
JHAVÉ: Supporting
Algorithm
Visualization

Published by the IEEE Computer Society 0272-1716/05/$20.00 © 2005 IEEE IEEE Computer Graphics and Applications 49

Computer Graphics in Education

In his keynote address at the 2005 ACM Spe-
cial Interest Group on Computer Science

Education (SIGCSE) Symposium, Mordechai Ben-Ari
lamented:

From reading press releases, you would think that
we experience true revolutions every day. I used
to read profiles of startup firms in the newspaper,
and invariably, the description of the activities of
the startups included the phrase: “X has devel-
oped a technology to do Y.” As far as I could tell,
what they did was to write a program, which is
hardly a new technology or a true revolution.1

Those of us who use graphics in our teaching of com-
puter science concepts might have indeed fallen prey to
this same tendency—that is, overhyping something that
is state of the art. In particular, when Marc Brown’s dis-
sertation on algorithm visualization (AV) won the 1988
ACM Dissertation of the Year award, it seemed to many
computer science educators that the dawn of an algo-
rithms-made-simple era was just around the corner. If
educators use computer graphics to depict an algo-
rithm’s actions, how could students not come to under-
stand the algorithm more easily and in greater depth?
Brown’s work was brilliant from a computer graphics
perspective. He set the stage for how to display exquis-
ite algorithm visualizations with relative ease.

We appeared to have discovered a new technology (in
the Ben-Ari sense) for teaching computer science.
Researchers developed a variety of new systems, and
Web applets that animated algorithms abounded. Many
computer science instructors advised their students who
were having trouble understanding algorithm X to go
to URL Y and view a great animation that would help
them study this difficult material. Before proclaiming
how valuable this new technology was, however, we
should have read with care the last paragraph in the
appendix to Brown’s thesis:

The bottom-line question in the (Brown Uni-
versity) Electronic Classroom is “Do the (graph-

ic) simulations help?” Unfortunately, no con-
trolled experiments could be done to answer
this credibly.2

Yes, these animations were great if you were a com-
puter science professional, someone who already under-
stood the algorithm’s essentials before watching the
animation. Such professionals could
wax ecstatic about how the stunning
graphics captured the essence of the
algorithm. However, students
attempting to learn the algorithm
were often mystified by the high-
powered display they saw unfolding
in front of them. What had gone
wrong? Developers of algorithm
visualizations and the systems that
facilitate them had too often show-
cased their work to professionals
who already understood the algo-
rithm rather than the intended audi-
ence of students trying to learn it.
These professionals had the expert
knowledge that made them savvy in using such tools to
explore the algorithm’s subtle nuances. But students
lacked this base of experience in using a graphics tool
to acquire understanding through exploration. Stern,
Søndergaard, and Naish stated that the lack of success
of AV in computer science education is because “many
of the current algorithm visualizations concentrate on
graphics rather than on pedagogy.”3

Stanford University psychologist Barbara Tversky and
her associates noted this inclination to concentrate on
computer graphics instead of how to pedagogically
employ the graphics: “The advances in the technology
of producing attractive graphics often seem to drive and
outstrip … the research on their utility.”4

When does AV work?
As researchers, many of us have been lured into AV

by our love of computer graphics, but as educators we
now need to admit that AV researcher Chris Hund-

Thomas L. Naps
University of Wisconsin, Oshkosh

JHAVÉ fosters the use of

algorithm visualization as an

effective pedagogical tool

for computer science

educators, helping students

to better understand

algorithms.

hausen is right when he writes: “The most significant
factor (in learning) appears to be not what AV viewers
see, but what they do (with the visualizations).”5

There is both good and bad news in Hundhausen’s
conclusion. The bad news is that educationally orient-
ed AV researchers who want to concentrate on nothing
but graphics are probably in the wrong field—educa-
tion takes more than just graphics. The good news is
encouraging, however—by guiding students into activ-
ities that engage them with the visualization, it appears
that we really can improve how well they learn.

This conclusion was substantiated in a comprehen-
sive metastudy conducted by Hundhausen, Douglas,
and Stasko.6 This metastudy examined 21 empirical
evaluations of AV effectiveness that had been done by
other researchers in the field. The metastudy’s top-level
conclusion appeared discouraging. Of the 21 experi-
ments, only 13 showed that some aspect of AV signifi-
cantly impacted learning. However, Hundhausen,
Douglas, and Stasko probed a bit deeper and divided
these experiments into two groups:

■ Those characterized by the high-end nature of the
graphical attributes of the visualizations watched by
the students.

■ Those that involved students more actively.

In the first case, the visualizations might offer simulta-
neous multiple views of the algorithm, slick cartoon-
like animations instead of mere still pictures, and so
forth. The second approach was characterized by stu-
dents constructing their own input data for the algo-
rithm, answering strategic questions about the
algorithm, engaging in interactive predictions regard-
ing future algorithm behavior, and/or programming the
algorithm.

They found that 10 out of 12 (83 percent) experi-
ments in the second group produced a significant result,
but only 3 out of 9 (33 percent) in the first group could
claim any significant effectiveness achieved by AV. Since
the publication of this metastudy, I have been involved
in two additional studies that would fit into the second
group.7,8 Both of these studies showed significant effec-
tiveness, hence increasing the overall effectiveness rate
for this group to 12 out of 14 (86 percent).

The message seems clear—if we guide students into
additional activities that are synchronized with the visu-
alizations, then positive results are likely. Because of
this, in my own teaching, I gave up using AV displays in
lecture settings after I observed students quickly becom-
ing entranced by the movie they were watching as they
lounged in those comfortable lecture hall chairs.

However, I observed a payback from the visualizations
when students individually came to my office for some
help with a particular algorithm. Then I could use my AV
system to bring up repeated displays of the algorithm,
walk the student through what the display was showing,
and explore the algorithm’s behavior with the student.

By the example I was setting for my students as I used
the system with them, I could begin communicating
with them about the significance of the pictures. The AV
playing the role of instructional medium allowed me to

guide the students toward understanding the algorithm
thoroughly. When the students became confused, I
could rewind the display to the point where they lost
understanding and encourage them to take a longer
look at what was about to happen as we started to view
again this critical segment of the movie. I could ask stu-
dents questions about the visualization and play what-
if games with them. Through this intense combination
of seeing pictures that were beginning to take on mean-
ing and conversing about those pictures, students suc-
ceed in making the mental association between the
conceptual algorithm and my graphical rendering of it.

Student interaction with AVs
Members of an Innovation and Technology in Com-

puter Science Education (ITiCSE) working group on
improving the educational impact of algorithm visual-
ization produced a report codifying—in an engagement
taxonomy—modes that students could become active
participants in exploring an algorithm with an AV sys-
tem.9 The four active categories of engagement defined
in that report are

■ responding,
■ changing,
■ constructing, and
■ presenting.

In the responding category, educators focus on hav-
ing students answer questions concerning the visual-
ization that the system presents. These questions can be
predictive in nature, asking what the next frame of the
animation will look like, or they can be more conceptu-
al, asking students what code segments could have been
used to execute the algorithm in the fashion they had
just seen, for example. In the responding category, the
visualization system becomes a supporting resource for
posing questions and helping students answer them—
the same role I played in my earlier description of using
AV to help an individual student in my office.

In the changing category, students provide input to
the underlying algorithm to make the visualization
appear a certain way. For example, if students watch a
visualization of binary search trees, the educator might
direct them to provide a data set that will make the tree
take on a certain shape. Or, if the students watch Dijk-
stra’s shortest path algorithm, they might need to pro-
vide a data set in which the algorithm explores every
vertex in the graph before the shortest path from the
start to the goal can be found.

In the changing category of interaction, students use
the visualization to hypothesize about the algorithm’s
behavior in different cases. Students provide the input
prior to watching the algorithm and then view it to con-
firm whether or not the display progresses as they pre-
dicted. In effect, the AV system becomes a hypothesis
checker for students—the same role I took on in the sce-
nario of using AV to play what-if games with the indi-
vidual student in my office.

In the constructing category, students construct their
own visualizations of the algorithm under considera-
tion. This entails a larger time commitment on the part

Computer Graphics in Education

50 September/October 2005

of the student. A common technique for constructing a
visualization is to first code it and then annotate it with
calls to have graphics produced at interesting events
during the algorithm’s execution. Well-designed class
libraries can make this relatively painless for students
to accomplish. For example, a data structure object such
as a graph might have a display method that the algo-
rithm can call to produce an aesthetically pleasing pic-
ture of the object in the AV system without requiring
students to do much beyond a method call.10 However,
constructing the visualization does not always entail
having the student code the algorithm. Systems such as
Rößling’s Animal Script11 and Hundhausen’s Alvis12 pro-
vide visualization designers with a collection of model-
ing tools well suited to algorithm visualization. In effect
they allow the user to create a movie about the algo-
rithm working strictly from a conceptual perspective,
without ever having to code the algorithm.

In the presenting category, students use a visualization
to help explain an algorithm to an audience for feedback
and discussion. The presenting student might or might
not have created the visualization. According to John
Stasko, both the constructing and presenting categories

force a student to think about the fundamental
operations of the algorithm. … The student con-
structs the algorithm-to-animation mapping and
determines what is unique to the algorithm and
what deserves to be communicated visually.13

JHAVÉ
In the previous sections I have argued that graphics

alone are not sufficient to effectively deliver education-
al applications of algorithm visualization. Unfortu-
nately, the extra tools needed for such effective
deployment—namely, interesting hooks to actively
engage the student with the visualization—often
require more effort to produce than the graphic displays
themselves. The Java-Hosted Algorithm Visualization
Environment overcomes this impediment.14 JHAVÉ is
not an AV system itself but rather a support environment
for a variety of AV systems (called AV engines by JHAVÉ).
In broad terms, JHAVÉ gives such an engine a drawing
context on which it can render its pictures in any way.

In return, JHAVÉ provides the engine with effortless
ways to synchronize its graphical displays with

■ a standard set of VCR-like controls,
■ information and pseudocode windows,
■ input generators,
■ stop-and-think questions, and
■ meaningful content generation tools.

The VCR-like controls let students step through the algo-
rithm’s visual display. Hence, the GUI has a standard
look and feel that is independent of the AV engine in use.

Information and pseudocode windows are HTML
windows where visualization designers can author sta-
tic or dynamically generated content to help explain the
significance of what the student sees in the algorithm’s
graphical rendering. The distinction between an infor-
mation window and a pseudocode window is that the

former shows higher level conceptual explanations of
what is happening, and the latter displays a pseudocode
description of the algorithm complete with highlight-
ing of lines that are particularly relevant for the picture
currently displayed.

Input generators are objects that gather input data
from a student when using a visualization that engages
users in the changing category described in the previ-
ous section. Students can feed this input data to the visu-
alization, letting them learn whether their data set
drives the pictures in the anticipated fashion.

The visualization designer can designate stop-and-
think questions in a variety of formats—such as true-
false, fill in the blank, multiple choice, and multiple
selection (multiple choice with more than one right
answer)—to pop up at the algorithm’s key stages. The
question will typically ask students to predict what they
will see next, facilitating the responding category of
engagement described in the previous section.

Meaningful content generation tools include a vari-
ety of class libraries to help an AV designer (who might
be a teacher or a student) create a visualization, includ-
ing its graphical display and the interaction support
tools that JHAVÉ offers.

AV engines and JHAVÉ
What price does an AV engine pay for these benefits?

First, it has to be written in Java and derived from an
abstract base class called the Visualizer class. As a
consequence of participating in this object hierarchy,
the engine must know how to respond to a standard set
of messages sent to it by JHAVÉ. Second, it must pro-
duce its visualization of an algorithm by parsing a tex-
tual visualization script and then rendering its pictures
according to that script’s content. Each AV engine is free
to define its own scripting language—this is what allows
a great deal of variation among the engines. With the
script file methodology, a program implementing the
algorithm to be visualized executes, and, instead of
directly rendering a visualization of the algorithm, it
writes visualization commands to the script file. When
the algorithm terminates, the AV engine parses and ren-
ders this script file. The reasons for this are tied to the
JHAVÉ’s client–server architecture.

In this architecture, the server application manages
the available algorithms and generates the visualization
scripts that the client can display. In a standard session,
a student first launches an instance of the client appli-
cation, which displays a listing of available algorithms—
tailored to the particular subject that the viewer is
studying (see Figure 1, next page).

When the user selects an algorithm from that list, the
client sends a request to the server. The server then runs
a program that generates the script for that algorithm
and sends a URL back to the client from which the user
can read the script. The client then parses and renders
the script with the appropriate engine. If the algorithm
requires input from the user, the server sends an input-
generator object to the client. This is just a frame with
appropriate input areas for the user. Once the user fills
out these areas, the client returns the user’s input to the
server as a data set to use when running the algorithm

IEEE Computer Graphics and Applications 51

(see Figure 2). After the server gen-
erates the script, the client down-
loads, parses, and renders it. The
rendering is staged using JHAVÉ’s
VCR-like viewing controls, stop-and-
think questions, and information/
pseudocode windows (see Figure 3).

Transforming renderers to
JHAVÉ plug-ins

AV engines that presently plug into
JHAVÉ as clients in the fashion
described previously are Rößling’s
AnimalScript,11 Stasko’s JSamba
(http://www.cc.gatech.edu/gvu/
softviz/algoanim/jsamba),15 and my
own Generalized Algorithm Illustra-
tion through Graphical Software
(GAIGS).16 Each of these exists also
as an AV system in itself, but in that
existence outside of JHAVÉ they are
not able to annotate their scripts with
the engagement tools that JHAVÉ
offers. In effect, they become mere
renderers, and the students using
them become passive viewers.

To become a JHAVÉ AV engine, a
renderer must declare that it is a
subclass of JHAVÉ’s abstract Visu-
alizer class. As a consequence of
this, it then must inform JHAVÉ of
its capabilities by calling the set-
Capabilities method of the
Visualizer class. JHAVÉ allows a
Visualizer to support any or all
of the following capabilities:

■ Stepping forward to the next pic-
ture in the visualization.

■ Stepping backward to a prior pic-
ture in the animation.

Computer Graphics in Education

52 September/October 2005

1 Client initially
connects to
server. Menu of
algorithms
displayed on
lower right
corner.

2 Input genera-
tor gets data
from user to
direct the visu-
alization.

3 AV engine renders picture in the
left pane, with support from the
JHAVÉ environment. The controls
shown are for the Generalized
Algorithm Illustration through
Graphical Software (GAIGS) visual-
izer, allowing stepping forward and
backward, direct access to a particu-
lar frame, and zooming.

■ Going directly to a particular frame in the animation,
skipping the rendering of all frames in between that
frame and the current frame.

■ Zooming in or out on the picture in the current visu-
alization frame.

■ Delivering a visualization as an animated motion pic-
ture rather than a slide show. Slide show mode is the
default unless a Visualizer declares otherwise.
JHAVÉ uses this information about the visualizer’s
capabilities to display the appropriate subset of VCR
controls in its GUI for that visualizer (see Figure 3).

Next, the renderer must implement a constructor
that receives an input stream as its only parameter.
When JHAVÉ instantiates a particular visualizer object,
it calls this constructor, passing in the animation script,
which exists as a URL on the server, for the input stream
parameter.

The renderer then implements three additional meth-
ods that are pure abstract methods in the base Visu-
alizer class: getCurrentFrame returns the index
number of the current frame in the visualization, get-
FrameCount returns the total number of frames in the
visualization, and getRenderPane returns the Java
component in which the engine renders the visualiza-
tion’s graphic artifacts.

For each capability that it declares itself capable of
supporting, the renderer must override a method in the
base Visualizer class to ensure the appropriate
action is taken when the viewer uses the JHAVÉ GUI to
trigger the event associated with that capability.

During the course of parsing a visualization script, if
an AV engine encounters a tag for a question or a
pseudocode and documentation window, it calls a fire-
QuestionEvent or fireDocumentationEvent
method in the Visualizerbase class. These methods
handle everything connected with processing that event
and hence free the particular AV engine from concern-
ing itself about the details of parsing and displaying the
information associated with them. Instead, the visual-
izer base class handles these tasks. The AV engine itself
must worry about nothing but displaying graphics in its
rendering pane.

Academic use
JHAVÉ has been used as the underlying AV vehicle in

two published empirical studies conducted at three uni-
versities.7,8 Its client–server architecture has proved
remarkably resilient.

Because it is written in Java, the server application itself
can be relocated from one operating system to another
without making any changes. Programs that implement
algorithms producing visualization scripts, however, can
be written in any language. They are merely executed at
the direction of the Java server application. This means
that, under the JHAVÉ environment, instructors can pro-
vide their own visualizations for students without hav-
ing to write them in Java. Hence there is a great deal of
variation in the ways you can produce visualizations that
ultimately are viewed in JHAVÉ. For example, prior to the
advent of JHAVÉ, computer science instructors had writ-
ten many programs in other languages that produced

GAIGS, AnimalScript, and Samba visualization scripts.
These instructors now must merely modify their old pro-
grams so that, inside the scripts they produced, annota-
tions are inserted as to when information and pseudocode
windows and stop-and-think questions should pop up
during the course of the visualization.

This methodology also allows students in a course to
write Web-viewable visualizations even though they are
not programming in Java. The instructor can load the
students’ script-producing programs on the departmen-
tal Web server, and JHAVÉ can make the visualizations
produced by these programs available for everyone.
Moreover, having control of the script-producing pro-
grams on a central server makes it easier for a course
instructor to keep materials current. All the students
need to participate in a JHAVÉ-staged visualization is the
relatively lightweight client that is easily deployed using
Java’s Web Start methodology (http://java.sun.com/
products/javawebstart). Instructors can make last-
minute additions and changes to particular visualiza-
tions on the server and be confident that no students in
the course will have out-of-date material.

Conclusion and future directions
Other systems that directly support AV with hooks that

force students into more active engagement with visu-
alizations include Jarc’s IDSV,17 Hundhausen’s Alvis,12

and Laakso et al.’s Trakla2/Matrix.18 Neither JHAVÉ nor
any of these other systems that directly support AV with
engagement hooks are in widespread use yet.

However, these systems bode well for the future
because they all reflect an awareness of the maturation
process that education-oriented AV has gone through
in the 15 years since Marc Brown’s dissertation. As often
happens with eye-catching new technologies, we have
gone through what in retrospect were predictable phas-
es: An initial, almost giddy, awe at the remarkable
graphic effects, followed by disenchantment that the
visualizations did not achieve their desired purpose in
educational applications. Then we went through a peri-
od of empirical evaluation in which we began to sort out
what worked and what did not.

We are now ready to leverage that knowledge. Such
leveraging will certainly involve some graphics devel-
opment, but we must remember that graphics display
techniques are not the missing piece in this puzzle.
Rather, we suffer from a lack of those materials that
would have students engage with visualizations in the
context of the taxonomy described previously. AV
researchers—particularly those oriented toward edu-
cational applications—must begin to examine many
questions.

How can we enhance the type of responding from
students when they interact with a visualization? The
questions that students are asked when engaging in this
category of the taxonomy are ultimately produced by
software that supports the AV system. How can we
make such machine-produced questions more mean-
ingful in their content? Can we make the system sense
a student’s mastery of certain points and hence only
generate questions directed toward areas where the stu-
dent displays a weakness?

IEEE Computer Graphics and Applications 53

What teacher has not been asked, Will I need to know
this for the test? The obvious implication on the part of
the student is, If I’m not being graded on it, I do not have
time to learn it. What does this scenario mean with
respect to AV? In particular, we realize that many stu-
dents are more intense in their level of engagement
when they know that the responses are being evaluated.
It would then seem to follow that some monitoring by
the system of how students respond to questions when
they work with an AV system would heighten their level
of engagement—particularly if this monitoring played
a small role in their grade. Yet the only empirical study
done in this regard produced mixed results.17 More work
needs to be done here, but that will entail a lot of serv-
er-side database development to record how students
are interacting with the system.

How can we make it easier for students to provide
meaningful input to an algorithm that they will watch
(using an AV system) in the changing mode of engage-
ment? The input generators that exist in most AV sys-
tems (including JHAVÉ) are relatively unsophisticated
and do not provide convenient ways for the student to
specify data for complicated problems such as graph
algorithms.

How can we make it easier for students to engage in
the constructing and presenting modes of the taxono-
my? Class libraries and other forms of content-genera-
tion materials are needed here.

As we make progress in developing tools to enhance
these modes of engagement, can we do so in a way that
maximizes their portability? Computer science educators
will want a choice of AV systems, not just a single option.
But the empirical results we have cited clearly demon-
strate that any pedagogically effective AV system should
support these various engagement modes in some fash-
ion. Does that mean that every AV system developer will
now need to reinvent the tools needed for these engage-
ment modes? JHAVÉ has illustrated one way in which dif-
ferent AV systems could share various forms of interaction
support. But are there ways to extend tools like interac-
tive question generators and input generators across an
even broader range of AV systems?

Toward that end, researchers have already begun
exploring the packaging of such AV support tools in XML
format.19 Hopefully this exploration will soon begin to
achieve results, allowing vastly different AV systems to
easily exchange supporting content, with each system
processing that content in its own way. If this work suc-
ceeds, it will consequently be much easier to remain
with the AV system that best suits your teaching style
and still incorporate into it the engagement hooks that
we now realize are necessary.

Beyond everything else involved in making AV a good
pedagogical tool, we must also realize that the major
worry of teachers who might consider using AV is the
perceived large amount of time it will take to learn and
use. This was borne out in survey results that appeared
in Naps et al.9 In broad terms, these results indicated
that nearly all educators intuitively felt that AV should
help students. The survey then asked if educators feel
so strongly that AV can help, why don’t they use it more
extensively? The option that two-thirds of respondents

cited as a major impediment was the time it takes to
develop visualizations. Four other options were listed
as major impediments by 45 to 48 percent of the respon-
dents. These were the time required to search for good
examples, the time it takes to learn the new tools, the
time it takes to adapt visualizations to an individual’s
teaching approach and/or course content, and the lack
of effective development tools.

Clearly materials must be developed that address
these concerns about time. A repository where harried
educators could go to find not just graphics but com-
plete, peer-reviewed AV resource collections would
enable more widespread use of AV. Development of such
resources will certainly require a lot of work on the part
of AV researchers, and much of that work will only have
tangential connections to actually doing graphics.
Instead, it will emphasize materials that effectively mesh
with the graphic end of AV systems. However, all the
empirical evidence cited previously indicates that such
work will yield positive results in the learning our stu-
dents achieve.

The JHAVÉ client is available at http://www.jhave.
org. All the source code for both the client and the serv-
er is also available through a concurrent versions sys-
tem server on the same machine. JHAVÉ is an open
source project, and interested contributors should con-
tact the author by email. ■

Acknowledgment
The National Science Foundation’s Course, Curricu-

lum, and Laboratory Improvement program (DUE
awards 0126494 and 0341148) has supported JHAVÉ.

References
1. M. Ben-Ari, “The Concorde Doesn’t Fly Anymore,” Proc.

36th SIGCSE Technical Symp. Computer Science Education,
ACM Press, 2005, p. 196; http://portal.acm.org/citation.
cfm?doid=1047354.

2. M.H. Brown, Algorithm Animation, MIT Press, 1988.
3. L. Stern, H. Søndergaard, and L. Naish, “A Strategy for

Managing Content Complexity in Algorithm Animation,”
Proc. 4th Ann. ACM SIGCSE/SIGCUE Conf. Innovation and
Technology in Computer Science Education (ITiCSE), ACM
Press, 1999, pp. 127-130.

4. J.B. Morrison, B. Tversky, and M. Betrancourt, “Animation:
Can It Facilitate?” Int’l J. Human Computer Studies, vol. 57,
2003, pp. 247-262.

5. C.D. Hundhausen, “Toward Effective Algorithm Visual-
ization Artifacts: Designing for Participation and Negotia-
tion in an Undergraduate Algorithms Course,” Proc.
Computer–Human Interaction Conf., ACM Press, 1998, pp.
54-55.

6. C.D. Hundhausen, S.A. Douglas, and J.T. Stasko, “A Meta-
Study of Algorithm Visualization Effectiveness,” J. Visual
Languages and Computing, vol. 13, no. 3, 2002, pp. 259-
290.

7. S. Grissom, M. McNally, and T. Naps, “Visualization in CS
Education: Comparing Levels of Student Engagement,”
Proc. ACM Symp. Software Visualization, ACM Press, 2003,
pp. 87-94.

Computer Graphics in Education

54 September/October 2005

IEEE Computer Graphics and Applications 55

8. S. Grissom and T. Naps, “The Effective Use of Quicksort
Visualizations in the Classroom,” Proc. 9th Ann. Consor-
tium for Computing Sciences in Colleges (CCSC) Midwest
Conf., Consortium for Computing Sciences in Colleges,
2002, pp. 88-96.

9. T.L. Naps et al., “Exploring the Role of Visualization and
Engagement in Computer Science Education,” ACM
SIGCSE Bull., vol. 35, no. 2, 2003, pp. 131-152.

10. J. Lucas, T.L. Naps, and G. Rößling, “VisualGraph: A Graph
Class Designed for Both Undergraduate Students and Edu-
cators,” Proc. 34th SIGCSE Technical Symp. Computer Sci-
ence Education, ACM Press, 2003, pp. 167-171.

11. G. Rößling, M. Schüler, and B. Freisleben, “The Animal Algo-
rithm Animation Too,” Proc. 5th Ann. ACM SIGCSE/SIGCUE
Conf. Innovation and Technology in Computer Science Edu-
cation (ITiCSE), ACM Press, 2000, pp. 37-40.

12. C.D. Hundhausen and S. Douglas, “SALSA and ALVIS: A
Language and System for Constructing and Presenting Low
Fidelity Algorithm Visualizations,” Proc. IEEE Symp. Visu-
al Languages, IEEE Press, 2000, pp. 67-68.

13. J. Stasko, “Using Student-Built Algorithm Animations as
Learning Aids,” Proc. 28th ACM SIGCSE Technical Symp.
Computer Science Education, ACM Press, 1997, pp. 25-29.

14. T. Naps, J. Eagan, and L. Norton, “JHAVÉ: An Environment
to Actively Engage Students in Web-Based Algorithm Visu-
alizations,” Proc. 31st ACM SIGCSE Technical Symp. Com-
puter Science Education, ACM Press, 2000, pp. 109-113.

15. J. Stasko, “TANGO: A Framework and System for Algo-
rithm Animation,” Computer, vol. 23, no. 9, 1990, pp. 27-
39.

16. T.L. Naps and E. Bressler, “A Multi-Windowed Environment

for Simultaneous Visualization of Related Algorithms on
the World Wide Web,” Proc. 29th ACM SIGCSE Technical
Symp. Computer Science Education, ACM Press, 1998, pp.
277-281.

17. D.J. Jarc, M.B. Feldman, and R.S. Heller, “Assessing the
Benefits of Interactive Prediction Using Web-Based Algo-
rithm Animation Courseware,” Proc. 31st SIGCSE Techni-
cal Symp. Computer Science Education, ACM Press, 2000,
pp. 377-381.

18. M.-J. Laakso et al., “Multi-Perspective Study of Novice
Learners Adopting the Visual Algorithm Simulation Exer-
cise System TRAKLA2,” Informatics in Education, vol. 4,
no. 1, 2005, pp. 49-68.

19. G. Rößling and T. Naps, Development of XML-Based Tools
to Support User Interaction with Algorithm Visualizations;
http://www.ahrgr.de/AVPortal/WG2005.

Thomas L. Naps is a professor of
computer science at the University of
Wisconsin, Oshkosh. His research
interests include algorithm visual-
ization and its application in com-
puter science education. Naps has a
PhD in mathematical logic from the

University of Notre Dame. Contact him at naps@
uwosh.edu.

For further information on this or any other computing
topic, please visit our Digital Library at http://www.
computer.org/publications/dlib.

IEEE Computer Graphics and Applications magazine
invites original articles on the theory and practice of
computer graphics. Topics for suitable articles might
range from specific algorithms to full system imple-
mentations in areas such as modeling, rendering, ani-
mation, information and scientific visualization, HCI/user
interfaces, novel applications, hardware architectures,
haptics, and visual and augmented reality systems. We
also seek tutorials and survey articles.

Articles should up to 10 magazine pages in length
with no more than 10 figures or images, where a page
is approximately 800 words and a quarter page image
counts as 200 words. Please limit the number of refer-

ences to the 12 most relevant. Also consider providing
background materials in sidebars for nonexpert readers.

Submit your paper using our online manuscript sub-
mission service at http://cs-ieee.manuscriptcentral.
com/. For more information and instructions on pre-
sentation and formatting, please visit our author
resources page at http://www.computer.org/cga/
author.htm.

Please include a title, abstract, and the lead author’s
contact information.

IEEE

AND APPLICATIONS

™

Call for General Submissions

