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ABSTRACT

Context. Solar observatories are providing the world-wide community with a wealth of data, covering wide time ranges (e.g. Solar
and Heliospheric Observatory, SOHO), multiple viewpoints (Solar TErrestrial RElations Observatory, STEREO), and returning large
amounts of data (Solar Dynamics Observatory, SDO). In particular, the large volume of SDO data presents challenges; the data are
available only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to
download, due to their size and the download rates available to most users. From a scientist’s perspective this poses three problems:
accessing, browsing, and finding interesting data as efficiently as possible.
Aims. To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG 2000 com-
pression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer in 2009, the sci-
entific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements.
Methods. The JPEG 2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image
data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open
source, platform independent, and extendable via a plug-in architecture.
Results. With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today; they can perform
basic image processing in real time, track features on the Sun, and interactively overlay magnetic field extrapolations. The software
integrates solar event data and a timeline display. Once an interesting event has been identified, science quality data can be accessed
for in-depth analysis. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer offers
a virtual camera model that enables users to set the vantage point to the location of a spacecraft or celestial body at any given time.

Key words. Sun: general – Sun: activity – virtual observatory tools – methods: observational – methods: data analysis –
methods: numerical

1. Introduction

Over the last decade, the amount of data returned from space-
and ground-based solar telescopes has increased by several or-
ders of magnitude. This constantly increasing volume is both a
blessing and a barrier: a blessing for providing data with signif-
icantly higher spatial and temporal resolution, but also a barrier
for scientists to access, browse, and analyse them.

Since its launch in 2010, the Solar Dynamics Observatory
(SDO, Pesnell et al. 2012) has been returning 1.4 terabyte of im-
age data per day, more than three orders of magnitude more than
the Solar and Heliospheric Observatory (SOHO, Domingo et al.
1995). Such staggering volumes of data are accessible only from
a few repositories, and users have to deal with data sets that are
effectively immobile and practically difficult to download. From
a scientist’s perspective this poses three problems: accessing,
browsing, and finding interesting data as efficiently as possible.

JHelioviewer (Müller et al. 2009) addresses these three prob-
lems using a novel approach: image data is lossily compressed

using the JPEG 2000 standard (Taubman & Marcellin 2002) and
served on demand in a quality-progressive, region-of-interest-
based stream. Together with the web application helioviewer.org,
it is part of the joint ESA/NASA Helioviewer Project1. The aim
of the Helioviewer Project is to enable exploration of the Sun
and the inner heliosphere for everyone, everywhere, via intuitive
interfaces and novel technology. It achieved its first milestone
by making data from SDO and SOHO easily accessible to the
scientific community and general public and continues to enjoy
popularity in the scientific community, also because of its open
source approach.

With the advent of SDO, solar physics has entered the “Big
Data” domain: SDO’s science data volume of about 0.8 petabyte
per year – equivalent to downloading half a million songs per
day, every day2 – is costly to store and can only be delivered

1 http://wiki.helioviewer.org
2 https://www.nasa.gov/pdf/417176main_SDO_Guide_CMR.
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to a small number of sites. In a few years, the DKIST3 will re-
turn about 4.5 petabyte per year. Its VBI instrument alone will
generate 106 images/day, which dwarfs SDO/AIA’s 60 000 im-
ages/day.

Science quality SDO data for most cadences and durations
that users are interested in is too voluminous to download for
browsing purposes. The Helioviewer Project addresses this limi-
tation by providing visual browsing data at full 16 megapixel res-
olution for the entire mission duration, along with co-temporal
data from additional data sources. This enables scientists to ef-
ficiently browse data from any day of the mission and request
archived science data for in-depth analysis once they have iden-
tified interesting events.

In light of its popularity in the solar physics community and
beyond, JHelioviewer has been extended significantly in recent
years to further facilitate scientific discovery. This includes the
following new features:

– displaying multi-viewpoint data in a single 3D scene, e.g.
from the twin Solar TErrestrial RElations Observatory
(STEREO) spacecraft (Kaiser et al. 2008);

– real-time generation and display of difference movies;
– PFSS magnetic field extrapolation models using synoptic

magnetograms from the Global Oscillation Network Group
(GONG);

– timelines of 1D and 2D data, e.g. disk-integrated X-ray
fluxes and radio spectrograms;

– integrating solar event data from the Heliophysics Event
Knowledgebase (HEK, Hurlburt et al. 2012) and curating it
into a Space Weather Event Knowledgebase (SWEK, de-
scribed in this paper);

– various 2D projections (orthographic, latitudinal, polar,
log-polar);

– a split-screen view to display multiple images side by side;
– a virtual camera model that enables the user to set the van-

tage point to the location of a spacecraft or celestial body at
a given time, using an ephemeris server.

The last feature is a first step towards supporting the science
planning process for the Solar Orbiter mission (Müller et al.
2013), which is a key objective for the future development of
JHelioviewer. In parallel, a large number of additional data sets
have been added. These include data from the Hinode (XRT,
Golub et al. 2007; Kosugi et al. 2007), PROBA-2 (SWAP and
LYRA, Berghmans et al. 2006; Hochedez et al. 2006), Yohkoh
(SXT, Tsuneta et al. 1991; Ogawara et al. 1991), and TRACE
(Handy et al. 1999) space missions, as well as data from the
ground-based facilities NSO/SOLIS, NSO/GONG, Kanzelhöhe
Solar Observatory, ROB-USET4, the Nançay Radioheliograph5,
and the e-CALLISTO network6 (Benz et al. 2009). These are de-
scribed in more detail in Sect. 11.

Figure 1 shows a screenshot of the JHelioviewer application.
In the following sections, key aspects of JHelioviewer will be
described along with the related research carried out. Special at-
tention is paid to usability aspects and our goal to provide an
extensible open source framework to the scientific community.

3 The Daniel K. Inouye Solar Telescope, formerly the Advanced Tech-
nology Solar Telescope, ATST, http://dkist.nso.edu/
4 http://sidc.oma.be/uset/
5 http://secchirh.obspm.fr/nrh.php
6 http://www.e-callisto.org/

The latest version (and all previous versions) of the JHe-
lioviewer software are available online7, along with a compre-
hensive user manual8.

2. Browsing petabyte-scale image archives

2.1. Motivation: why browsing tools are essential

As mentioned above, the data volume generated by the SDO mis-
sion necessitated a paradigm shift in working with solar data.
The SDO Atmospheric Imaging Assembly (AIA, Lemen et al.
2012) continuously takes 16 megapixel images in 10 channels,
at an average cadence of 12 s.

To highlight why it is of paramount importance to
know the details of the content of SDO data sets before
downloading full science quality data, consider the study
by Schrijver & Title (2011). In this work the authors use
data from SDO/AIA, SDO/HMI (Scherrer et al. 2012), and
STEREO/EUVI (Howard et al. 2008) to show long-range mag-
netic couplings between solar flares and coronal mass ejections.
In compressed form, the volume of the data used is 800 gigabyte.
Downloading this amount of data would take 25 days at an av-
erage transfer rate of 3 megabit/s and still 2.5 days at a sustained
rate of 30 megabit/s. While doing so may still be feasible on a
few occasions, the timescales involved in this approach are pro-
hibitively long whenever the suitability of the data set for the
intended research has not been explored and validated yet.

2.2. Data processing approach of the Helioviewer Project

Using the JPEG 2000 compression standard, we can lossily com-
press each 16 megapixel image of SDO/AIA in good visual qual-
ity to a size of 1 megabyte, at 8 bit depth and a bit rate of 0.5 bits
per pixel. Doing this in all channels for every third image results
in a data volume of less than 9 terabyte per year, which allows the
Helioviewer Project to keep a comprehensive data set of browse
data online for the entire mission duration, at full spatial resolu-
tion and about half-minute time resolution. Using these data to
identify interesting events on the Sun that merit scientific analy-
sis, scientists can then request archived science data, e.g. via the
SDO Cut-Out Service9.

As part of the Helioviewer Project, extensive data process-
ing software has been developed which converts FITS files
into JPEG 2000 format10. For each data product, a compres-
sion bit rate has been identified that offers the best compro-
mise between visual quality and file sizes. Initially, all pro-
cessing was performed using the proprietary IDL11 software,
which implements the JPEG 2000 codec of the very efficient,
but equally proprietary Kakadu software12. The main reason
for using IDL was that the data calibration and image prepara-
tion routines for many instruments are written in Solarsoft/IDL
(Freeland & Handy 1998)13.

As part of the work presented here, an alternative solu-
tion to using IDL and the Kakadu JPEG 2000 codec has been

7 http://www.jhelioviewer.org
8 http://swhv.oma.be/user_manual
9 http://www.lmsal.com/get_aia_data/
10 http://wiki.helioviewer.org/wiki/JP2Gen and https://
github.com/Helioviewer-Project/jp2gen
11 http://www.harrisgeospatial.com/productsservices/

idl.aspx
12 http://kakadusoftware.com/
13 http://www.lmsal.com/solarsoft/
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Fig. 1. Screenshot of the JHelioviewer application. The left part of the application window hosts expandable sections to manage and display time-
dependent image layers, timelines, and event data. The main panel displays image data in a 3D scene that the user can interact with. The timeline
panel in the bottom right displays 1D and 2D plots of time series, e.g. disk-integrated X-ray fluxes. Markers for solar events can be overlayed on
both panels.

developed, based on the open source OpenJPEG14 library. This
library is freely available in source code form under a license
permitting its modification, thereby allowing the addition of the
required features. Together with Glymur15, a Python interface to
the OpenJPEG library that is able to interpret the JPEG 2000 file
and codestream formats, a fully open source server-side software
stack was implemented16 and is running on the Royal Observa-
tory of Belgium (ROB) test server.

For a detailed study of the effects of JPEG 2000 image com-
pression on solar EUV images and options to determine com-
pression factors compatible with various scientific applications,
see Fischer et al. (2017). Beyond visually browsing the data,
users can also search by solar events, e.g. flares and CMEs. This
is described in detail in Sect. 9.

3. Software design

Key design considerations for the JHelioviewer software have
been performance, cross-platform compatibility, and use of well-
supported open source components whenever possible. The JHe-
lioviewer software is written in JavaTM. Graphics-intensive com-
putations are implemented in OpenGL17 using JOGL18. For

14 http://www.openjpeg.org/
15 https://glymur.readthedocs.io
16 https://github.com/Helioviewer-Project/hvJP2K
17 https://www.opengl.org/
18 Java Bindings for the OpenGL API, http://jogamp.org/jogl/
www/

the decompression of the JPEG 2000 codestream, the Kakadu
SDK19 is used under a non-commercial license. Server-side soft-
ware has been implemented in C++, C, and Python. All code of
the Helioviewer Project is hosted on GitHub20, licensed under
the Mozilla Public License 2.021.

3.1. Architecture

JHelioviewer is capable of fetching, displaying, manipulating,
and exporting solar data and events. The software code is split
into two parts: one that defines what is displayed and how, and
one that performs the rendering. The JHelioviewer user inter-
face (Fig. 1) has two panels to present solar data. The image
panel displays one or more image layers of the Sun, optionally
overlaid with additional information (PFSS field lines, events,
timestamp, grid, etc.). OpenGL is used to render the graphics in
this area. The timelines panel displays both 1D (timelines) and
2D (spectrograms) solar data.

Each renderable layer is able to draw itself on the correct
panel; it can react to time changes to get new data and display
this data for the new time instance. A change in time instance
happens when a new image layer is added or the time span of an
existing layer is changed. A time change can also happen while

19 Written in C++, http://kakadusoftware.com/
20 https://github.com/Helioviewer-Project
21 https://github.com/Helioviewer-Project/

JHelioviewer-SWHV/blob/master/LICENSE

A10, page 3 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730893&pdf_id=1
http://www.openjpeg.org/
https://glymur.readthedocs.io
https://github.com/Helioviewer-Project/hvJP2K
https://www.opengl.org/
http://jogamp.org/jogl/www/
http://jogamp.org/jogl/www/
http://kakadusoftware.com/
https://github.com/Helioviewer-Project
https://github.com/Helioviewer-Project/JHelioviewer-SWHV/blob/master/LICENSE
https://github.com/Helioviewer-Project/JHelioviewer-SWHV/blob/master/LICENSE


A&A 606, A10 (2017)

JHelioviewer Client

U

S

E

R

 

I

N

T

E

R

F

A

C

E

SWHV server (ROB)

ODI

Helioviewer Server

Events

Timelines

Images

STAFF

HEK

COMESEP 

Alert SystemCOMESEP

Timeline Data

Geometry 

Server

Events Push COMESEP Alerts

PFSS

Viewpoint 

(Time/Position)

Request Movie

Stream Movie

Event Cache

Timeline 

Adapter

PFSS

JPIP

Server

API
Metadata DB

JPX

Merge
JP2 

Production/retrieval

JP2

PFSS Data

Data Providers

GONG 

Magnetogram

FITS Images

PFSS

Creation

Location Information

Fig. 2. JHelioviewer architecture. The software architecture includes three basic parts, the browser (client), several servers, and the solar data
providers, each of which includes several key components.

the movie is being played. Each new position of the movie frame
indicator initiates the redrawing of new data. The timelines are
not limited in time span. Once a timeline is added, it is possible
to scroll and zoom freely in time with new data being requested
from the server when necessary. Solar event data retrieved from
the HEK are also stored in layers. The content is stored in a local
cache in order to reduce the number of requests to the HEK.

Figure 2 shows a diagram of JHelioviewer’s client-server ar-
chitecture. Each part of the JHelioviewer architecture includes
several components. The client and the server include counter-
part subsystems for several types of solar data sets: image data
sets, timeline data sets, model data sets, event data sets.

For the image data sets, the communication between the
client-side browser and the JPIP server (JPEG 2000 Interactive
Protocol; see next section) is based on request-response mes-
saging using JPIP on top of the HTTP protocol. The target
JPEG 2000 images are stored in an image repository on the
server, while metadata extracted from header information is in-
gested in a metadata repository so users can search the metadata
to locate data of interest.

Once the users have made their selection, the image meta-
data database is queried via the Helioviewer application pro-
gramming interface (API)22 in order to locate the relevant im-
ages. The results of that query are then passed to the JPIP server.
All Helioviewer Project clients interact with the image metadata
database through the same API.

The JPEG 2000 standard specifies sophisticated and flexi-
ble file formats, which can be decomposed and reassembled

22 https://api.helioviewer.org

for various purposes. The individual JPEG 2000 image files are
fused into movie files that are streamed over the JPIP protocol
with direct access to individual frames, resolution levels, and re-
gions of interest. Apart from the compressed image data, the im-
ages retain the full FITS metadata in XML format, enabling the
3D functionality with the help of a World Coordinate System
(WCS, Thompson 2006).

3.2. High-performance graphics processing with OpenGL

OpenGL is an open standard API for 3D graphics rendering.
OpenGL can address and issue commands directly to the hard-
ware graphics processing units (GPUs) of a computer. Signif-
icant improvements in performance over the standard graphics
rendering of the Java programming framework can be achieved
by using the interface between Java and the OpenGL capabilities
of the host computer.

3.3. JHelioviewer user interface

Figure 3 provides an overview of the JHelioviewer user inter-
face. The left side shows all the display controls and layer man-
agers for the data displayed on the right side: image data and
modelled magnetic field lines are rendered on the image can-
vas, the main panel, while 1D and 2D times series are displayed
on the timeline canvas below. Events from the Space Weather
Events Knowledgebase (SWEK) can be overlaid on the image
canvas and on the timeline canvas.
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Fig. 3. Overview of the JHelioviewer user interface. The left side hosts all display controls and layer managers for the data displayed on the right
side. Image data and modelled magnetic field line are rendered on the image canvas, the main panel, while 1D and 2D time series on the timeline
canvas below. Events from the Space Weather Events Knowledgebase (SWEK) can be overlaid on the image and on the timeline canvas.

4. Interactive streaming of high-resolution image

data with JPEG 2000

JPEG 2000 offers many useful new features that facili-
tate the dissemination and analysis of high-resolution im-
age data. This approach offers a solution to the problem
of making petabyte-scale image archives available to the
worldwide community. The JPEG 2000 image coding sys-
tem was created with the intention of superseding the orig-
inal JPEG standard, using a novel wavelet-based method
(International Organization for Standardization 2004a,b). The
main advantage of JPEG 2000 is the flexibility of its code
stream, which provides new functionality related to the interac-
tive transmission of images. For this task, JPEG 2000 uses the
JPEG 2000 Interactive Protocol (JPIP), which enables real-time
spatial random access, while the retrieved image is progressively
displayed. This enables serving data in a highly compressed,
quality-progressive, region-of-interest-based stream. These fea-
tures minimise the data volume transmitted while maximising its
usability. This is described in detail in Müller et al. (2009).

Among other advantages, the JPEG 2000 wavelet compres-
sion process automatically creates image representations at dif-
ferent resolution levels, which is illustrated in Fig. 4. For static
images, a more commonly used approach is to create image tile
pyramids (e.g. Google Maps). While appropriate and effective
for the static case, the latter has disadvantages in terms of total
data volume and in the number of files that need to be man-
aged (see Fig. 5), which makes JPEG 2000 more suitable for our

goals. For JHelioviewer’s sister web application helioviewer.org,
JPEG 2000 images are tiled and converted to web-compatible
formats on demand to display images and event markers on a
2D canvas. The users can request movies to be generated on
the server side, but the instantaneous display is limited to sin-
gle images.

As part of the Helioviewer Project, we have developed an
open source JPIP server23, implemented in C++, to provide a
stable and scalable solution with good performance. The server
architecture consists of a hybrid processing model combining
process and threading methods.

The first method is based on the idea of two processes, “par-
ent” and “child”, where the parent process creates the child pro-
cess and listens to the connections on the server. When the server
receives a new connection, the socket information is stored in the
parent process and is then sent to the child process in charge of
managing these connections.

In the second method, the child process receives a new socket
from the parent process and creates a new thread to manage
the different requests of this connection. A new thread is cre-
ated when a new client connection is received by the server,
i.e. the server integrates a dynamic pool size of client connec-
tions. When the client connection is terminated, the correspond-
ing thread is removed from the child process and its socket is
removed from the sockets lists of the parent and child processes.

This hybrid architecture combines the advantages of both
processing models because of its stability and low memory

23 https://github.com/Helioviewer-Project/esajpip-SWHV
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Fig. 4. JPEG 2000 pyramid of image representations. Starting from
the original image, each resolution level is constructed by applying a
discrete wavelet transform (DWT) to the level below (adapted from
Müller et al. 2009).
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Fig. 5. Image tile pyramid with five levels. In this example, a 16-
megapixel image is tiled into 341 subimages that are 256 × 256 pixels
each (adapted from Müller et al. 2009).

requirements. First, in case of error of any of the threads of a
child process, this process will fail, but the parent process will
continue working, having stored all sockets of client connec-
tions. This enables it to create a new child process and send it
all the sockets to re-establish all client connections. Second, as
the child process has a multi-threading model, all clients share
the same list of opened images (which can also consist of multi-
ple frames).

Every element in this list corresponds to an image opened
by one of the clients and could be shared by different clients
requesting the same image. For every element or image, an index
is built on demand depending on client requests; it is therefore
not necessary to build the complete index of the image when it
is loaded in the list, which saves time and memory. Last, when a
connection is closed, the corresponding image is removed from
the list of images if it is not shared by other clients.

For the decompression of the JPIP stream on the client, JHe-
lioviewer uses the (closed-source) Kakadu SDK under a non-
commercial license. This approach was chosen as the Kakadu
codec currently offers the best performance. In the future, Open-
JPEG might provide an open-source alternative.

Recently, Sánchez-Hernández et al. (2015) have developed
and implemented a novel data-flow control strategy that fur-
ther improves the transmission over time-varying communica-
tion channels.

5. Displaying multi-viewpoint data in 3D

With the launch of the twin STEREO spacecraft in 2006 – one
ahead of Earth in its orbit, the other trailing behind24 – the solar
physics community obtained access to two new viewpoints of
the Sun which enable stereoscopic imaging of the Sun and solar
phenomena, such as coronal mass ejections (CMEs).

To facilitate the browsing of STEREO data with JHe-
lioviewer, we decided to augment the JHelioviewer framework
with World Coordinate System support. This represented a major
change to the visualisation pipeline, but also laid the foundation
for all other 3D visualisation features, e.g. magnetic field extrap-
olations (see Sect. 7). In the 3D scene, data of the solar surface
and low corona are mapped onto a sphere, while coronagraph
data is projected onto planes perpendicular to the respective lines
of sight.

5.1. Image placement

As soon as the metadata of each image becomes available, a de-
fault rotation matrix and distance from the Sun are assigned.
Computations involving this rotation and distance are applied
when the image is displayed.

5.2. Virtual viewpoint

JHelioviewer also offers the possibility to use different view-
points, which are defined by the vector to the Sun from a given
location at a given time. The default observer location is deter-
mined by using the metadata of the image; however, by using
the ephemeris server described in the following section, JHe-
lioviewer can display the Sun as seen at any time from any celes-
tial body or spacecraft for which ephemeris data is available on
the server (Fig. 6). Together with simulated data sets, this feature
can also be used to exercise science planning for the upcoming
Solar Orbiter mission.

5.3. Geometry server

The ROB Solar System Geometry Server is a network service
that uses NASA’s Navigation and Ancillary Information Facility
(NAIF) SPICE Toolkit25 to compute positions of solar system
objects with high precision and to return JSON26 encoded re-
sponses. For example, given the following REST27 request:

http://swhv.oma.be/position?

utc=2014-04-12T20:23:35&

utc_end=2014-04-13T19:44:11&

deltat=21600&

observer=SUN&

target=STEREO%20Ahead&

ref=HEEQ&

kind=latitudinal

24 The spacecraft-Sun-Earth angle of the STEREO A spacecraft in-
creases by 21.65◦/year, while the angle of the B spacecraft decreases
by 22.0◦/year.
25 https://naif.jpl.nasa.gov/naif/index.html
26 JavaScript Object Notation.
27 REpresentational State Transfer.
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Fig. 6. Screenshot illustrating the virtual view from a viewpoint different from that of the observer, in this case comet 67/P, with a Heliocentric
Inertial (HCI) grid overlaid.

the server returns the following JSON response:

{

"result": [

{ "2014-04-12T20:23:35.000":

[ 143356392.01232576, 2.712634949777619,

0.12486990461569629 ]},

{ "2014-04-13T02:23:35.000":

[ 143359318.57914788, 2.7129759257313513,

0.12473463991365513 ]},

{ "2014-04-13T08:23:35.000":

[ 143362256.29411626, 2.7133174795109087,

0.12459673837570125 ]},

{ "2014-04-13T14:23:35.000":

[ 143365205.0945752, 2.713659603829239,

0.12445620339056596 ]}

]

}

This is a list of UTC timestamps and coordinates indicating the
geometric position of the camera (the STEREO Ahead space-
craft in this example). The first coordinate is the distance to Sun,
the second and third coordinates are the Stonyhurst heliographic
longitude and latitude of the given object. At the moment, the
following locations are available: all solar system planets, Pluto,
the Moon, comet 67P/Churyumov-Gerasimenko. Also available
are the following spacecraft trajectories (existing or planned):
SOHO, STEREO, SDO, PROBA-2, PROBA-3, Solar Orbiter,
Parker Solar Probe.

5.4. Display of latitude-longitude grids

JHelioviewer optionally displays latitude-longitude grids for
different coordinate systems (Thompson 2006): Stonyhurst,
Carrington, Heliocentric Inertial (HCI) and “viewpoint”, with
user-adjustable grid spacing.

5.5. From 2D to 3D

The default re-projection used for the 3D visualisation is ortho-
graphic. Therefore, when the scene is displayed from the ob-
server’s viewpoint without rotation, there is no distortion com-
pared to the originally tangential projection on the focal plane
of the instrument. Used this way, the new 3D version of JHe-
lioviewer displays exactly the same images as older, 2D-only,
versions of the software.

6. Real-time image processing

By performing all computationally demanding image processing
tasks on the client computer’s GPU, JHelioviewer is able to pro-
vide real-time image processing features to users; these features
are scientifically relevant and, more generally, vastly improve the
user experience. OpenGL has evolved over time from a fixed-
functionality API to a fully programmable graphics framework,
via programs written in the high-level, cross-platform OpenGL
Shading Language (GLSL).
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6.1. Basic functionality

Image sharpening, brightness and contrast correction, layer
opacity, and application of colour tables are implemented using
GLSL operations and are all performed on the GPU. This en-
ables the user to change any of these settings in real time, while
multi-layer high-resolution movies are being displayed at frame
rates above 30 fps. By applying a radial filter, the off-disk corona
of solar images can also be enhanced. In addition, the user can
toggle the rendering of the off-limb corona of disk images. This
is useful for full-Sun 3D visualisation of surface features. For
coronagraphic data, the occulter masks are also implemented in
OpenGL for high-quality overlays.

6.2. Solar rotation correction

To enable users to inspect the evolution of solar surface fea-
tures over time in high resolution, JHelioviewer has a tracking
mode which compensates for the Sun’s rotation at the centre of
the viewport. This is implemented by calculating the Sun’s sur-
face rotation rate at the solar latitude corresponding to the cen-
tre of the viewport and then shifting the displayed image sub-
fields at rendering time. To this end, the empirical formula of
Howard et al. (1990) is used,

ω(φ) = A + B sin2 φ +C sin4 φ, (1)

where ω is the solar rotation rate and φ is the latitude.

6.3. Real-time generation and display of difference movies

Time-dependent phenomena with a weak signature in total im-
age intensity are often difficult to detect. In many cases, detection
is more easily accomplished by inspecting movies of difference
images, each of which represents the difference of the original
image and a second image. This can be the previous one in the
time series (running difference) or a fixed reference image (base
difference).

To generate these movies, users previously either had to
download and process image data themselves or, in the case
of STEREO SECCHI data, request pre-generated difference im-
age28. In contrast, JHelioviewer calculates both running and base
differences of any available data in real time on the client’s
GPU, which is computationally efficient and significantly ex-
tends usability.

For each image the spatial positioning information is passed
as input to the GPU to allow compensating for the solar rotation
between the frames. The GPU uses these parameters to compute
the differences between the images, either the difference between
subsequent frames of a given image layer or the difference be-
tween the first frame of the layer and the current frame. The
differences are calculated for the current region of interest and
resolution level. The contrast of the resulting difference movies
is increased for better visibility. Figure 7 shows a screenshot of
this functionality.

6.4. Image projections

JHelioviewer can display images in four projections: ortho-
graphic, latitudinal (for images of the solar disk), log-polar, and
polar. This provides new views of multi-viewpoint data and can,
for example, facilitate the visual detection of propagating fea-
tures in the outer corona. Figure 8 shows the orthographic and

28 https://stereo.gsfc.nasa.gov/cgi-bin/images

Fig. 7. Screenshots of the difference imaging functionality. From top
to bottom: original image, running difference, and base difference. The
users can switch between these display options in real time.

latitudinal projections, while Fig. 9 shows the log-polar and po-
lar projections.

7. Magnetic field line rendering

7.1. Server side

JHelioviewer visualises coronal magnetic field lines of the po-
tential field source-surface model (PFSS, Schatten et al. 1969;
Hoeksema 1984; Wang & Sheeley 1992). The PFSS model
makes the current-free approximation

∇ × B = 0, (2)

∇ · B = 0. (3)

The magnetic field B can then be derived from a scalar potential,
ψ, that obeys the Laplace equation ∆ψ = 0, i.e.

B = −∇ψ. (4)

A PFSS algorithm was implemented in C for fast computation,
following the Stanford PFSS model29. Daily synoptic magne-
tograms from the Global Oscillation Network Group (GONG)30

29 http://wso.stanford.edu/words/pfss.pdf
30 http://gong.nso.edu/data/magmap/index.html
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Fig. 8. Screenshots of orthographic (top, default mode) and latitudinal
projections (bottom). The latitudinal projection can be used to display
global maps of the Sun in 2D, composed of multi-viewpoint data.

Fig. 9. Screenshots of log-polar (top) and polar projections (bottom).
These modes can be used to facilitate detection of propagating features
in the outer corona.

are used as input. These contain full-disk magnetograms at a res-
olution of 256 × 180 in a sine-latitude grid in FITS format. The
algorithm consists of several steps:

(a) reading of the FITS file data into memory;
(b) interpolating the data onto a grid appropriate as input for the

algorithm;
(c) running the algorithm by solving a Poisson-type equation;
(d) selecting field lines and saving these on disk in FITS format.

For the starting points on the photosphere, an equally spaced θ–φ
grid of points that lie above the photosphere is used. The set of
starting points is augmented with starting points for which the
magnetic field is strong.

The algorithm to compute the field lines uses an Adams-
Bashforth explicit method (third-order precision) that requires
fewer evaluations of the vector field than the more commonly
used fourth-order precision Runge-Kutta methods. This is done
because the evaluation of the vector field at a given point is rela-
tively slow.

Fig. 10. Screenshots of the PFSS magnetic field extrapolation model.
The user can vary the number of field lines displayed. By default, the
outgoing sections of field lines close to the solar surface are drawn in
red, the incoming sections in blue. Alternatively, a fixed colour scheme
is used, where coronal loops are drawn in white, open field lines that are
outgoing in red, and incoming in blue.

The resulting FITS files consist of binary tables with four
columns, which store the three coordinates of each field line po-
sition plus the signed field strength at that location. The strength
is mapped in the default display as blue (negative radial) or red
(positive radial); the lower the colour saturation, the weaker the
field. In order to better see the direction of the field, points of the
field lines below 2.4 solar radii have red or blue colours without
blending with white. The algorithm is running as a cron job on
the Helioviewer server at ROB, and the resulting FITS files are
available online31.

7.2. Client side

Using asynchronous processing, the JHelioviewer client down-
loads and caches up to 125 FITS files in memory and displays
the data when ready. When the files are parsed for the first time,
the coordinates of the field lines are transferred into an array on
the GPU, and the field lines are rotated so that they align with the
current image data using the previously created time-aware co-
ordinate system. This allows for automatic co-rotation with the
image data. Figure 10 shows screenshots of the PFSS magnetic

31 http://swhv.oma.be/magtest/pfss/
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Fig. 11. Screenshot of the JHelioviewer timeline, which can display 1D data like disk-integrated fluxes and 2D radio spectrograms. The user can
zoom in time and synchronise the time ranges of timeline data and image data. The section on the bottom of the panel visualises the position in
time, the movie interval, and the visible interval.

field extrapolation model. The standard view offers the following
options:

– toggle visibility;
– set level of detail, i.e. number of lines drawn;
– toggle colour mode. The colours are by default displayed in

a dynamic colour scheme that encodes the field strength. By
default, the outgoing sections of field lines close to the so-
lar surface are drawn in red, the incoming sections in blue.
Alternatively, a fixed colour scheme is used where coronal
loops are drawn in white, open field lines that are outgoing
in red, and incoming in blue.

The visual appearance of the field lines was validated by check-
ing similarity with SDO/HMI PFSS extrapolations on the “Sun
In Time” web pages32, and with the SolarSoft PFSS package33.

8. Timeline functionality

Adding a timeline display to JHelioviewer was motivated by two
main considerations, the desire to display solar activity proxies
over long time ranges to quickly identify periods for further in-
vestigation and the wish to display data of SDO’s Extreme ultra-
violet Variability Experiment (EVE, Woods et al. 2012) along-
side SDO/AIA and HMI data. Subsequently, additional data
products were added.

The timeline canvas shows 1D timelines and 2D radio spec-
trograms (Fig. 11). The timeline canvas can display multiple
timelines with multiple y-axes as well as events data. The time
handling section on the bottom of the panel visualises the posi-
tion in time, the movie interval, and the visible interval. Timeline
data sets currently available include the following:

– Callisto radio spectrograms;
– GOES XRS-A, GOES XRS-B data;

32 http://sdowww.lmsal.com
33 http://www.lmsal.com/~derosa/pfsspack/

– PROBA-2/LYRA Lyman-α, Herzberg, aluminium,
zirconium;

– SDO/EVE XRS-A, XRS-B proxies;
– SDO/EVE ESP (Extreme ultraviolet Spectro-Photometer)

data.

The timeline adapter (Fig. 2) translates between the different
APIs and data representation in Open Data Interface (ODI)34 and
Solar Timelines Viewer for AFFECTS (STAFF)35 formats, and
one JSON format for timelines accepted by JHelioviewer.

The Callisto data files are downloaded from the e-Callisto
network website and merged into a composite data set in order to
ensure good 24-h coverage. The composite image is then trans-
formed into one JHelioviewer-specific JPEG 2000 image file per
day. The data values are calibrated to correct for instrument sen-
sitivity in frequency and time. During this operation the values
are also normalised and transformed to fit into fixed time and
frequency bins, covering fixed time and frequency ranges. Par-
ticular care is taken to reduce the noise and signal pollution, and
to make events stand out better.

9. Solar events integration

JHelioviewer incorporates solar events from the Heliophysics
Event Knowledgebase (HEK, Hurlburt et al. 2012) selected for
their space weather relevance, and alerts from the COMESEP
project36 into a Space Weather Event Knowledgebase (SWEK).
The SWEK enables space weather forecasters to easily focus on
solar events which are more likely to be geo-effective. Events for
a user-specified time period will be downloaded and visualised
in both the image and the timeline panels. This allows users to
identify events visible in the data they are currently browsing, but
also enables them to look for particular event types in a timeline,

34 http://spitfire.estec.esa.int/trac/ODI/wiki/

OdiManual
35 http://www.affects-fp7.eu/
36 http://comesep.aeronomy.be/
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Fig. 12. Event data display: visual markers for a large number of event types can be overlaid on the image and timeline panels. In this example,
CMEs detected with CACTus and active region information from the NOAA SWPC are displayed. Spatial information like projected CME
propagation is shown in the image panel, while event durations are indicated in the timeline panel.

e.g. flares above a certain magnitude, and then visually inspect
the respective image series in detail. Figure 12 illustrates the dis-
play of solar event data.

9.1. Event sources

Event data is downloaded in parallel from the HEK and/or
COMESEP servers (the latter via the ROB server, which has
a local storage to access past COMESEP alerts), cached to a
database, and passed to the program. At the start-up of the pro-
gram, the last two weeks of events in the client’s cache are down-
loaded again to take any updates of the latest events into account.

9.2. Filtering events

To date, for NOAA SWPC flare events and for CACTus CME
events (Robbrecht & Berghmans 2004), a minimum filter, a
maximum filter, and a minimum-maximum filter have been im-
plemented. They operate on the GOES magnitude value and on
the detected radial linear velocity, respectively. The filters are
acting on the local cache of the database and are configurable by
the user.

9.3. Displaying events

The SWEK plugin provides a layer on which events are dis-
played, with an icon indicating their event type. If information
on event boundaries is available, the boundaries are drawn in

a specific colour. Events that are reported as related by a “pre-
ceding” or “following” relationship are coloured identically to
facilitate tracking. Further details are described in the online user
manual.

10. Movie export and annotations

JHelioviewer allows movies to be exported in different resolu-
tions. In addition, it offers a mode in which all user interactions
are recorded, including panning and zooming, a feature that may
be useful for educational purposes. Furthermore, users can high-
light features on the solar disk by drawing rectangles, circles,
or crosses. These annotations have a fixed geometric position
and are moved in time according to their solar latitude. This en-
ables users to visually mark interesting areas, not only inside
JHelioviewer, but also in exported screenshots and movies.

11. Data sources

The goal of the Helioviewer Project is to make as many data sets
available to the worldwide community, to foster research, and
to enable exploration of the Sun and the inner heliosphere for
everyone.

The main server of the Helioviewer Project is located at
NASA’s Goddard Space Flight Center37. Additional servers are
being hosted by the Institut d’Astrophysique Spatiale (IAS)

37 https://helioviewer.org/
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in Orsay, France38, and the Royal Observatory of Belgium
(ROB)39. As part of the recent ESA activity “Space Weather
JHelioviewer” (SWHV, ESA ITT No. AO/1–7186/12/NL/GLC
– High Performance Distributed Solar Imaging and Processing
System), a considerable number of new data sets have been
made available via the ROB Helioviewer server: NSO-GONG
Hα images, magnetograms, and far-side images, Kanzelhöhe
Hα, NSO-SOLIS VSM, NRH radio-heliograph, ROB-USET Hα
observations. Data coverage for each of the above data sets is
summarised online in preliminary form40.

12. Improving usability

Over time, a lot of effort has been directed to enhancing the func-
tionality, the performance, and the intuitiveness of JHelioviewer,
as any one of these factors improves the usability of the software.
To continuously improve both software quality and usability, we
issue frequent software updates, encourage user feedback and
bug reports via GitHub41, and have also been exploring auto-
matic performance monitoring42.

13. Spin-offs

In addition to its use by the solar physics community, earlier
versions of JHelioviewer were successfully adapted for applica-
tion in planetary sciences (visualisation of large image data of
the HiRISE telescope of NASA’s Mars Reconnaissance Orbiter
mission)43 and medical imaging (histopathology).

14. Future work

The next phase of JHelioviewer development will focus on the
improvements outlined below.

14.1. Initiating support for science operations planning
of Solar Orbiter

The next generation of ESA/NASA heliophysics missions, So-
lar Orbiter and Parker Solar Probe, focus on exploring the link-
age between the Sun and the heliosphere. These new missions
will collect unique data that will allow the study of the cou-
pling between macroscopic physical processes and those on
kinetic scales, the generation of solar energetic particles and
their propagation into the heliosphere, and the origin and ac-
celeration of solar wind plasma. A key piece needed to bridge
the gaps between observables, derived quantities like magnetic
field extrapolations, and model output is a tool to routinely
and intuitively visualise large heterogeneous, multi-dimensional,
time-dependent data sets. So far, JHelioviewer has only been dis-
playing photon data, i.e. signals travelling at speed of light. In
preparation for the in situ measurements of solar wind plasma
that Solar Orbiter will provide, JHelioviewer will be extended to
also display data of existing in situ instruments.

38 http://helioviewer.ias.u-psud.fr/helioviewer/
39 http://swhv.oma.be/helioviewer
40 http://swhv.oma.be/availability/images/availability/

availability.html
41 https://github.com/Helioviewer-Project/

JHelioviewer-SWHV/issues
42 https://raygun.com
43 https://code.launchpad.net/~jhelioviewer-dev/

jhelioviewer/jhiriseviewer

14.2. Improving interoperability and data access

A central goal of the Helioviewer Project is to enable new sci-
ence by making as many data sets as possible visually brows-
able and by linking to the respective science quality data. In this
activity, three things will be studied: how to enable users to re-
trieve science quality data using the Virtual Solar Observatory
(VSO)44, how to interoperate with ESA’s science data archives,
and how to communicate with data processing environments
and information sources, specifically the community-developed
open-source solar data analysis environment for Python, SunPy
(SunPy Community et al. 2015)45, and SolarSoft/IDL. One pos-
sible approach (implemented on helioviewer.org at the sugges-
tion of a user) is to implement the user’s data selections to
automatically generate Solarsoft/IDL and SunPy/Python code
snippets that query and download data via the VSO and other
data archives.

15. Conclusions

The dramatic increase in data volume returned by space obser-
vatories in recent years necessitates a shift in the data analysis
paradigm in astronomy and solar physics. Data volumes like
those returned by the SDO mission make downloading and lo-
cally browsing and analysing significant fractions of the data
impossible, simply because such an activity exceeds the existing
internet and network infrastructure. Looking ahead, the next gen-
eration of ESA/NASA heliophysics missions, Solar Orbiter and
Parker Solar Probe, will focus on exploring the link between the
Sun and the heliosphere. These new missions will collect unique
data that will allow us to study the coupling between macro-
scopic physical processes and those on kinetic scales, the genera-
tion of solar energetic particles and their propagation into the he-
liosphere, and the origin and acceleration of solar wind plasma,
etc. Combined with the several petabytes of data from SDO, the
scientific community will soon have access to complex, multi-
dimensional observations from different vantage points, comple-
mented by petabytes of simulation data, but new tools are re-
quired to fully exploit these data.

To address these challenges, we have developed JHe-
lioviewer, a software that enables the visual browsing of large
data volumes of time-dependent data, now with significantly ex-
tended functionality and for any time period between Septem-
ber 1991 and today. Users can display movies of high-resolution
multi-point image data in 3D, perform basic image processing
on time series of images in real time, track features on the Sun
by compensating for the Sun’s rotation, and interactively overlay
PFSS magnetic field extrapolations. Furthermore, the software
integrates solar event data and a timeline for displaying 1D and
2D data over variable timescales. Once an interesting event has
been identified, science quality data can be accessed for in-depth
analysis. As a first step towards supporting the science planning
process for Solar Orbiter, JHelioviewer offers a virtual camera
model that enables users to set the vantage point to the location
of a spacecraft or celestial body at a given time.

Within the last few years, the user base of JHelioviewer has
increased significantly. It is being used as a research tool by the
scientific community, as an outreach tool by educators, and for
exploration of the Sun and heliosphere by citizen scientists alike.
At the time of writing, over 1.4 million movies have been created
using all versions of JHelioviewer since February 2011. While
our implementation is focused on accessing solar physics data,

44 http://virtualsolar.org
45 http://sunpy.org/
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our architecture and components can be reused easily in other
domains with similar large data volume constraints and browsing
requirements.
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