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Abstract

The problem of extracting continuous structures from
noisy or cluttered images is a difficult one. Successful ex-
traction depends critically on the ability to balance prior
constraints on continuity and smoothness against evidence
garnered from image analysis. Exact, deterministic optimi-
sation algorithms, based on discretized functionals, suffer
from severe limitations on the form of prior constraint that
can be imposed tractably. This paper proposes a sequen-
tial Monte-Carlo technique, termed JetStream, that enables
constraints on curvature, corners, and contour parallelism
to be mobilized, all of which are infeasible under exact op-
timization. The power of JetStream is demonstrated in two
contexts: (1) interactive cut-out in photo-editing applica-
tions, and (2) the recovery of roads in aerial photographs.

1. Introduction

The automatic or semi-automatic extraction of contours
in images is an important generic problem in early vision
and image processing. Its domain of applications ranges
from the generic tasks of segmenting images with closed
contours to the extraction of linear structures of particular
interest such as roads in satellite and aerial images.

Despite the variety of applications, most approaches to
contour extraction turn out to rely on some minimal cost
principle. In a continuous deterministic setting, this can be
cast as the minimization over a proper set of plane curves r
of a functional

E(r; y) =

Z
r

g(�(s); y(r(s)))ds (1)

� is the curvature, s is the arc-length, and y(r(s)) is some
scalar or vector derived at location r(s) from the raw image
data I , e.g., often y(r(s)) is the gradient norm jrI(r(s))j.
This functional captures some kind of regularity on candi-
date curves, while rewarding, by a lower cost, the presence

Figure 1. Probabilistic extraction of contours with Jet-
Stream. Even in presence of clutter, JetStream enables the
extraction of (Left) silhouettes for photo-editing purpose,
and (Right) roads in aerial photographs.

along the curve of contour cues such as large gradients or
edgels detected in a previous stage.

We are interested in the particular case where a starting
point p can be picked (either manually or automatically).
If local cost function g in (1) turns out not to depend on
�, the optimal curve is a geodesic which can be recovered,
at least in the form of a chain of pixels, using dynamic
programming-type techniques [2, 4, 13, 14, 15, 16]. Unfor-
tunately, unless optimality is abandoned, and huge storage
resources are available, [13], there are tight restrictions on
the form of g. As a consequence, only a prior on the total
length of curves can then be captured, which is insufficient
in situations where a strong smoothing prior is needed. This
type of approach also relies on pixel-based discretization of
the paths, ruling out any capability for on-the-fly sub-pixel
interpolation.

A second approach, which does not suffer from these
limitations, consists in growing a contour from the seed
point according to cost function E. Given the current con-



tour, a new segment is appended to it according both to a
shape prior (mainly smoothness) and to the evidence pro-
vided by the data in the location under concern. This ap-
proach has been investigated in a deterministic way, as a
tool to complete discontinuous contours provided by edge
detectors [11]. A good early survey on this so-called edge
linking (or grouping) problem can be found in [1].

A recent advance on edge-linking has been obtained by
taking a probabilistic point of view: the contours are seen
as the paths of a stochastic process driven by both an in-
ner stochastic dynamics, and a statistic data model. This is
however a difficult tracking problem. Indeed, the data like-
lihood, as a function of the state, typically exhibits many
narrow spikes. As a consequence, the posterior densities are
badly behaved, preventing the use of most standard tracking
tools based on the Kalman filter and its variants. In our con-
text, multi-modality is related to the clutter of contours that
most images exhibit. Ideally we seek a tracking method
that is able: (i) to avoid spurious distracting contours, (ii) to
track, at least momentarily, the multiple off-springs starting
at branching contours, and finally (iii) to interpolate over
transient evidence “gaps”. Toward that goal, two very dif-
ferent approaches have been proposed in the literature.

In [3], Cox et al. adapt multiple hypothesis tracking
(MHT) techniques from the tracking literature. The result-
ing tracker can handle the intrinsic multi-modality of the
problem, as well as evolve multiple tracks (contours) si-
multaneously. The technique is however restricted to a spe-
cial type of data: because all possible data associations are
enumerated at each step, it is more adapted to sparse data.
Also these data must be of the same nature (e.g., position
and possibly orientation) as the hidden state since multiple
Kalman trackers requiring a linear measurement model are
run along the branches of the multiple hypothesis tree. Due
to these limitations, the technique is only applied on the
sparse output of a contour detector, thus performing edge
linking.

In [6], Geman and Jedinak introduce a very effective
road tracking technique based on the so-called “active test-
ing” approach. Both their dynamics and their data model
have nevertheless to be discrete. They indeed make use of
a “decision tree” (containing all possible sequences of mea-
surements), and of a “representation tree” of all possible
paths. As for the dynamics, they even limit it to three differ-
ent moves (no change in the direction, and change of �5 o).
Active testing, as well as pruning, are then conducted on the
resulting ternary representation tree, using entropic tools.

We propose to tackle this tracking problem with parti-
cle filtering [5, 8, 10]. This Monte Carlo technique, based
on sequential importance sampling/resampling, provides a
sound statistical framework for propagating sample-based
approximations of posterior distributions, with almost no
restriction on the ingredients of the model. Since samples

from the posterior path distribution are maintained at each
step, different decision criteria can be worked out to decide
which is the final estimated contour, including the MAP
used by Geman and Jedinak, and the expectation used by
Cox et al. Particle filtering will offer the same features as
the two previous methods (maintaining multiple hypothe-
sis, and on-the-fly pruning), but within a more versatile and
consistent, yet simpler, framework.

The power of the proposed technique, termed JetStream,
will be demonstrated in two different contexts: (1) the in-
teractive delineation of image regions for photo-editing pur-
pose, and (2) the extraction of roads in aerial images (see
two result samples in Fig. 1). Besides the common core
described in Sections 2 and 3, specific ingredients are intro-
duced for each of the two applications: the incorporation of
user interaction in the cut-out application (Section 4), and
an explicit use of road width as part of the dynamical sys-
tem for road tracking (Section 5).

2 Probabilistic contour tracking

Tracking contours in still images is a rather unconven-
tional tracking problem because of the absence of a real no-
tion of time: the “time” is only associated with the progres-
sive growing of the estimated contour in the image plane.
Contrary to standard tracking problems where data arrive
one bit after another as time passes by, the whole set of data
y is standing there at once in our case.

This absence of a natural time will have some impor-
tance in the design of both the prior and the data model.
As for the definition of data likelihood, the transposition
of standard techniques from tracking literature requires to
conduct a rather artificial sequential ordering of the data as
the tracking proceeds [3]: at step i, data set is constituted
of data “visible” from current location. We prefer to con-
sider the data as a whole, getting its ordering as a natural
by-product of the sequential inference.

Another consequence of this absence of natural time, is
that there is no straightforward way of tuning the “speed”,
or equivalently the length of successive moves. Whatever
the speed at which the points travel, only their trajecto-
ries matter. The combination of prior dynamics and data
model should simply make sure that the contour has rea-
sons to grow. If the dynamics permits slowing down, then
the tracker risks getting stuck at locations with high likeli-
hood, resulting in a cessation of the growing process.

2.1 Tracking framework

Let us now introduce the basics of our probabilistic con-
tour tracker. We consider random points x i in the plane
� = R

2 . Any ordered sequence x0:n � (x0 � � �xn) 2 �n+1

uniquely defines a curve in some standard way, e.g., the x i’s
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are the vertices of a polyline in our experiments. The aim
is to make grow such a sequence based on a prior dynamics
p(xi+1jx0:i) that retains expected properties of the contours
to be extracted, and on a data model p(yjx0:n) that provides
evidence about whether a measurement is, or is not, in the
vicinity of the “true” contour.

Assuming a homogeneous second-order 1 dynamics with
kernel q:

p(xi+1jx0:i) = q(xi+1;xi�1:i);8i � 2;

the a priori density on �n+1 is

p(x0:n) = p(x0:1)

nY
i=2

q(xi;xi�2:i�1): (2)

We also approximate measurements conditioned on x0:n
as an independent spatial process

p(yjx0:n) =
Y
u2


p(y(u)jx0:n) (3)

where 
 � � is a discrete set of measurement locations in
the image plane, including the xi’s locations. Each individ-
ual likelihood in product (3) is either pon if u belongs to
x0:n, or po� if not:

p(yjx0:n) =
Y

u2
nx0:n

po�(y(u))

nY
i=0

pon(y(xi)jx0:n)

=
Y
u2


po�(y(u))

nY
i=0

pon(y(xi)jx0:n)
po�(y(xi))

: (4)

This likelihood is of the same form as the one derived by
Geman and Jedinak in their active testing framework [6]
The posterior density on �n+1 is derived, up to a multi-
plicative factor independent from x0:n:

pn(x0:njy)/p(x0:1)
nY
i=2

q(xijxi�2:i�1)
nY
i=0

`(y(xi)) (5)

where ` � pon
poff

denotes the point-wise likelihood ratio.2

Density p(x0:1) is a Dirac mass centered at locations picked
by the user. The choice of the transition probability q and
of the likelihood ratio ` will be discussed in next section.

The function En(x0:n; y) � � log pn(x0:njy) can be
seen as the n-sample discretization of a functional of type
(1). Expressed as the minimization of this functional, the
contour extraction problem then amounts to seeking the
maximum a posteriori (MAP) estimate in our probabilistic
setting.

1If a higher order dynamics seems more appropriate to the contours
under concern, it can be used.

2Note that since the likelihood p(yjx0:n) expresses the probability of
the data given that x0:n defines the only contour in the image, not simply a
part of the contour set, the posterior densities pn’s are not related through
marginalization:

R
xn

pn(x0:njy)dxn 6= pn�1(x0:n�1jy).

2.2 Iterative computation of posterior

The tracking philosophy relies on computing recursively
posterior densities of interest. From (5), it comes the fol-
lowing recursion:

pi+1(x0:i+1jy)/pi(x0:ijy)q(xi+1jxi�1:i)`(y(xi+1)): (6)

Although we have analytical expressions for ` and q,
this recursion cannot be computed analytically: there is no
closed form expression of the posterior distributions p i’s.
The recursion can however be used within a sequential
Monte Carlo framework where posterior p i is approximated
by a finite set (xm0:i)m=1���M of M sample paths (the “par-
ticles”). The generation of samples from pi+1 is then ob-
tained in two steps.

In a first prediction (or proposal) step, each path xm0:i is
grown of one step ~xmi+1 by sampling from a proposal den-
sity function f(xi+1;xm0:i; y) over �, whose choice will be
discussed shortly. If the paths (xm0:i)m are fair samples
from distribution pi over �n+1, then the extended paths
(xm0:i; ~x

m
i+1)m are fair samples from distribution fpi over

�n+2. Since we are seeking samples from distribution p i+1
instead, we resort to importance sampling: these sample
paths are weighted according to ratio pi+1=fpi (normalized
over the M samples). The resulting weighted path set now
provides an approximation of the target distribution p i+1.
This discrete approximating distribution is used in the sec-
ond step of selection, where M paths are drawn with re-
placement from the previous weighted set. The new set of
paths is then distributed according to pi+1. The paths with
smallest weights are likely to get discarded by this selection
process, whereas the ones with large weights are likely to
get duplicated.

Using the expression (6) of pi+1, ratio pi+1=fpi boils
down to q`=f . The weights thus read:

�mi+1 /
q(~xmi+1;x

m
i�1:i)`(y(~x

m
i+1))

f(~xmi+1;x
m
0:i; y)

(7)

with
P

m �
m
i+1 = 1. It can be shown that the optimal pro-

posal pdf is f = q`=
R
xi+1

q` [5], whose denominator can-
not be computed analytically in our case. The chosen pro-
posal pdf must then be sufficiently “close” to the optimal
one such that the weights do not degenerate (i.e., become
extremely small) in the re-weighting process.

Based on the discrete approximation of the posterior
pi, different estimates of the “best” path at step i can
be devised. An approximation of the MAP estimate is
provided by the path of maximum weight (before resam-
pling). A more stable estimate is provided by the mean path
1
M

PM
m=1 x

m
0:i, which is a Monte Carlo approximation of

the posterior expectation E(x0:i jy).
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3 Model ingredients

3.1 Likelihood ratio `

Most data terms for contour extraction are based on
the spatial gradient in intensity or RGB space, and/or on
edgels detected by standard means (e.g., with Canny detec-
tor). More sophisticated cues can be incorporated, such as
color/intensity consistency on each side of the contour, tex-
ture, or blur, but their relevance varies obviously from one
image to another.

Although simple, the norm of the luminance (or color)
gradient remains a robust cue. To use it as part of our mea-
surements, we must capture its marginal distributions both
off contours (po�) and on contours (pon).

0 20 40 60
0

0.1

0.2

0 20 40 60
0

0.1

0.2

Figure 2. Gradient norm statistics. Normalized his-
tograms of gradient norm on a baby photograph with clut-
tered background: (Left) over the whole image, along with
the fitted exponential distribution; (Right) on the outline of
the face and hat only.

The first marginal po� can be empirically captured by the
distribution of the norm of the gradient on the whole im-
age (Fig. 2). In our experiments, this empirical distribution
was always well approximated by an exponential distribu-
tion with parameter � (amounting to the average norm over
the image), which we take as po� . As for pon it is difficult to
learn it a priori. The empirical distribution over an outline
of interest appears as a complex mixture filling the whole
range of values from 0 to a large value of gradient norm
(Fig. 2). In the absence of an appropriate statistical device
to capture adaptively this highly variable behavior, it seems
better to keep the data likelihood pon as less informative as
possible. We simply use a uniform distribution.

 (xi)

xi�1 xi

xi

�i

rI(xi)
?

Figure 3. Position and angle notations.

Observing the angle (xi) 2 [��=2; �=2], shown in Fig.
3, between the gradient normal rI(xi)? and the segment

(xi�1; xi), indicates that the direction of the gradient also
retains precious information that a data model based only on
gradient norm neglects: the distribution of  is symmetric,
and it becomes tighter as the norm of the gradient increases.
More precisely, we found empirically that the distribution of
jrI j0:5 exhibits a normal shape N(0; �2 ) (Fig. 4).
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Figure 4. Gradient statistics. (Left) Plot of the an-
gle  against the gradient norm for the face contour of
Fig.2; (Right) histogram of jrIj0:5 with its normal fit
(� = 1:36).

There is however an important exception to the validity
of the image-gradient distribution above. At corners, the
norm of the gradient is usually large but its direction can-
not be accurately measured. Using a standard corner detec-
tor [7], each pixel u is associated with a label c(u) = 1
if a corner is detected, and 0 otherwise. Where a cor-
ner has been detected, it is then appropriate to accept a
wide range of image gradient directions, but to continue to
favour high gradient magnitude. We thus assume distribu-
tion p( (xi)jxi�1:i; jrI(xi)j; c(xi) = 1) is uniform. We
also assume that the probability of corner apparition is the
same on relevant contours and on background clutter, and
that the distribution of gradient direction off contours is uni-
form (the latter being supported by experimental evidence).

Finally the complete data model is defined on y =
(jrI j; c) by the two likelihoods

pon(rI(xi); c(xi)jxi�1:i) /
c(xi)

�
+ (1� c(xi))N

�
 (xi); 0;

�2 
jrI(xi)j

� (8)

po�(rI(xi); c(xi)) / exp�jrI(xi)j
�

(9)

from which ratio ` = pon
poff

is deduced up to a multiplicative
constant.

3.2 Dynamics q

Because of the absence of natural time, it is better to con-
sider a dynamics with fixed step length d. The definition of
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the second-order dynamics q(xi+1jxi�1:i) then amounts to
specifying an a priori probability distribution on direction
change �i 2 (��; �] shown in Fig. 3.

The smoothness of the curve can be simply controlled
by choosing this distribution as Gaussian with variance � 2

�

per length unit. For steps with length d, the resulting angu-
lar variance is d�2� . However, under such a dynamics with
typical standard deviation ranging from 0:05

p
d to 0:1

p
d,

substancial changes of direction are most unlikely. In order
to allow for abrupt direction changes at the few locations
where corners have been detected, we mix the normal dis-
tribution with a small proportion � of uniform distribution
over [��

2 ;
�
2 ]. The dynamics finally reads:

xi+1 = xi+R(�i)(xi�xi�1);
with q(�i) =

�

�
+ (1� �)N(�i; 0; d�

2
�)

(10)

where R(�i) is the rotation with angle �i, and, with a slight
abuse of notation, we now use q to denote the prior angular
density on direction change.

3.3 Proposal sampling function f

Now that both the dynamics and the data model are cho-
sen, it remains to devise a proposal sampling function f
which is as much related as possible to q` under the con-
straint that it can be sampled from. Since the mixture dy-
namics (10) can be easily sampled, it is a natural candidate.
In this case, ~xmi+1 is predicted from xmi�1:i by sampling from
(10) and the weights in (7) boil down to likelihood ratios
`(y(~xmi+1)) normalized over the M predicted positions.

With this standard choice f = q, corners will be mostly
ignored since the expected number of particles undertaking
drastic direction changes is �M , where typically � = 0:01
andM = 100. This can be circumvented by devising a pro-
posal function that depends also on the output of the corner
detector. We thus define the prediction step as:

xi+1 = xi+R(�i)(xi�xi�1);

with p(�i) =
c(xi)

�
+ (1� c(xi))N(�i; 0; d�

2
�):

(11)

At locations where no corners are detected, the proposal
density is the normal component of the dynamics (10). If
xi lies on a detected corner, the next proposed location is
obtained by turning of an angle picked uniformly between
��

2 and �
2 . The impact of the corner-based component in

the proposal in shown in Fig. 5.

Figure 5. Using corner detection in JetStream. (Left)
With standard proposal function f = q the particle stream
overshoots the corners. (Right) Including a corner-based
component in the proposal is sufficient to accommodate
corners automatically.

The complete JetStream iteration is finally summarized
in Procedure 1.

Procedure 1 JetStream Iteration
� current particle set: (xm0:i)m=1���M

� Prediction: for m = 1 � � �M
– if c(xmi ) = 1 (corner), draw �i from uniform

distribution on (��
2 ;

�
2 )

– if c(xmi ) = 0 (no corner), draw �i from normal
distribution N(0; �2�)

– ~xmi+1 = xmi +R(�i)(x
m
i � xmi�1)

� Weighting: compute for m = 1 � � �M

�mi+1 =
Kq(�i)`(rI(~xmi+1); c(~xmi+1))

c(xm
i
)

�
+ (1� c(xmi ))N (�i; 0; d�2�)

(12)

with K such that
PM

k=1 �
k
i+1 = 1

� Selection: for m = 1 � � �M , sample index a(m)
from discrete probability f�ki+1gk over f1 � � �Mg,
and set

xm0:i+1 = (x
a(m)
0:i ; ~x

a(m)
i+1 ) (13)

In all experiments, the step length was fixed to d = 1,
and the mixture proportion in the dynamics was fixed to � =
0:01. The standard deviation�� in the normal component of
the dynamics was manually tuned within range (0.05,0.1).
As for data model, parameter� is the average gradient norm
in the image under consideration, and standard deviation � 
was set 1. Finally M = 100 particles were used.
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4 Interactive cut-out

The extraction of a region of interest from one image
to be pasted into another image is a fundamental photo-
editing capability. Achieving high quality cut-out is diffi-
cult in practice because the foreground boundary needs to
be located accurately, to within a pixel or better. Marking
individual pixels by hand can be accurate but is laborious.
Semi-automatic methods, such as Mortensen and Barret’s
LiveWire [15, 16]3 , speed up the process, but have to rely
on assumptions about the shape properties of the bounding
contour, whose validity is somewhat specific to a particular
contour. A robust approach to the problem, therefore, is to
provide a box of tools selected by the user, on a problem
by problem basis. To turn JetStream in such a cut-out tool,
we must give the user means of interacting with the flow of
particles.

In practice, JetStream is run for a fixed numbern of steps
(100 in our experiments) from initial conditions x 0:1 chosen
by the user. If the result is satisfactory, n more steps are
undertaken. If not, a restart region within the particle flow,
and an associated restart direction, can be chosen by the
user.

In many situations however, a softer and simpler alterna-
tive type of guidance can be used. It is based on a proba-
bilistic interactive device to supply additional information,
deemed to be probabilistically independent from informa-
tion derived automatically from the image. The further in-
formation is embedded in a user likelihood ratio `u(x), and
the assumed independence leads to it being applied multi-
plicatively in (5). Where `u(x) < 1, particle flow is dis-
couraged, causing a constriction that repels the boundary
contour, serving a function analogous to the “volcano” used
with snakes [9]. Alternatively, a region in which `u(x) > 1
serves as a channel that draws in the particle stream. There
are various possibilities for the use of this mechanism. We
have found that, in practice, it suffices to provide the user
with the facility to place one or more dams, defined as re-
gions Rk � 
, such that

`u(x) =

�
" if x 2 Rk; for some k;
1 otherwise

with " set to some small value such as " = 0:00001. This
is preferable to setting " = 0 because, in the event that all
particles are accidentally encased in dams, the particles can
tunnel their way out. The practical operation of a dam is
illustrated in Fig. 6.

3LiveWire is an interactive cut-out tool based on Dijkstra’s algorithm.
Given a starting point p, this dynamic programming technique provides
the connected pixel chain that minimizes a cost function similar to our
� log p(yjx0:n) in between p and any arbitrary point q, with n not fixed.

Figure 6. User interaction with dams. (Left) The desired
contour (rim of baby’s hat) is lost after the branching, but vi-
sualizing pixels “visited” by JetStream (shaded) shows that
this contour was momentarily tracked by part of the stream;
(Right) the insertion of a dam (dark rectangle) by the user
is then sufficient to correct the flow.

We illustrate the power of the interactive cut-out tool thus
obtained on a strongly textured and cluttered image. Such
images pose a particular challenge for any automatic pro-
cedure for cut-out, because any feature detector designed to
respond to boundary is liable to respond also to the texture
and clutter. The smoothness prior of JetStream combats this
distracting effect, as the example of Fig. 7 shows. LiveWire
also combats it but less strongly, given that its prior curve
model penalizes length but not curvature. As a result, and
given more user interaction, LiveWire nonetheless gener-
ates a less accurate boundary contour (Fig. 7.)

LiveWire, 38 interactions JetStream, 17 interactions

Figure 7. Cut-out with strong texture and clutter.
LiveWire boundary is distorted, whereas JetStream behaves
better with less user interaction.

The texture problem is further illustrated by the close-up
in Fig.8. In this example the stripes on the skirt generate
additional image features, competing with those generated
by the boundary. Inclusion of the second-order dynamic
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model with a relatively tightly set parameter �� = 0:05 rad,
imposes enough smoothness for JetStream to capture the
boundary of this example, entirely automatically, given just
a starting point and direction.

JetStream LiveWire LiveWire

Figure 8. Automatic texture rejection. A fragment of a
woman’s skirt is detected here in several alternative ways:
(Left) JetStream, given just the starting point (dark dot)
and direction; (Middle) LiveWire, given two fixed end-
points (with parameters set to default values [15]); (Right)
LiveWire with an additional four fixed points.

5 Road extraction

The problem of extracting, automatically or semi-
automatically, roads from aerial and satellite images has re-
ceived a great deal of attention, e.g., [6, 12, 17]. JetStream
provides a new tool to address this problem.

As we saw in the previous section the contextual infor-
mation JetStream conveys is already sufficient to improve
a lot on the minimum cost pixel chain provided dynamic
programming (DP) from the same starting point: JetStream
output is less jaggy, and, in many cases, the DP path snaps
to undesirable surrounding contours, including remote ones.

However, in the specific context of road extraction, one is
in fact interested in recovering “ribbons”. Using JetStream
as defined previously results in paths jumping from one side
of the ribbon to the other as shown in Fig. 9.

The flexibility of JetStream enables easy incorporation
of this new geometric element to the model. The state-
space is extended to include a width variable m i, which
indicates the distance at step i between the two sides of
the ribbon (Fig. 10). These two sides being standard con-
tours, the data likelihood is an immediate extension of the
one presented so far. It expresses that x+i and x�i defined as

xi �mi
(xi�xi�1)

?

jxi�xi�1j
are on a contour while xi is not:

p(yjx0:n;m0:n) = po�(y)
Y
i

pon(y(x
+
i ))pon(y(x

�
i ))

po�(y(x
+
i ))po� (y(x

�
i ))

: (14)

Figure 9. Extracting roads with ribbon model. Using
a ribbon-like extension of contour model enables a stable
extraction of roads, even with fixed width in this example.

xi�1

x+i

x+i�1

x�i�1

x+i�3
x+i�2

xi

xi�2xi�3

x�i�2x�i�3

x�i

mi

mi�1

Figure 10. The ribbon-process geometry. Two contours
are now tracked simultaneously at a varying distance m
from the middle path.

We have chosen a simple first-order dynamics for m i:

mi+1 = mi + vi; vi
i:i:d:� N(0; d�2m): (15)

The parameter �2m captures (invariantly to the magnitude
of d) the statistical rate of growth of the ribbon width, in
units of width variance per unit road length. Setting this
parameter to zero (i.e., using a fixed width ribbon) already
provides interesting results as shown in Fig. 9.

For a better tracking, this parameter can be estimated
from digitized road maps at the right scale. For the 1:25000
aerial photographs we used for instance, we found �m =
0:005. Note that the variance parameter of the dynamical
model can be learnt the same way. For 1:25000 aerial pho-
tographs we found �� = 0:05rad.

As shown in Fig. 11, this simple width dynamics already
proves effective to track the changes in road width. The
right of Fig. 1 provides an other result sample of ribbon
tracking, including one drastic change of direction (at the
crossing).
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Figure 11. Tracking of road with width variations. Using
simple first-order dynamics on the width, sampled simul-
taneously with the position dynamics, enables roads with
varying width to be tracked.

6 Conclusion

We have demonstrated the efficacy of a sequential
Monte-Carlo approach to tracking continuous structures in
cluttered images. The flexibility of the Monte Carlo ap-
proach made it possible to incorporate important elements
of the prior model, including smoothness, corners, and
ribbon-structure, which cannot tractably be used in deter-
ministic approaches. The generic system can be easily spe-
cialized. As demonstrated, it can thus provide a valuable
addition to the box of tools available for interactive cut-
out in photo-editing applications, as well as an appealing
way of extracting semi-automatically roads from aerial pho-
tographs.

A number of further issues are raised by this work. One
is to investigate raising the order of the prior dynamics
above 2, in order to capture a wider range of curve prop-
erties. For example s = 4 should suffice to capture os-
cillations, to help with segmenting corrugated boundaries.
Furthermore, the coefficients of such a dynamic prior could
possibly be learned, either off-line for each member of some
gallery of standard curve types, or adaptively, as boundary
construction progresses. Another area of investigation, is
the possibility of explicit handling of branches, for exam-
ple at T-junctions, so that the boundary splits automatically,
with both branches continuing to grow.
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