
Proceedings of the Fourth Arabic Natural Language Processing Workshop, pages 264–268

Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

264

JHU System Description
for the MADAR Arabic Dialect Identification Shared Task

Tom Lippincott

tom@cs.jhu.edu

Pamela Shapiro

pshapiro@jhu.edu

Kevin Duh

kevinduh@cs.jhu.edu

Paul McNamee

mcnamee@jhu.edu

Department of Computer Science

Johns Hopkins University

Baltimore, MD 21218

Abstract

Our submission to the MADAR shared task on

Arabic dialect identification (Bouamor et al.,

2019) employed a language modeling tech-

nique called Prediction by Partial Match-

ing, an ensemble of neural architectures, and

sources of additional data for training word

embeddings and auxiliary language models.1

We found several of these techniques provided

small boosts in performance, though a simple

character-level language model was a strong

baseline, and a lower-order LM achieved best

performance on Subtask 2. Interestingly, word

embeddings provided no consistent benefit,

and ensembling struggled to outperform the

best component submodel. This suggests the

variety of architectures are learning redundant

information, and future work may focus on en-

couraging decorrelated learning.

1 Introduction

While Modern Standard Arabic (MSA) is used

across many countries for formal written com-

munication, regional Arabic dialects vary sub-

stantially. Dialect identification has traditionally

been performed at the level of broad families

of dialects—for instance grouping many dialects

across the Arabian Peninsula together. However,

even within a single country there is often no-

ticeable variation from one city to another. The

MADAR dataset and corresponding shared task

aim to perform dialect identification at a finer-

grained level. Subtask 1 aims to distinguish travel

phrases produced between Arabic dialect speak-

ers from 25 different cities, as well as MSA. Sub-

1Code available at https://bit.ly/2Kouo5X

task 2 aims to distinguish Twitter users from dif-

ferent Arabic-speaking countries. Along with the

inherent difficulty of classifying short documents,

highly-correlated modalities like topic and proper

names can lead to overfitting, particularly for user-

directed content like Twitter. Our method attempts

to address the former by using a language model-

ing technique that has empirically been found to

perform well on extremely short documents. For

the latter, we employ ensembles of heterogeneous

neural architectures and aggressive dropout, with

the goal of finding a broad range of features that

support the task without overfitting.

2 Data

In addition to the data provided by the MADAR

subtasks, we used the following data sets to train

embeddings or auxiliary language models:

1. Preexisting collections of the Arabic Dialect

Corpus (ADC) of 150k comments from three

Arabic-language newspaper sites focused on

Saudi Arabia, Jordan, and Egypt (Zaidan and

Callison-Burch, 2011)

2. The Twitter LID corpus of 70k Tweets in 70

languages 2.

3. Crawled posts from Reddit and the Twitter

1% sample either tagged as Arabic, or having

a majority of Arabic characters, amounting to

11k and 100m posts, respectively, are used.

The ADC and Twitter LID corpora were also

used to train additional PPM language models,

2https://bit.ly/2KlITre

https://bit.ly/2Kouo5X
https://bit.ly/2KlITre


265

though these proved to be ineffective in our en-

sembles (see Section 5)

Split Missing

Train 13076 (6%)

Dev 1607 (5%)

Test 5763 (12%)

Table 1: Missing tweets from the Subtask 2 data splits,

absolute number and percent of total.

Table 1 shows how many tweets were still avail-

able when we initialized Subtask 2.

3 System

3.1 PPM Language Models

Prediction by Partial Matching (PPM) was first

introduced as a sequence compression algorithm

(Cleary and Witten, 1984) but has been found to

be particularly effective as a character language

model for classifying short documents (Frank

et al., 2000; McNamee, 2016), using the proba-

bilities directly rather than as input to a numeric

encoding.

PPM is based on a variable-order Markov model

that contains a parameter N known as the maxi-

mal order. When compressing data files or train-

ing a classification model, observations from pre-

viously seen data are used to estimate the likeli-

hood of observing a symbol following a given con-

text of up to N characters. Longer contexts are

used when available, starting with the maximal or-

der N . However, PPM automatically backs off to

use shorter contexts when a symbol has never been

observed in a longer context. A context-dependent

penalty, also known as an escape probability, is ap-

plied when backing off is required.

As an example, in English, an ‘n’ is the most

likely character observed after the sequence “t i

o”. Other letters are observed less frequently, such

as ‘l’, ‘m’, and ‘p’. However, a ‘z’ is not observed.

To account for a ‘z’ after “t i o” it is necessary to

back off using the estimates from shorter contexts

such as “i o”. If a ‘z’ has never been observed after

“i o” then the process continues, with an additional

penalty and further recursive backoff for ‘z’ using

the context of the single symbol (‘i’).

To use PPM for classification rather than com-

pression, models M1,M2, ...,Mn are trained for

each discrete class. Then for a given textual sam-

ple t, choose the model that encodes t in the least

number of bits. In reality the text is not com-

pressed and the probabilities from the model are

used to choose the model which best fits the text.

N Subtask 1 Subtask 2

2 0.430 0.431

3 0.576 0.543

4 0.591 0.402

5 0.586 0.287

Table 2: Performance of PPM models on the subtask

dev sets using different values of N .

For each labeled corpus, we trained PPM lan-

guage models for distinguishing among the labels.

This included each of the two subtasks, as well as

the ADC and Twitter LID corpora that have a way

to divide the instances into categories.

These models can either be used directly for

their “native” task, or produce probabilities that

may contain useful signal for a downstream task.

Table 2 shows how the native models for each

MADAR subtask perform with different values of

maximal order N on dev data. N = 4 was best for

Subtask 1, and N = 3 was best for Subtask 2.

3.2 Word Embeddings

For the word-based neural models, we use 300-

dimensional word embeddings trained on differ-

ent amounts of data as input representations. First,

we use randomly initialized embeddings. Then,

we train fastText continuous bag of words (cbow)

models with default parameters on the MADAR

data (Bojanowski et al., 2017).3 Finally, we uti-

lize additional data, training on MADAR in addi-

tion to the datasets mentioned above (MADAR+).

We provide final results (Macro-Average F1) from

the ensemble model using each of these variants in

Table 3. We see that utilizing additional data pro-

vided marginal performance gains, helping more

in Subtask 2 where much of our additional data

was also Twitter data, making it in-domain.

Embedding Subtask 1 Subtask 2

Random 0.632 0.399

MADAR 0.626 0.397

MADAR+ 0.634 0.411

Table 3: Effect of different word embeddings,

Macro-Average F1 for final ensemble models on dev

data.

3https://fasttext.cc/

https://fasttext.cc/


266

Padded sequence
E

m
b

ed
d

in
g

C
o

n
v
o

lu
tio

n
s

H
id

d
en

(a) CNNs over sequences

Embedding sequence

B
i-L

S
T

M

M
ax

p
o

o
l

H
id

d
en

(b) RNNs over
sequences

Distribution over label space

H
id

d
en

(c) MLPs over
distributions

Figure 1: The three basic types of submodels combined into the final ensemble, where the top layer is the input

representation. They all produce the same-sized final hidden representation that can either be mapped directly to

the target value with a final linear layer (for individual training) or concatenated into an ensemble.

3.3 Ensemble Models

In what follows, all layers other than the final

fully-connected input to softmax employ ReLU

non-linearity.

We experimented with an ensemble model that

combines submodels to extract signal from differ-

ent features or incorporate information from non-

neural methods. Figure 1 shows the three types of

submodels: CNNs and RNNs over character and

word sequences, and MLPs over probability distri-

butions from language models and metadata. We

integrate the metadata provided with Subtask 2 as

additional distributions: the probabilities from the

organizers’ 26-class model are incorporated the

same way as LM scores, while the Twitter label

is treated as a one-hot distribution and also incor-

porated alongside the LM scores.

Each submodel, regardless of architecture,

eventually produces a same-sized hidden repre-

sentation, which are initially mapped to the target

output via cross-entropy to train as an individual

model. Once the submodels have converged, their

parameters are frozen, their hidden layers are de-

tached from the target output, and instead concate-

nated into a single representation. This representa-

tion is then the input to the shared ensemble archi-

tecture, as shown in Figure 2. Note that the “Step-

down FCs” layer is actually composed of several

fully-connected layers, each dividing the represen-

tation size in half until it is one factor larger than

the output label space.

Other specific choices for the models in this

paper are: 100-dim char embeddings, char/word

CNN filter sizes 1,2,3,4,5, bidirectional 2-layer

LSTMs with 32-dim states, and SGD with

LR=0.1, momentum=0.9, patience of 10 for LR

decay, early stop patience of 20, and minibatch

size of 512.

Submodel hidden layers

S
tep

-d
o
w

n
F

C
s

S
o

ft
m

ax

Figure 2: The ensemble model concatenates the

hidden representations produced by the submodels and

stacks one or more dense, non-linear layers, stepping

down in size to a final softmax output over the label

space.

Due to a misreading of the task description, our

models were designed to classify tweets individu-

ally: this was handled at the submission deadline

by taking a majority vote over each user’s tweets.

4 Results

Table 4 reports the final precision, recall, and F1

scores for the best-performing model on each sub-

task.

The ensemble for Subtask 1 incorporates the

best-performing (PPM-4) language model (see Ta-

ble 2). The PPM-3 model for Subtask 2 performed

text normalization to only include Arabic charac-

ters, followed by prepending the user name.



267

Subtask Model Prec Rec F1

Subtask 1 Ensemble 63.7 63.4 63.4

Subtask 2 PPM-3 74.9 46.5 54.3

Table 4: Precision, recall, and f-score of the best

model for each subtask.

5 Discussion

Table 5 shows the final performance (Macro-

Average F1) of the submodels of the ensemble

on Subtask 1, before they were frozen, and the

performance of the final ensemble model (which

used the submodels). The modest 4-point im-

provement of the ensemble over the PPM sub-

model, and the fact that the Subtask 2 ensemble

under-performed the PPM-3 model, suggests poor

coordination of the representational power of the

constituents. Distributions from language models

trained on our other data sets unfortunately pro-

vided no benefit under the ensemble, and were not

included.

Submodel F1 Score

CNN 0.545

RNN 0.554

MLP-PPM 0.591

Ensemble 0.634

Table 5: F1 Scores of the submodels of the best

ensemble for Subtask 1.

Figures 3 and 4 show the confusion matrices of

the best models on Subtask 1 and 2, respectively.

Our Task 1 misclassifications closely track those

reported in (Salameh and Bouamor, 2018), e.g.

TUN/SFX and BAS/BAG.

For Task 2, the preponderance of Saudi Ara-

bian documents dominates the misclassifications,

but also striking is how asymmetric the heatmap is

compared to Subtask 1. This may largely be due to

the small number of instances (half of the classes

have counts in the single digits), but even better-

represented pairs like Oman (14) and Iraq (10) are

largely unidirectional, with Iraq much likelier to

be misclassified as Oman than the reverse.

6 Conclusion

We experimented with a non-standard character

language model (PPM) designed for classifying

short text sequences, and an ensemble model that

combined several neural architectures and input

Figure 3: Confusion matrix for the Subtask 1 dev set

using an ensemble model with word embeddings and

language model scores constructed from the full suite

of MADAR and external data sets

Figure 4: Confusion matrix for Subtask 2 dev set using

a 3-gram PPM model constructed from the train set

features. The language model proved difficult to

beat, even by ensembles that include the LM it-

self: this under-performance indicates the ensem-

bling is not optimally leveraging its inputs. Future

work might focus on techniques for encouraging

uncorrelated training, perhaps by sequential sub-

model training that modifies the data as a function

of previous submodel predictions.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Houda Bouamor, Sabit Hassan, and Nizar Habash.
2019. The MADAR Shared Task on Arabic Fine-
Grained Dialect Identification. In Proceedings of the



268

Fourth Arabic Natural Language Processing Work-
shop (WANLP19), Florence, Italy.

John Cleary and Ian Witten. 1984. Data compression
using adaptive coding and partial string matching.
Transactions on Communications, 32:396–402.

Eibe Frank, Chang Chui, and Ian Witten. 2000. Text
categorization using compression models. In Pro-
ceedings of the IEEE Data Compression Confer-
ence, pages 200–209.

Paul McNamee. 2016. Language and Dialect Discrimi-
nation Using Compression-Inspired Language Mod-
els. Proceedings of the Third Workshop on NLP for
Similar Languages, Varieties and Dialects.

Mohammad Salameh and Houda Bouamor. 2018.
Fine-grained arabic dialect identification. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 1332–1344.

Omar Zaidan and Chris Callison-Burch. 2011. The ara-
bic online commentary dataset: an annotated dataset
of informal arabic with high dialectal content. In
Proceedings of the Association for Computational
Linguistics, pages 37–41.


