sentation. Similarly, our system optimizes the streaming
between data-centers by modeling a set of parameters. How-
ever, JetStream remains transparent to the data format and
limits the annotation of events or batches with metadata,
reducing the overhead of the transfer, which becomes cru-
cial in the context of continuous streams of data. Other
systems, like NetSticher [32], target bulk transfers between
data-centers, as we do. The authors exploit the day/night
pattern peaks of usage of a data-center and leverage the re-
maining unutilized bandwidth. Though NetSticher is useful
for backups and checkpoints, it does not work for real-time
systems. GlobusOnline [3] is another system which provides
data transfers over WAN, targeting data sharing between
different infrastructures (e.g. grids, institution infrastruc-
tures, community clouds). Unlike our system which handles
streams of events with a light resource fingerprint, Globu-
sOnline manages only file transfers and has substantial re-
source requirements. Other recent efforts for enabling paral-
lel data transfers lead to the development of the multi-path



TCP standard [39]. We share common goals with this ini-
tiative: aggregating more bandwidth between data-centers
and exploiting more links for communication. However, de-
spite the interesting solutions provided at the lower levels of
the communication stack for congestion control, robustness,
fairness and packet handling, multi-path TCP is not cur-
rently available today on the cloud infrastructures. It will
need to be set in place by the cloud providers, not by users.

Video streaming.
The work in this area aims to improve the end-to-end

user experience by considering mostly video specific opti-
mizations: packet-level correction codes, recovery packets,
differentiated redundancy and correction codes based on the
frame type [25]. Additionally, such solutions integrate low-
level infrastructure optimizations based on network type,
cluster knowledge or cross-layer architectures [31, 37]. None
of these techniques directly apply to our scenario, as they are
strongly dependent on the video format and not adequate for
generic cloud processing. On the other hand, ideas like using
coordinated or uncoordinated multi-paths to solve conges-
tion, as discussed in [28], are analogous to our approach of
using intermediate nodes. However, even the systems which
consider the use of TCP for video streaming instead of the
traditional UDP, like [46], have some key differences with
JetStream. While our goal is to aggregate more bandwidth
from the routes between data-centers and to maximize the
usage of the network, thereby the extra routes in [46] are
used just as a mean to have a wider choice when select-
ing the fastest path towards the client. Also, the size of
the packets is fixed in video streaming, while in our case it
adapts to the stream context.

Streaming in peer-to-peer systems.
The peer-to-peer-based systems can be divided in two cat-

egories based on how peers that forward the events organize
themselves in an overlay network [44]: some use DHT over-
lays [22, 41] and others group the subscribers in interest
groups based on event semantics [42, 43]. While the perfor-
mance of the former is highly sensitive to the organization of
the peers, the latter can improve the performance by sharing
common events within the interest group. Further optimiza-
tions can be achieved by discovering the network topology
which is then matched to the event traffic between the sub-
scribers [44]. This aims to improve the network usage by
identifying whether independent overlay paths correspond
to common physical paths and by allowing deduplication of
events. We share the idea of intermediate nodes forwarding
events towards the destination. However, in our case, the
virtual topology between the sender, intermediate nodes and
destination is fixed and known from the beginning. More-
over, in the context of clouds it is not possible to consider
information about physical paths, as all access and knowl-
edge is limited to the virtual space. Unlike these research
efforts, our approach focuses on the acquisition of data from
remote sources and on the communication between instances
of the applications from different cloud data-centers, rather
than disseminating information among subscribers. A sys-
tem close to our work is Stormy[35], which implements con-
cepts from P2P stream processing in the context of clouds.
The system is an elastic distributed processing service that
enables running a high number of queries on continuous
streams of events. The queries are replicated and applied on

all the replicas of the events created across the peer nodes.
As opposed to JetStream, Stormy delegates the staging-in
of the events to the data source which is expected to push
the events in the system. It also handles the stream as in-
dividual events both in the acquisition and the replication
phases.

Data Stream Management Systems (DSMS).
These systems primarily focus on how queries can be exe-

cuted and only support data transfers as a side effect, usually
based on rudimentary mechanisms (e.g., simple event trans-
fer over HTTP, TCP or UDP) or ignore this completely by
delegating it to the data source. D-Streams [48] provides
tools for scalable stream processing across clusters, building
on the idea of handling small batches which can be processed
using MapReduce; an idea also discussed in [36]. Here, the
data acquisition is event driven: the system simply collects
the events from the source. Comet [23] enables batch pro-
cessing across streams of data. It is built on top of Dryad[26]
and its management relies on its channel concept to trans-
fer a finite set of items over shared memory, TCP pipes or
files. However, it is designed to work within the same clus-
ter and does not address the issues of sending continuous
stream of events between data-centers. In [13], the authors
propose a store manager for streams, which exploits access
patterns. The streams are cached in memory or disks and
shared between the producers and the consumers of events;
there is no support for transfers. RIP [10] is another example
of DSMS which scales the query processing by partitioning
and event distribution. Middleware solutions like System S
from IBM [18] were proposed for single cluster processing,
with processing elements connected via typed streams. The
ElasticStream system [27] migrates this solution to Amazon
EC2 taking into consideration cloud-specific issues like SLA,
VMs management and the economic aspects of performance.
In [14], the authors provide an accurate cost and latency es-
timation for complex event processing operators, validated
with the Microsoft StreamInsight [4]. Other works in the
area of cloud-based streaming, like Sphere[21], propose a
GPU-like processing on top of a high performance infrastruc-
ture. In [38], the authors propose to use web services for the
creation of processing pipelines with data passed via the web
service endpoints. Other systems like Aurora and Medusa
[7] consider exploiting the geographically distributed nature
of stream data sources. However, the systems have a series
of limitations despite their strong requirements from the un-
derlying infrastructure (e.g., naming schema, message rout-
ing): Aurora runs on a single node and Medusa has a single
administrator entity. All these cloud-based solutions focus
on query processing with no specific improvements or solu-
tions for the cloud streaming itself and, furthermore, they
do not support multi-site applications.

Adaptivity for streaming.
Several solutions aim to provide a dynamic behavior at dif-

ferent phases of stream processing. SPC [8] is a distributed
platform which supports the execution of many queries on
multiple streams. It proposes a new programming model
and the corresponding system architecture. The main fea-
tures are high expressivity and dynamic binding of input
with output ports at runtime, based on user format de-
scription. From the data management point of view, it pro-
vides a hierarchical communication model, adaptively shift-



ing between pointers, shared memory and network trans-
port protocols (TCP, UDP, multicast). Nevertheless, the
stream-based optimizations are applicable only at the level
of multi-core nodes. Another approach consists in parti-
tioning the input streams in an adaptive way considering
information about the stream behavior, queries, load and
external metadata [11]. Despite the fact that this solution
targets the management of input streams, it has no sup-
port for the efficient transmission of data. Other solutions
[15] focus on improving performance over limited resources
(e.g. disk, memory). This is achieved by moving from row
to column-oriented processing and by exploiting the event
time information. From the data management point of view,
the events are assumed to be transferred event-by-event by
the data source. The problem of optimizing the distribution
of data in the presence of constrained resources is also dis-
cussed in [19]. Their approach identifies delivery graphs with
minimal bandwidth consumption on nodes which act both
as consumers and sources, while applying filter operations
on incoming streams. The benefits of adaptivity in the con-
text of streaming can be also exploited at application level:
in [34] the authors show the advantage of adapting the size
of the window in the detection of heart attacks. JetStream
complements these works by focusing on the transfers and
adapting to the stream context.

7. CONCLUSIONS
In this paper, we have proposed a novel approach for high

performance streaming across cloud data-centers by adapt-
ing the batch size to the transfer context and to the cloud
environment. The batching decision is taken at runtime by
modeling and minimizing the average latency per event with
respect to a set of parameters which characterize the context.
To tackle the issue of low bandwidth between data-centers,
we propose a multi-route schema. This method uses addi-
tional cloud nodes from the user resource pool to aggregate
extra bandwidth and to enable multi route streaming.

As a proof of concept, we designed JetStream, which was
validated across two data-centers, from Europe and US,
within the Azure cloud, using synthetic benchmarks, and
monitoring data collected with MonALISA from the Alice
experiment at CERN. JetStream increases transfer rates up
to 250 times compared to individual event transfers. The
adaptive selection of the batch size further increases perfor-
mance with an additional 25% compared to static batch size
configurations. Finally, multi-route streaming triples perfor-
mance and decreases the end-to-end latency while providing
high transfer rates.

Encouraged by these results, we plan to extend the com-
munication module with additional transfer protocols and to
automatically switch between them based on the streaming
pattern. We are also investigating other transfer strategies
for the multi-route streaming across cloud nodes. Finally,
we plan to analyze how this approach can be applied for
multicast inter site stream traffic.
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