
ROBOTICS AND AI
METHODS ARTICLE

published: 02 December 2014
doi: 10.3389/frobt.2014.00011

JIDT: an information-theoretic toolkit for studying the
dynamics of complex systems
JosephT. Lizier 1,2*
1 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
2 CSIRO Digital Productivity Flagship, Marsfield, NSW, Australia

Edited by:
Daniel Polani, University of
Hertfordshire, UK

Reviewed by:
Dimitrije Markovic, Max Planck
Institute for Human Cognitive and
Brain Sciences, Germany
Keyan Ghazi-Zahedi, Max Planck
Institute for Mathematics in the
Sciences, Germany

*Correspondence:
Joseph T. Lizier , CSIRO Digital
Productivity Flagship, Corner Vimiera
and Pembroke Roads, Marsfield,
NSW 2122, Australia
e-mail: joseph.lizier@gmail.com

Complex systems are increasingly being viewed as distributed information processing
systems, particularly in the domains of computational neuroscience, bioinformatics, and
artificial life.This trend has resulted in a strong uptake in the use of (Shannon) information-
theoretic measures to analyze the dynamics of complex systems in these fields. We intro-
duce the Java Information Dynamics Toolkit (JIDT): a Google code project, which provides
a standalone (GNU GPL v3 licensed) open-source code implementation for empirical esti-
mation of information-theoretic measures from time-series data. While the toolkit provides
classic information-theoretic measures (e.g., entropy, mutual information, and conditional
mutual information), it ultimately focuses on implementing higher-level measures for infor-
mation dynamics. That is, JIDT focuses on quantifying information storage, transfer, and
modification, and the dynamics of these operations in space and time. For this purpose, it
includes implementations of the transfer entropy and active information storage, their mul-
tivariate extensions and local or pointwise variants. JIDT provides implementations for both
discrete and continuous-valued data for each measure, including various types of estima-
tor for continuous data (e.g., Gaussian, box-kernel, and Kraskov–Stögbauer–Grassberger),
which can be swapped at run-time due to Java’s object-oriented polymorphism. Further-
more, while written in Java, the toolkit can be used directly in MATLAB, GNU Octave,
Python, and other environments. We present the principles behind the code design, and
provide several examples to guide users.

Keywords: information transfer, information storage, complex systems, complex networks, information theory,
transfer entropy, Java, MATLAB

1. INTRODUCTION
Information theory was originally introduced by Shannon (1948)
to quantify fundamental limits on signal processing operations
and reliable communication of data (Cover and Thomas, 1991;
MacKay, 2003). More recently, it is increasingly being utilized
for the design and analysis of complex self-organized systems
(Prokopenko et al., 2009). Complex systems science (Mitchell,
2009) is the study of large collections of entities (of some type),
where the global system behavior is a non-trivial result of the
local interactions of the individuals, e.g., emergent conscious-
ness from neurons, emergent cell behavior from gene regulatory
networks and flocks determining their collective heading. The
application of information theory to complex systems can be
traced to the increasingly popular perspective that commonalities
between complex systems may be found “in the way they han-
dle information” (Gell-Mann, 1994). Certainly, there have been
many interesting insights gained from the application of tradi-
tional information-theoretic measures such as entropy and mutual
information to study complex systems, for example, proposals
of candidate complexity measures (Tononi et al., 1994; Adami,
2002), characterizing order-chaos phase transitions (Miramontes,
1995; Solé and Valverde, 2001; Prokopenko et al., 2005, 2011),

and measures of network structure (Solé and Valverde, 2004;
Piraveenan et al., 2009).

More specifically though, researchers are increasingly view-
ing the global behavior of complex systems as emerging from
the distributed information processing, or distributed computation,
between the individual elements of the system (Langton, 1990;
Mitchell, 1998; Fernández and Solé, 2006; Wang et al., 2012; Lizier,
2013), e.g., collective information processing by neurons (Gong
and van Leeuwen, 2009). Computation in complex systems is
examined in terms of: how information is transferred in the inter-
action between elements, how it is stored by elements, and how
these information sources are non-trivially combined. We refer to
the study of these operations of information storage, transfer, and
modification, and in particular, how they unfold in space and time,
as information dynamics (Lizier, 2013; Lizier et al., 2014).

Information theory is the natural domain to quantify these
operations of information processing, and we have seen a num-
ber of measures recently introduced for this purpose, including
the well-known transfer entropy (Schreiber, 2000), as well as
active information storage (Lizier et al., 2012b) and predictive
information (Bialek et al., 2001; Crutchfield and Feldman, 2003).
Natural affinity aside, information theory offers several distinct

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 1

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/about
http://www.frontiersin.org/Journal/10.3389/frobt.2014.00011/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2014.00011/abstract
http://www.frontiersin.org/people/u/79363
mailto:joseph.lizier@gmail.com
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

advantages as a measure of information processing in dynamics1,
including its model-free nature (requiring only access to proba-
bility distributions of the dynamics), ability to handle stochastic
dynamics,and capture non-linear relationships, its abstract nature,
generality, and mathematical soundness.

In particular, this type of information-theoretic analysis has
gained a strong following in computational neuroscience, where
the transfer entropy has been widely applied (Honey et al., 2007;
Vakorin et al., 2009; Faes et al., 2011; Ito et al., 2011; Liao et al.,
2011; Lizier et al., 2011a; Vicente et al., 2011; Marinazzo et al.,
2012; Stetter et al., 2012; Stramaglia et al., 2012; Mäki-Marttunen
et al., 2013; Wibral et al., 2014b,c) (for example, for effective
network inference), and measures of information storage are gain-
ing traction (Faes and Porta, 2014; Gómez et al., 2014; Wibral
et al., 2014a). Similarly, such information-theoretic analysis is
popular in studies of canonical complex systems (Lizier et al.,
2008c, 2010, 2012b; Mahoney et al., 2011; Wang et al., 2012; Bar-
nett et al., 2013), dynamics of complex networks (Lizier et al.,
2008b, 2011c, 2012a; Damiani et al., 2010; Damiani and Lecca,
2011; Sandoval, 2014), social media (Bauer et al., 2013; Oka and
Ikegami, 2013; Steeg and Galstyan, 2013), and in artificial life
and modular robotics both for analysis (Lungarella and Sporns,
2006; Prokopenko et al., 2006b; Williams and Beer, 2010a; Lizier
et al., 2011b; Boedecker et al., 2012; Nakajima et al., 2012; Walker
et al., 2012; Nakajima and Haruna, 2013; Obst et al., 2013; Cliff
et al., 2014) and design (Prokopenko et al., 2006a; Ay et al.,
2008; Klyubin et al., 2008; Lizier et al., 2008a; Obst et al., 2010;
Dasgupta et al., 2013) of embodied cognitive systems (in partic-
ular, see the “Guided Self-Organization” series of workshops, e.g.,
(Prokopenko, 2009)).

This paper introduces JIDT – the Java Information Dynam-
ics Toolkit – which provides a standalone implementation of
information-theoretic measures of dynamics of complex systems.
JIDT is open-source, licensed under GNU General Public License
v3, and available for download via Google code at http://code.
google.com/p/information-dynamics-toolkit/. JIDT is designed
to facilitate general-purpose empirical estimation of information-
theoretic measures from time-series data, by providing easy to use,
portable implementations of measures of information transfer,
storage, shared information, and entropy.

We begin by describing the various information-theoretic mea-
sures, which are implemented in JIDT in Section 2.1 and Section
S.1 in Supplementary Material, including the basic entropy and
(conditional) mutual information (Cover and Thomas, 1991;
MacKay, 2003), as well as the active information storage (Lizier
et al., 2012b), the transfer entropy (Schreiber, 2000), and its con-
ditional/multivariate forms (Lizier et al., 2008c, 2010). We also
describe how one can compute local or pointwise values of these
information-theoretic measures at specific observations of time-
series processes, so as to construct their dynamics in time. We
continue to then describe the various estimator types, which are
implemented for each of these measures in Section 2.2 and Section
S.2 in Supplementary Material (i.e., for discrete or binned data,
and Gaussian, box-kernel, and Kraskov–Stögbauer–Grassberger

1Further commentary on links between information-theoretic analysis and tra-
ditional dynamical systems approaches are discussed by Beer and Williams
(2014).

estimators). Readers familiar with these measures and their esti-
mation may wish to skip these sections. We also summarize the
capabilities of similar information-theoretic toolkits in Section 2.3
(focusing on those implementing the transfer entropy).

We then turn our attention to providing a detailed intro-
duction of JIDT in Section 3, focusing on the current version
1.0 distribution. We begin by highlighting the unique features
of JIDT in comparison to related toolkits, in particular, in pro-
viding local information-theoretic measurements of dynamics;
implementing conditional, and other multivariate transfer entropy
measures; and including implementations of other related mea-
sures including the active information storage. We describe the
(almost 0) installation process for JIDT in Section 3.1: JIDT is
standalone software, requiring no prior installation of other soft-
ware (except a Java Virtual Machine), and no explicit compiling
or building. We describe the contents of the JIDT distribution in
Section 3.2, and then in Section 3.3 outline, which estimators are
implemented for each information-theoretic measure. We then
describe the principles behind the design of the toolkit in Section
3.4, including our object-oriented approach in defining interfaces
for each measure, then providing multiple implementations (one
for each estimator type). Sections 3.5 and 3.7 then describe how
the code has been tested, how the user can (re-)build it, and what
extra documentation is available (principally the project wiki and
Javadocs).

Finally, and most importantly, Section 4 outlines several
demonstrative examples supplied with the toolkit, which are
intended to guide the user through how to use JIDT in their code.
We begin with simple Java examples in Section 4.1 that includes
a description of the general pattern of usage in instantiating a
measure and making calculations, and walks the user through
differences in calculators for discrete and continuous data, and
multivariate calculations. We also describe how to take advan-
tage of the polymorphism in JIDT’s object-oriented design to
facilitate run-time swapping of the estimator type for a given
measure. Other demonstration sets from the distribution are pre-
sented also, including basic examples using the toolkit in MATLAB,
GNU Octave, and Python (Sections 4.2 and 4.3); reproduction
of the original transfer entropy examples from Schreiber (2000)
(Section 4.4); and local information profiles for cellular automata
(Section 4.5).

2. INFORMATION-THEORETIC MEASURES AND
ESTIMATORS

We begin by providing brief overviews of information-theoretic
measures (Section 2.1) and estimator types (Section 2.2) imple-
mented in JIDT. These sections serve as summaries of Sections S.1
and S.2 in Supplementary Material. We also discuss related toolkits
implementing some of these measures in Section 2.3.

2.1. INFORMATION-THEORETIC MEASURES
This section provides a brief overview of the information-theoretic
measures (Cover and Thomas, 1991; MacKay, 2003), which are
implemented in JIDT. All features discussed are available in JIDT
unless otherwise noted. A more complete description for each
measure is provided in Section S.1 in Supplementary Material.

We consider measurements x of a random variable X, with
a probability distribution function (PDF) p(x) defined over the

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 2

http://code.google.com/p/information-dynamics-toolkit/
http://code.google.com/p/information-dynamics-toolkit/
http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

alphabet αx of possible outcomes for x (where αx= {0, . . . ,
MX− 1} without loss of generality for some MX discrete symbols).

The fundamental quantity of information theory, for example,
is the Shannon entropy, which represents the expected or average
uncertainty associated with any measurement x of X :

H (X) = −
∑
x∈αx

p (x) log2p (x) . (1)

Unless otherwise stated, logarithms are taken by convention in
base 2, giving units in bits. H(X) for a measurement x of X can
also be interpreted as the minimal expected or average number of
bits required to encode or describe its value without losing infor-
mation (Cover and Thomas, 1991; MacKay, 2003). X may be a
joint or vector variable, e.g., X= {Y, Z }, generalizing equation (1)
to the joint entropy H (X) or H (Y, Z) for an arbitrary number
of joint variables (see Table 1; equation (S.2) in Section S.1.1 in
Supplementary Material). While the above definition of Shannon
entropy applies to discrete variables, it may be extended to vari-
ables in the continuous domain as the differential entropy – see
Section S.1.4 in Supplementary Material for details.

All of the subsequent Shannon information-theoretic quanti-
ties we consider may be written as sums and differences of the
aforementioned marginal and joint entropies, and all may be
extended to multivariate (X, Y, etc.) and/or continuous variables.
The basic information-theoretic quantities: entropy, joint entropy,
conditional entropy, mutual information (MI), conditional mutual
information (Cover and Thomas, 1991; MacKay, 2003), and multi-
information (Tononi et al., 1994); are discussed in detail in Section
S.1.1 in Supplementary Material, and summarized here in Table 1.
All of these measures are non-negative.

Also, we may write down pointwise or local information-
theoretic measures, which characterize the information attributed
with specific measurements x, y, and z of variables X, Y, and Z
(Lizier, 2014), rather than the traditional expected or average
information measures associated with these variables introduced
above. Full details are provided in Section S.1.3 in Supplementary
Material, and the local form for all of our basic measures is shown
here in Table 1. For example, the Shannon information content or
local entropy of an outcome x of measurement of the variable X is
(Ash, 1965; MacKay, 2003):

h (x) = −log2p (x) . (2)

By convention, we use lower-case symbols to denote local
information-theoretic measures. The Shannon information con-
tent of a given symbol x is the code-length for that symbol in an
optimal encoding scheme for the measurements X, i.e., one that
produces the minimal expected code length. We can form all local
information-theoretic measures as sums and differences of local
entropies (see Table 1; Section S.1.3 in Supplementary Material),
and each ordinary measure is the average or expectation value of
their corresponding local measure, e.g., H (X)=〈h(x)〉. Crucially,
the local MI and local conditional MI (Fano, 1961) may be negative,
unlike their averaged forms. This occurs for MI where the measure-
ment of one variable is misinformative about the other variable (see
further discussion in Section S.1.3 in Supplementary Material).

Applied to time-series data, these local variants return a time-
series for the given information-theoretic measure, which with
mutual information, for example, characterizes how the shared
information between the variables fluctuates as a function of time.
As such, they directly reveal the dynamics of information, and
are gaining popularity in complex systems analysis (Shalizi, 2001;

Table 1 | Basic information-theoretic quantities (first six measures) and measures of information dynamics (last five measures) implemented

in JIDT.

Measure Average/expected form Local form

Entropy H(X) = −
∑

x∈αx

p(x)log2p(x) Eq. (S.1) h(x) = −log2p(x) Eq. (S.32)

Joint entropy H(X , Y) = −
∑

x∈αx ,y∈αy

p(x , y)log2p(x , y) Eq. (S.2) h(x , y) = −log2p(x , y) Eq. (S.38)

Conditional entropy H(Y |X) = H(X , Y)− H(X) Eq. (S.3) h(x |y) = h(x , y)− h(x) Eq. (S.37)

Mutual information I(X ; Y) = H(X)+ H(Y)− H(X , Y) Eq. (S.6) i(x ; y) = h(x)+ h(y)− h(x , y) Eq. (S.41)

Multi-information I(X1; X2; . . . ; XG) =(∑G
g=1 H(Xg)

)
− H(X1, X2, . . . , XG)

Eq. (S.7) i(x1; x2; . . . ; xG) =(∑G
g=1 h(xg)

)
− h(x1, x2, . . . , xG)

Eq. (S.47)

Conditional MI I(X ; Y |Z) = H(X |Z)+H(Y |Z)−H(X , Y |Z) Eq. (S.11) i(x ; y | z) = h(x | z)+ h(y | z)− h(x , y | z) Eq. (S.44)

Entropy rate HµX (k) = H(Xn+1|X(k)
n) Eq. (S.18) hµX (n + 1, k) = h(xn+1|x

(k)
n) Eq. (S.48)

Active information storage AX (k) = I(X(k)
n ; Xn+1) Eq. (S.23) aX (n + 1, k) = i(x(k)

n ; xn+1) Eq. (S.52)

Predictive information EX (k) = I(X(k)
n ; X(k+)

n+1) Eq. (S.21) eX (n + 1, k) = i(x(k)
n ; x(k+)

n+1) Eq. (S.50)

Transfer entropy TY→X (k , l , u) = I(Y(l)
n+1−u ; Xn+1|X(k)

n) Eq. (S.27) tY→X (n + 1, k , l , u) = i(y(l)
n+1−u ; xn+1|x

(k)
n) Eq. (S.54)

Conditional TE TY→X |Z (k , l) = I(Y(l)
n ; Xn+1|X(k)

n , Zn) Eq. (S.29) tY→X |Z (n + 1, k , l) = i(y(l)
n ; xn+1|x

(k)
n , zn) Eq. (S.56)

Equations are supplied for both their average or expected form, and their local form. References are given to the presentation of these equations in Sections S.1.1

and S.1.2 in Supplementary Material.

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

Helvik et al., 2004; Shalizi et al., 2006; Lizier et al., 2007, 2008c,
2010, 2012b; Lizier, 2014; Wibral et al., 2014a).

Continuing with time-series, we then turn our attention to
measures specifically used to quantify the dynamics of informa-
tion processing in multivariate time-series, under a framework
for information dynamics, which was recently introduced by Lizier
et al. (2007, 2008c, 2010, 2012b, 2014) and Lizier (2013, 2014). The
measures of information dynamics implemented in JIDT – which
are the real focus of the toolkit – are discussed in detail in Section
S.1.2 in Supplementary Material, and summarized here in Table 1.

These measures consider time-series processes X of the ran-
dom variables {. . . Xn−1, Xn, Xn+1. . .} with process realizations
{. . . xn−1, xn, xn+1 . . .} for countable time indices n. We use

X(k)
n =

{
Xn−k+1, . . . , Xn−1, Xn

}
to denote the k consecutive

variables of X up to and including time step n, which has real-

izations x(k)
n =

{
xn−k+1, . . . , xn−1, xn

}
2. The x(k)

n are Takens’
embedding vectors (Takens, 1981) with embedding dimension k,
which capture the underlying state of the process X for Markov
processes of order k3.

Specifically, our framework examines how the information in
variable Xn+1 is related to previous variables or states (e.g., Xn

or X(k)
n) of the process or other related processes, addressing the

fundamental question: “where does the information in a random
variable Xn+1 in a time series come from?” As indicated in Figure 1
and shown for the respective measures in Table 1, this question is
addressed in terms of

1. information from the past of process X – i.e., the information
storage, measured by the active information storage (Lizier et al.,
2012b), and predictive information or excess entropy (Grass-
berger, 1986; Bialek et al., 2001; Crutchfield and Feldman,
2003);

2. information contributed from other source processes Y – i.e.,
the information transfer, measured by the transfer entropy (TE)
(Schreiber, 2000), and conditional transfer entropy (Lizier et al.,
2008c, 2010);

3. and how these sources combine – i.e., information modification
(see separable information (Lizier et al., 2010) in Section S.1.2
in Supplementary Material).

The goal of the framework is to decompose the information
in the next observation Xn+1 of process X in terms of these
information sources.

The transfer entropy, arguably the most important measure in
the toolkit, has become a very popular tool in complex systems
in general, e.g., (Lungarella and Sporns, 2006; Lizier et al., 2008c,
2011c; Obst et al., 2010; Williams and Beer, 2011; Barnett and
Bossomaier, 2012; Boedecker et al., 2012), and in computational
neuroscience, in particular, e.g., (Ito et al., 2011; Lindner et al.,

2We use the corresponding notation X(k+)
n+1 for the next k values from n+ 1 onwards,

{Xn+1, Xn+2, . . ., Xn+k}, with realizations x(k+)
n+1 =

{
xn+1, xn+2, . . . , xn+k

}
3We can use an embedding delay τ to give x(k)

n =
{

xn−(k−1)τ, . . . , xn−τ, xn
}

,
where this helps to better empirically capture the state from a finite sample size.
Non-uniform embeddings (i.e., with irregular delays) may also be useful (Faes et al.,
2011) (not implemented in JIDT at this stage).

0

0

1
0

n
n+1

n-1

n-k+1

…

Y1 BXA Y2 Variables

Time
series

1
0
0

0
0
1

1
0
1

0
1
1

tY1→X(n+1)

aX(n+1)

tY2→X(n+1)

xk
n

xn+1

y1 n y2 n

FIGURE 1 | Measures of information dynamics with respect to a
destination variable X . We address the information content in a
measurement x n+1 of X at time n+1 with respect to the active information
storage aX(n+1, k), and local transfer entropies tY1→X (n + 1, k) and
tY2→X (n + 1, k) from variables Y1 and Y2.

2011; Lizier et al., 2011a; Vicente et al., 2011; Stramaglia et al.,
2012). For multivariate Gaussians, the TE is equivalent (up to a
factor of 2) to the Granger causality (Barnett et al., 2009). Exten-
sion of the TE to arbitrary source-destination lags is described by
Wibral et al. (2013) and incorporated in Table 1 (this is not shown
for conditional TE here for simplicity, but is handled in JIDT).
Further, one can consider multivariate sources Y, in which case
we refer to the measure TY→X(k, l) as a collective transfer entropy
(Lizier et al., 2010). See further description of this measure at
Section S.1.2 in Supplementary Material, including regarding how
to set the history length k.

Table 1 also shows the local variants of each of the above mea-
sures of information dynamics (presented in full in Section S.1.3
in Supplementary Material). The use of these local variants is par-
ticularly important here because they provide a direct, model-free
mechanism to analyze the dynamics of how information process-
ing unfolds in time in complex systems. Figure 1 indicates, for
example, a local active information storage measurement for time-
series process X, and a local transfer entropy measurement from
process Y to X.

Finally, in Section S.1.5 in Supplementary Material, we describe
how one can evaluate whether an MI, conditional MI, or TE
is statistically different from 0, and therefore, represents suffi-
cient evidence for a (directed) relationship between the variables.
This is done (following (Chávez et al., 2003; Verdes, 2005; Lind-
ner et al., 2011; Lizier et al., 2011a; Vicente et al., 2011; Barnett
and Bossomaier, 2012; Wibral et al., 2014b)) via permutation
testing to construct appropriate surrogate populations of time-
series and measurements under the null hypothesis of no directed
relationship between the given variables.

2.2. ESTIMATION TECHNIQUES
While the mathematical formulation of the quantities in Section
2.1 are relatively straightforward, empirically estimating them in
practice from a finite number N of samples of time-series data can
be a complex process, and is dependent on the type of data you
have and its properties. Estimators are typically subject to bias and

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 4

http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

variance due to finite sample size. Here, we briefly introduce the
various types of estimators that are included in JIDT, referring the
reader to Section S.2 in Supplementary Material (and also (Vicente
and Wibral, 2014) for the transfer entropy, in particular) for more
detailed discussion.

For discrete variables X, Y, Z, etc., the definitions in Section 2.1
may be used directly by counting the matching configurations in
the available data to obtain the relevant plug-in probability esti-
mates (e.g., p̂(x|y) and p̂(x) for MI). These estimators are simple
and fast, being implemented in O (N) time. Several bias correc-
tion techniques are available, e.g., Paninski (2003), Bonachela et al.
(2008), though not yet implemented in JIDT.

For continuous variables X, Y, Z, one could simply discretize or
bin the data and apply the discrete estimators above. While this is
simple and fast (O (N) as above), it is likely to sacrifice accuracy.
Alternatively, we can use an estimator that harnesses the contin-
uous nature of the variables, dealing with the differential entropy
and probability density functions. The latter is more complicated
but yields a more accurate result. We discuss several such estima-
tors in Section S.2.2 in Supplementary Material, and summarize
them in the following4:

• A multivariate Gaussian model may be used (Section S.2.2.1 in
Supplementary Material) for the relevant variables, assuming
linear interactions between them. This approach uses the known
form of entropy for Gaussian multivariates (equation (S.61) in
Supplementary Material, in nats) (Cover and Thomas, 1991)
and sums and differences of these entropies to compute other
measures (e.g., transfer entropy as per (Kaiser and Schreiber,
2002)). These estimators are fast (O (Nd2), for dimensionality
d of the given joint variable) and parameter-free, but subject to
the linear-model assumption.
• Kernel estimation of the relevant PDFs via a kernel function are

discussed in Section S.2.2.2 in Supplementary Material (and see,
e.g., Schreiber (2000), Kaiser and Schreiber (2002), and Kantz
and Schreiber (1997)). Such kernel functions measure similar-
ity between pairs of samples using a specific resolution or kernel
width r ; e.g., the box-kernel (implemented in JIDT) results in
counting the proportion of the N sample values, which fall
within r of the given sample. They are then used as plug-in
estimates for the entropy, and again sums and differences of
these for the other measures. Kernel estimation can measure
non-linear relationships and is model-free (unlike Gaussian
estimators), though is sensitive to the parameter choice for r
(Schreiber, 2000; Kaiser and Schreiber, 2002) and is biased. It
is less time-efficient than the simple methods, although box-
assisted methods can achieve O (N) time-complexity (Kantz
and Schreiber, 1997). See Section S.2.2.2 in Supplementary
Material for further comments, e.g., regarding selection of r.
• The Kraskov et al. (2004) (KSG) technique (see details in Section

S.2.2.3 in Supplementary Material) improved on (box-) ker-
nel estimation for MI (and multi-information) via the use of
Kozachenko–Leonenko estimators (Kozachenko and Leonenko,
1987) of log-probabilities via nearest-neighbor counting; bias
correction; and a fixed number K of nearest neighbors in the full

4Except where otherwise noted, JIDT implements the most efficient described
algorithm for each estimator.

X -Y joint space. The latter effectively means using a dynamically
altered (box-) kernel width r to adjust to the density of samples
in the vicinity of any given observation; this smooths out errors
in the PDF estimation, especially when handling a small number
of observations. These authors proposed two slightly different
algorithms for their estimator – both are implemented in JIDT.
The KSG technique has been directly extended to conditional
MI by Frenzel and Pompe (2007) and transfer entropy (origi-
nally by Gomez-Herrero et al. (2010)) and later for algorithm
2 by Wibral et al. (2014b)). KSG estimation builds on the non-
linear and model-free capabilities of kernel estimation with bias
correction, better data efficiency and accuracy, and being effec-
tively parameter-free (being relatively stable to choice of K). As
such, it is widely used as best of breed solution for MI, condi-
tional MI and TE for continuous data; see, e.g., Wibral et al.
(2014b) and Vicente and Wibral (2014). It can be computation-
ally expensive with naive algorithms requiring O (KN 2) time
though fast nearest neighbor search techniques can reduce this
to O (KN logN). For release v1.0 JIDT only implements a naive
algorithm, though fast nearest neighbor search is implemented
and available via the project SVN repository (see Section 3.1)
and as such will be included in future releases.
• Permutation entropy approaches (Bandt and Pompe, 2002) esti-

mate the relevant PDFs based on the relative ordinal structure
of the joint vectors (see Section S.2.2.4 in Supplementary Mate-
rial). Permutation entropy has, for example, been adapted to
estimate TE as the symbolic transfer entropy (Staniek and Lehn-
ertz, 2008). Permutation approaches are computationally fast,
but are model-based, however, (assuming all relevant informa-
tion is in the ordinal relationships). This is not necessarily the
case, and can lead to misleading results, as demonstrated by
Wibral et al. (2013).

2.3. RELATED OPEN-SOURCE INFORMATION-THEORETIC TOOLKITS
We next consider other existing open-source information-
theoretic toolkits for computing the aforementioned measures
empirically from time-series data. In particular, we consider those
that provide implementations of the transfer entropy. For each
toolkit, we describe its purpose, the type of data it handles, and
which measures and estimators are implemented.

TRENTOOL5 (GPL v3 license) by Lindner et al. (2011) is a
MATLAB toolbox, which is arguably the most mature open-source
toolkit for computing TE. It is not intended for general-purpose
use, but designed from the ground up for transfer entropy analysis
of (continuous) neural data, using the data format of the Field-
Trip toolbox (Oostenveld et al., 2011) for EEG, MEG, and LFP
recordings. In particular, it is designed for performing effective
connectivity analysis between the input variables (see Vicente
et al. (2011) and Wibral et al. (2011)), including statistical sig-
nificance testing of TE results (as outlined in Section S.1.5 in
Supplementary Material) and processing steps to deal with vol-
ume conduction and identify cascade or common-driver effects
in the inferred network. Conditional/multivariate TE is not yet
available, but planned. TRENTOOL automates selection of para-
meters for embedding input time-series data and for source-target

5http://www.trentool.de

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 5

http://www.trentool.de
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

delays, and implements KSG estimation (see Section S.2.2.3 in
Supplementary Material), harnessing fast nearest neighbor search,
parallel computation, and GPU-based algorithms (Wollstadt et al.,
2014).

The MuTE toolbox by Montalto et al. (2014a,b) (CC-BY
license)6 provides MATLAB code for TE estimation. In particular,
MuTE is capable of computing conditional TE, includes a num-
ber of estimator types (discrete or binned, Gaussian, and KSG
including fast nearest neighbor search), and adds non-uniform
embedding (see Faes et al. (2011)). It also adds code to assist
with embedding parameter selection, and incorporates statistical
significance testing.

The Transfer entropy toolbox (TET, BSD license)7 by Ito et al.
(2011) provides C-code callable from MATLAB for TE analysis
of spiking data. TET is limited to binary (discrete) data only.
Users can specify embedding dimension and source-target delay
parameters.

MILCA (Mutual Information Least-dependent Component
Analysis, GPL v3 license)8 provides C-code (callable from MAT-
LAB) for mutual information calculations on continuous data
(Kraskov et al., 2004; Stögbauer et al., 2004; Astakhov et al., 2013).
MILCA’s purpose is to use the MI calculations as part of Inde-
pendent Component Analysis (ICA), but they can be accessed in
a general-purpose fashion. MILCA implements KSG estimators
with fast nearest neighbor search; indeed, MILCA was co-written
by the authors of this technique. It also handles multidimensional
variables.

TIM (GNU Lesser GPL license)9 by Rutanen (2011) provides
C++ code (callable from MATLAB) for general-purpose cal-
culation of a wide range of information-theoretic measures on
continuous-valued time-series, including for multidimensional
variables. The measures implemented include entropy (Shannon,
Renyi, and Tsallis variants), Kullback–Leibler divergence, MI, con-
ditional MI, TE, and conditional TE. TIM includes various esti-
mators for these, including Kozachenko–Leonenko (see Section
S.2.2.3 in Supplementary Material), Nilsson and Kleijn (2007), and
Stowell and Plumbley (2009) estimators for (differential) entropy,
and KSG estimation for MI and conditional MI (using fast nearest
neighbor search).

The MVGC (multivariate Granger causality toolbox, GPL
v3 license)10 by Barnett and Seth (2014) provides a MATLAB
implementation for general-purpose calculation of the Granger
causality (i.e., TE with a linear-Gaussian model, see Section S.1.2 in
Supplementary Material) on continuous data. MVGC also requires
the MATLAB Statistics, Signal Processing, and Control System
Toolboxes.

There is a clear gap for a general-purpose information-
theoretic toolkit, which can run in multiple code environments,
implementing all of the measures in Sections S.1.1 and S.1.2
in Supplementary Material, with various types of estimators,

6http://figshare.com/articles/MuTE_toolbox_to_evaluate_Multivariate_Transfer_
Entropy/1005245/1
7http://code.google.com/p/transfer-entropy-toolbox/
8http://www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/MILCA/MILCA
9http://www.cs.tut.fi/%7etimhome/tim/tim.htm
10http://www.sussex.ac.uk/sackler/mvgc/

and with implementation of local values, measures of statistical
significance, etc. In the next section, we introduce JIDT, and out-
line how it addresses this gap. Users should make a judicious choice
of which toolkit suits their requirements, taking into account data
types, estimators and application domain. For example, TREN-
TOOL is built from the ground up for effective network inference
in neural imaging data, and is certainly the best tool for that
application in comparison to a general-purpose toolkit.

3. JIDT INSTALLATION, CONTENTS, AND DESIGN
JIDT (Java Information Dynamics Toolkit, GPL v3 license)11 is
unique as a general-purpose information-theoretic toolkit, which
provides all of the following features in one package:

• Implementation of a large array of measures, including all
conditional/multivariate forms of the transfer entropy, com-
plementary measures such as active information storage, and
allows full specification of relevant embedding parameters;
• Implementation a wide variety of estimator types and applica-

bility to both discrete and continuous data;
• Implementation of local measurement for all estimators;
• Inclusion of statistical significance calculations for MI, TE, etc.,

and their conditional variants;
• No dependencies on other installations (except Java).

Furthermore, JIDT is written in Java12, taking advantage of the
following features:

• The code becomes platform agnostic, requiring only an instal-
lation of the Java Virtual Machine (JVM) to run;
• The code is object-oriented, with common code shared and an

intuitive hierarchical design using interfaces; this provides flex-
ibility and allows different estimators of same measure can be
swapped dynamically using polymorphism;
• The code can be called directly from MATLAB, GNU Octave,

Python, etc., but runs faster than native code in those languages
(still slower but comparable to C/C++, see Computer Language
Benchmarks Game, 2014); and
• Automatic generation of Javadoc documents for each class.

In the following, we describe the (minimal) installation process
in Section 3.1, and contents of the version 1.0 JIDT distribution in
Section 3.2. We then describe which estimators are implemented
for each measure in Section 3.3, and architecture of the source
code in Section 3.4. We also outline how the code has been tested
in Section 3.5, how to build it (if required) in Section 3.6 and point
to other sources of documentation in Section 3.7.

3.1. INSTALLATION AND DEPENDENCIES
There is little to no installation of JIDT required beyond down-
loading the software. The software can be run on any platform,
which supports a standard edition Java Runtime Environment (i.e.,
Windows, Mac, Linux, and Solaris).

11http://code.google.com/p/information-dynamics-toolkit/
12The JIDT v1.0 distribution is compiled by Java Standard Edition 6; it is also verified
as compatible with Edition 7.

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 6

http://figshare.com/articles/MuTE_toolbox_to_evaluate_Multivariate_Transfer_Entropy/1005245/1
http://figshare.com/articles/MuTE_toolbox_to_evaluate_Multivariate_Transfer_Entropy/1005245/1
http://code.google.com/p/transfer-entropy-toolbox/
http://www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/MILCA/MILCA
http://www.cs.tut.fi/%7etimhome/tim/tim.htm
http://www.sussex.ac.uk/sackler/mvgc/
http://code.google.com/p/information-dynamics-toolkit/
http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

Table 2 | Relevant web/wiki pages on JIDT website.

Name URL

Project home http://code.google.com/p/information-dynamics-toolkit/

Installation http://code.google.com/p/information-dynamics-toolkit/wiki/Installation

Downloads http://code.google.com/p/information-dynamics-toolkit/wiki/Downloads

MATLAB/Octave use http://code.google.com/p/information-dynamics-toolkit/wiki/UseInOctaveMatlab

Octave-Java array conversion http://code.google.com/p/information-dynamics-toolkit/wiki/OctaveJavaArrayConversion

Python use http://code.google.com/p/information-dynamics-toolkit/wiki/UseInPython

JUnit test cases http://code.google.com/p/information-dynamics-toolkit/wiki/JUnitTestCases

Documentation http://code.google.com/p/information-dynamics-toolkit/wiki/Documentation

Demos http://code.google.com/p/information-dynamics-toolkit/wiki/Demos

Simple Java examples http://code.google.com/p/information-dynamics-toolkit/wiki/SimpleJavaExamples

Octave/MATLAB examples http://code.google.com/p/information-dynamics-toolkit/wiki/OctaveMatlabExamples

Python examples http://code.google.com/p/information-dynamics-toolkit/wiki/PythonExamples

Cellular Automata demos http://code.google.com/p/information-dynamics-toolkit/wiki/CellularAutomataDemos

Schreiber TE demos http://code.google.com/p/information-dynamics-toolkit/wiki/SchreiberTeDemos

jidt-discuss group http://groups.google.com/group/jidt-discuss

SVN URL http://information-dynamics-toolkit.googlecode.com/svn/trunk/

Material pertaining to installation is described in full at the
“Installation” wiki page for the project (see Table 2 for all relevant
project URLs); summarized as follows:

1. Download a code release package from the “Downloads” wiki
page. Full distribution is recommended (described in Section
3.2) so as to obtain, e.g., access to the examples described in
Section 4, though a “Jar only” distribution provides just the
JIDT library infodynamics.jar in Java archive file format.

2. Unzip the full .zip distribution to the location of your choice,
and/or move the infodynamics.jar file to a relevant
location. Ensure that infodynamics.jar is on the Java
classpath when your code attempts to access it (see Section 4).

3. To update to a new version, simply copy the new distribution
over the top of the previous one.

As an alternative, advanced users can take an SVN checkout of
the source tree from the SVN URL (see Table 2) and build the
infodynamics.jar file using ant scripts (see Section 3.6).

In general, there are no dependencies that a user would need to
download in order to run the code. Some exceptions are as follows:

1. Java must be installed on your system in order to run JIDT; most
systems will have Java already installed. To simply run JIDT, you
will only need a Java Runtime Environment (JRE, also known
as Java Virtual Machine or JVM), whereas to modify and/or
build to software, or write your own Java code to access it, you
will need the full Java Development Kit (JDK), standard edi-
tion (SE). Download it from http://java.com/. For using JIDT
via MATLAB, a JVM is included in MATLAB already.

2. If you wish to build the project using the build.xml
script – this requires ant (see Section 3.6).

3. If you wish to run the unit test cases (see Section 3.5) – this
requires the JUnit framework: http://www.junit.org/ – for

how to run JUnit with our ant script see “JUnit test cases”
wiki page.

4. Additional preparation may be required to use JIDT in
GNU Octave or Python. Octave users must install the
octave-java package from the Octave-forge project –
see description of these steps at “MATLAB/Octave use” wiki
page. Python users must install a relevant Python-Java exten-
sion – see description at “Python use” wiki page. Both cases will
depend on a JVM on the system (as per point 1 above), though
the aforementioned extensions may install this for you.

Note that JIDT does adapt code from a number of sources in
accordance with their open-source license terms, including Apache
Commons Math v3.313, the JAMA project14, and the octave-java
package from the Octave-Forge project15. Relevant notices are
supplied in the notices folder of the distribution. Such code
is included in JIDT, however, and does not need to be installed
separately.

3.2. CONTENTS OF DISTRIBUTION
The contents of the current (version 1.0) JIDT (full) distribution
are as follows:

• The top-level folder contains the infodynamics.jar
library file, a GNU GPL v3 license, a readme.txt file and an
ant build.xml script for (re-)building the code (see Section
3.6);
• The java folder contains source code for the library in the
source subfolder (described in Section 3.3), and unit tests in
the unittests subfolder (see Section 3.5).

13http://commons.apache.org/proper/commons-math/
14http://math.nist.gov/javanumerics/jama/
15http://octave.sourceforge.net/java/

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 7

http://code.google.com/p/information-dynamics-toolkit/
http://code.google.com/p/information-dynamics-toolkit/wiki/Installation
http://code.google.com/p/information-dynamics-toolkit/wiki/Downloads
http://code.google.com/p/information-dynamics-toolkit/wiki/UseInOctaveMatlab
http://code.google.com/p/information-dynamics-toolkit/wiki/OctaveJavaArrayConversion
http://code.google.com/p/information-dynamics-toolkit/wiki/UseInPython
http://code.google.com/p/information-dynamics-toolkit/wiki/JUnitTestCases
http://code.google.com/p/information-dynamics-toolkit/wiki/Documentation
http://code.google.com/p/information-dynamics-toolkit/wiki/Demos
http://code.google.com/p/information-dynamics-toolkit/wiki/SimpleJavaExamples
http://code.google.com/p/information-dynamics-toolkit/wiki/OctaveMatlabExamples
http://code.google.com/p/information-dynamics-toolkit/wiki/PythonExamples
http://code.google.com/p/information-dynamics-toolkit/wiki/CellularAutomataDemos
http://code.google.com/p/information-dynamics-toolkit/wiki/SchreiberTeDemos
http://groups.google.com/group/jidt-discuss
http://information-dynamics-toolkit.googlecode.com/svn/trunk/
http://java.com/
http://www.junit.org/
http://commons.apache.org/proper/commons-math/
http://math.nist.gov/javanumerics/jama/
http://octave.sourceforge.net/java/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

• The javadocs folder contains automatically generated
Javadocs from the source code, as discussed in Section 3.7.
• The demos folder contains several example applications of the

software, described in Section 4, sorted into folders to indi-
cate that environment they are intended to run in, i.e., java,
octave (which is compatible with MATLAB), and python.
There is also a data folder here containing sample data sets for
these demos and unit tests.
• The notices folder contains notices and licenses pertaining

to derivations of other open-source code used in this project.

3.3. SOURCE CODE AND ESTIMATORS IMPLEMENTED
The Java source code for the JIDT library contained in the
java/source folder is organized into the following Java
packages (which map directly to subdirectories):

• infodynamics.measures contains all of the classes
implementing the information-theoretic measures, split into:
• infodynamics.measures.discrete containing all

of the measures for discrete data;
• infodynamics.measures.continuous which at

the top-level contains Java interfaces for each of the mea-
sures as applied to continuous data, then a set of sub-
packages (gaussian,kernel,kozachenko,kraskov,
and symbolic), which map to each estimator type in
Section 2.2 and contain implementations of such estima-
tors for the interfaces defined for each measure (Section 3.4
describes the object-oriented design used here). Table 3 iden-
tifies which estimators are measured for each estimator type;
• infodynamics.measures.mixed includes experi-

mental discrete-to-continuous MI calculators, though these
are not discussed in detail here.

• infodynamics.utils contains classes providing a large
number of utility functions for the measures (e.g., matrix
manipulation, file reading/writing including in Octave text
format);
• infodynamics.networkinference contains imple-

mentations of higher-level algorithms, which use the
information-theoretic calculators to infer an effective network
structure from time-series data (see Section 4.6).

As outlined above, Table 3 describes which estimators are
implemented for each measure. This effectively maps the defini-
tions of the measures in Section 2.1 to the estimators in Section 2.2
(note that the efficiency of these estimators is also discussed
in Section 2.1). All estimators provide the corresponding local
information-theoretic measures (as introduced in Section S.1.3 in
Supplementary Material). Also, for the most part, the estimators
include a generalization to multivariate X, Y, etc., as identified in
the table.

3.4. JIDT ARCHITECTURE
The measures for continuous data have been organized in a
strongly object-oriented fashion16. Figure 2 provides a sample

16This is also the case for the measures for discrete data, though to a lesser degree
and without multiple estimator types, so this is not focused on here.

(partial) Unified Modeling Language (UML) class diagram of the
implementations of the conditional mutual information (equation
(S.11) in Supplementary Material) and transfer entropy (equation
(S.25) in Supplementary Material) measures using KSG estimators
(Section S.2.2.3 in Supplementary Material). This diagram shows
the typical object-oriented hierarchical structure of the implemen-
tations of various estimators for each measure. The class hierarchy
is organized as follows.

3.4.1. Interfaces
Interfaces at the top layer define the available methods for each
measure. At the top of this figure we see the Conditional
MutualInfoCalculatorMultiVariate and Transfer
EntropyCalculator interfaces, which define the methods
each estimator class for a given measure must implement. Such
interfaces are defined for each information-theoretic measure in
the infodynamics.measures.continuous package.

3.4.2. Abstract classes
Abstract classes17 at the intermediate layer provide basic func-
tionality for each measure. Here, we have abstract classes Cond
itionalMutualInfoMultiVariateCommon and Trans
ferEntropyCalculatorViaCondMutualInfo which
implement the above interfaces, providing common code bases
for the given measures that various child classes can build
on to specialize themselves to a particular estimator type.
For instance, the TransferEntropyCalculatorViaCond
MutualInfo class provides code which abstractly uses a
ConditionalMutualInfoCalculatorMultiVariate
interface in order to make transfer entropy calculations, but nei-
ther concretely specify which type of conditional MI estimator to
use nor fully set its parameters.

3.4.3. Child classes
Child classes at the lower layers add specialized functionality
for each estimator type for each measure. These child classes
inherit from the above parent classes, building on the common
code base to add specialization code for the given estimator
type. Here, that is the KSG estimator type. The child classes
at the bottom of the hierarchy have no remaining abstract
functionality, and can thus be used to make the appropriate
information-theoretic calculation. We see that Conditional
MutualInfoCalculatorMultiVariateKraskovbegins
to specialize ConditionalMutualInfoMultiVariate
Common for KSG estimation, with further specialization by its
child class ConditionalMutualInfoCalculatorMulti
VariateKraskov1 which implements the KSG algorithm 1
(equation (S.64) in Supplementary Material). Not shown here is
ConditionalMutualInfoCalculatorMultiVariate
Kraskov2 which implements the KSG algorithm 2 (equation
(S.65) in Supplementary Material) and has similar class relation-
ships. We also see thatTransferEntropyCalculatorKras
kov specializes TransferEntropyCalculatorViaCond

17Abstract classes provide implementations of some but not all methods required
for a class, so they cannot be directly instantiated themselves but child classes, which
provide implementations for the missing methods and may be instantiated.

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 8

http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

Table 3 | An outline of which estimation techniques are implemented for each relevant information-theoretic measure.

Measure Discrete estimator
(Section S.2.1)

Continuous
estimators

Name Notation Defined at Gaussian
(Section
S.2.2.1)

Box-kernel
(Section
S.2.2.2)

Kraskov et al.
(KSG)
(Section S.2.2.3)

Permutation
(Section
S.2.2.4)

Entropy H (X) Eqs. (S.1) and (S.32) X X X *

Entropy rate HµX Eqs. (S.18) and (S.48) X Use two multivariate entropy calculators

Mutual information (MI) I(X ; Y) Eqs. (S.6) and (S.41) X X X X

Conditional MI I(X ; Y| Z) Eqs. (S.11) and (S.44) X X X

Multi-information I(X) Eqs. (S.7) and (S.47) X Xu Xu

Transfer entropy (TE) TY→X Eqs. (S.25) and (S.54) X X X X Xu

Conditional TE TY→X |Z Eqs. (S.29) and (S.56) X Xu Xu

Active information storage AX Eqs. (S.23) and (S.52) X Xu Xu Xu

Predictive information EX Eqs. (S.21) and (S.50) X †u †u †u

Separable information SX Eq. (S.31) X

The X symbol indicates that the measure is implemented for the given estimator and is applicable to both univariate and multivariate time-series (e.g., collective

transfer entropy, where the source is multivariate), while the addition of superscript “u” (i.e., Xu) indicates the measure is implemented for univariate time-series

only. The section numbers and equation numbers refer to the definitions in the Supplementary Material for the expected and local values (where provided) for each

measure. Also, while the KSG estimator is not applicable for entropy, the * symbol there indicates the implementation of the estimator by Kozachenko and Leonenko

(1987) for entropy (which the KSG technique is based on for MI; see Section S.2.2.3 in Supplementary Material). Finally, † indicates that the (continuous) predictive

information calculators are not available in the v1.0 release but are available via the project SVN and future releases.

FIGURE 2 | Partial UML class diagram of the implementations of
the conditional mutual information (equation (S.11) in
Supplementary Material) and transfer entropy (equation (S.25) in
Supplementary Material) measures using KSG estimators. As
explained in the main text, this diagram shows the typical
object-oriented structure of the implementations of various estimators
for each measure. The relationships indicated on the class diagram are

as follows: dotted lines with hollow triangular arrow heads indicate the
realization or implementation of an interface by a class; solid lines with
hollow triangular arrow heads indicate the generalization or inheritance
of a child or subtype from a parent or superclass; lines with plain arrow
heads indicate that one class uses another (with the solid line
indicating direct usage and dotted line indicating indirect usage via the
superclass).

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

MutualInfo for KSG estimation, by using Conditional
MutualInfoCalculatorMultiVariateKraskov1 (or
ConditionalMutuaInfoCalculatorMultiVariate
Kraskov2, not shown) as the specific implementation of
ConditionalMutualInfoCalculatorMultiVariate.
The implementations of these interfaces for other estimator types
(e.g., TransferEntropyCalculatorGaussian) sit at the
same level here inheriting from the common abstract classes
above.

This type of object-oriented hierarchical structure delivers two
important benefits: (i) the decoupling of common code away from
specific estimator types and into common parent classes allows
code re-use and simpler maintenance, and (ii) the use of interfaces
delivers subtype polymorphism allowing dynamic dispatch, mean-
ing that one can write code to compute a given measure using the
methods on its interface and only specify the estimator type at
runtime (see a demonstration in Section 4.1.8).

3.5. VALIDATION
The calculators in JIDT are validated using a set of unit tests
(distributed in the java/unittests folder). Unit testing is
a method of testing software by the use of a set of small test cases
which call parts of the code and check the output against expected
values, flagging errors if they arise. The unit tests in JIDT are
implemented via the JUnit framework version 318. They can be
run via the ant script (see Section 3.6).

At a high level, the unit tests include validation of the results of
information-theoretic calculations applied to the sample data in
demos/data against measurements from various other existing
toolkits, e.g.,

• The KSG estimator (Section S.2.2.3 in Supplementary Material)
for MI is validated against values produced from the MILCA
toolkit (Kraskov et al., 2004; Stögbauer et al., 2004; Astakhov
et al., 2013);
• The KSG estimator for conditional MI and TE is validated

against values produced from scripts within TRENTOOL (Lind-
ner et al., 2011);
• The discrete and box-kernel estimators for TE are validated

against the plots in the original paper on TE by Schreiber (2000)
(see Section 4.4);
• The Gaussian estimator for TE (Section S.2.2.1 in

Supplementary Material) is verified against values produced
from (a modified version of) the computeGranger.m script
of the ChaLearn Connectomics Challenge Sample Code (Orlandi
et al., 2014).

Further code coverage by the unit tests is planned in future
work.

3.6. (RE-)BUILDING THE CODE
Users may wish to build the code, perhaps if they are directly
accessing the source files via SVN or modifying the files. The

18http://www.junit.org/

source code may be compiled manually of course, or in your
favorite IDE (Integrated Development Environment). JIDT also
provides an ant build script, build.xml, to guide and stream-
line this process. Apache ant – see http://ant.apache.org/–
is a command-line tool to build various interdependent tar-
gets in software projects, much like the older style Makefile
for C/C++.

To build any of the following targets using build.xml,
either integrate build.xml into your IDE and run the selected
<targetName >, or run ant <targetName> from the
command line in the top-level directory of the distribution, where
<targetName> may be any of the following:

• build or jar (this is the default if no <targetName> is
supplied) – creates a jar file for the JIDT library;
• compile – compiles the JIDT library and unit tests;
• junit – runs the unit tests;
• javadocs– generates automated Javadocs from the formatted

comments in the source code;
• jardist – packages the JIDT jar file in a distributable form,

as per the jar-only distributions of the project;
• dist – runs unit tests, and packages the JIDT jar file, Javadocs,

demos, etc., in a distributable form, as per the full distributions
of the project;
• clean – delete all compiled code, etc., built by the above

commands.

3.7. DOCUMENTATION AND SUPPORT
Documentation to guide users of JIDT is composed of

1. This manuscript!
2. The Javadocs contained in the javadocs folder of the

distribution (main page is index.html), and available
online via the Documentation page of the project wiki
(see Table 2). Javadocs are html formatted documentation
for each package, class, and interface in the library, which
are automatically created from formatted comments in the
source code. The Javadocs are very useful tools for users,
since they provide specific details about each class and their
methods, in more depth than we are able to do here; for
example, which properties may be set for each class. The
Javadocs can be (re-)generated using ant as described in
Section 3.6.

3. The demos; as described further in Section 4, on the Demos
wiki page (see Table 2), and the individual wiki page for each
demo;

4. The project wiki pages (accessed from the project home page,
see Table 2) provide additional information on various fea-
tures, e.g., how to use JIDT in MATLAB or Octave and
Python;

5. The unit tests (as described in Section 3.5) provide additional
examples on how to run the code.

You can also join our email discussion group jidt-discuss
on Google Groups (see URL in Table 2) or browse past messages,
for announcements, asking questions, etc.

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 10

http://www.junit.org/
http://ant.apache.org/
http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

4. JIDT CODE DEMONSTRATIONS
In this section, we describe some simple demonstrations on how
to use the JIDT library. Several sets of demonstrations are included
in the JIDT distribution, some of which are described here. More
detail is provided for each demo on its wiki page, accessible from
the main Demos wiki page (see Table 2). We begin with the main
set of Simple Java Demos, focusing, in particular,on a detailed walk-
through of using a KSG estimator to compute transfer entropy
since the calling pattern here is typical of all estimators for contin-
uous data. Subsequently, we provide more brief overviews of other
examples available in the distribution, including how to run the
code in MATLAB, GNU Octave, and Python, implementing the
transfer entropy examples from Schreiber (2000), and comput-
ing spatiotemporal profiles of information dynamics in Cellular
Automata.

4.1. SIMPLE JAVA DEMOS
The primary set of demos is the “Simple Java Demos” set
at demos/java in the distribution. This set contains eight
standalone Java programs to demonstrate simple use of vari-
ous aspects of the toolkit. This set is described further at the
SimpleJavaExamples wiki page (see Table 2).

The Java source code for each program is located at
demos/java/infodynamics/demos in the JIDT distribu-
tion,and shell scripts (with mirroring batch files for Windows)19 to
run each program are found at demos/java/. The shell scripts
demonstrate how to compile and run the programs from com-
mand line, e.g., example1TeBinaryData.sh contains the
following commands in Listing 1:

Listing 1 | Shell script example1TeBinaryData.sh.

Make sure the latest source file is
compiled.

javac -classpath "../../infodynamics.jar"
"infodynamics/demos/Example1TeBinaryData
.java"

Run the example:
java -classpath ".:../../infodynamics.jar"

infodynamics.demos.Example1TeBinaryData

The examples focus on various transfer entropy estimators
(though similar calling paradigms can be applied to all estimators),
including

1. computing transfer entropy on binary (discrete) data;
2. computing transfer entropy for specific channels within multi-

dimensional binary data;
3. computing transfer entropy on continuous data using kernel

estimation;
4. computing transfer entropy on continuous data using KSG

estimation;

19The batch files are not included in release v1.0, but are currently available via the
SVN repository and will be distributed in future releases.

5. computing multivariate transfer entropy on multidimensional
binary data;

6. computing mutual information on continuous data, using
dynamic dispatch or late-binding to a particular estimator;

7. computing transfer entropy from an ensemble of time-series
samples;

8. computing transfer entropy on continuous data using binning
then discrete calculation.

In the following, we explore selected salient examples in
this set. We begin with Example1TeBinaryData.java and
Example4TeContinuousDataKraskov.java as typical
calling patterns to use estimators for discrete and continuous data,
respectively, then add extensions for how to compute local mea-
sures and statistical significance, use ensembles of samples, handle
multivariate data and measures, and dynamic dispatch.

4.1.1. Typical calling pattern for an information-theoretic measure
on discrete data

Example1TeBinaryData.java (see Listing 2) provides a
typical calling pattern for calculators for discrete data, using the
infodynamics.measures.discrete.TransferEntr
opyCalculatorDiscrete class. While the specifics of some
methods may be slightly different, the general calling paradigm is the
same for all discrete calculators.

Listing 2 | Estimation ofTE from discrete data; source code adapted
from Example1TeBinaryData.java.

int arrayLengths = 100;
RandomGenerator rg = new RandomGenerator();
// Generate some random binary data:
int[] sourceArray = rg.generateRandomInts

(arrayLengths, 2);
int[] destArray = new int[arrayLengths];
destArray[0] = 0;
System.arraycopy(sourceArray, 0, destArray,

1, arrayLengths - 1);
// Create a TE calculator and run it:
TransferEntropyCalculatorDiscrete teCalc =

new TransferEntropyCalculatorDiscrete
(2, 1);

teCalc.initialise();
teCalc.addObservations(sourceArray,

destArray);
double result = teCalc.

computeAverageLocalOfObservations();

The data type used for all discrete data are int[] time-series
arrays (indexed by time). Here, we are computing TE for univari-
ate time series data, so sourceArray and destArray at line 4
and line 5 are single dimensionalint[] arrays. Multidimensional
time series are discussed in Section 4.1.6.

The first step in using any of the estimators is to construct
an instance of them, as per line 9 above. Parameters/properties

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

for calculators for discrete data are only supplied in the con-
structor at line 9 (this is not the case for continuous estima-
tors, see Section 4.1.2). See the Javadocs for each calculator for
descriptions of which parameters can be supplied in their con-
structor. The arguments for the TE constructor here include the
number of discrete values (M = 2), which means the data can
take values {0, 1} (the allowable values are always enumerated
0, . . . , M − 1); and the embedded history length k = 1. Note that
for measures such as TE and AIS, which require embeddings
of time-series variables, the user must provide the embedding
parameters here.

All calculators must be initialized before use or re-use on
new data, as per the call to initialise() at line 10. This
call clears any PDFs held inside the class, The initialise()
method provides a mechanism by which the same object instance
may be used to make separate calculations on multiple data
sets, by calling it in between each application (i.e., looping
from line 12 back to line 10 for a different data set – see
the full code for Example1TeBinaryData.java for an
example).

The user then supplies the data to construct the PDFs with
which the information-theoretic calculation is to be made. Here,
this occurs at line 11 by calling the addObservations()
method to supply the source and destination time series values.
This method can be called multiple times to add multiple sample
time-series before the calculation is made (see further commentary
for handling ensembles of samples in Section 4.1.5).

Finally, with all observations supplied to the estima-
tor, the resulting transfer entropy may be computed via
computeAverageLocalOfObservations() at line 12.
The information-theoretic measurement is returned in bits for all
discrete calculators. In this example, since the destination copies
the previous value of the (randomized) source, then result
should approach 1 bit.

4.1.2. Typical calling pattern for an information-theoretic measure
on continuous data

Before outlining how to use the continuous estimators, we note
that the discrete estimators above may be applied to continu-
ous double[] data sets by first binning them to convert them
to int[] arrays, using either MatrixUtils.discretise
(double data[], int numBins) for even bin sizes or
MatrixUtils.discretiseMaxEntropy(double data
[], int numBins) for maximum entropy binning (see
Example8TeContinuousDataByBinning). This is very
efficient, however, as per section 2.2 it is more accurate to use
an estimator, which utilizes the continuous nature of the data.

As such, we now review the use of a KSG estima-
tor (Section S.2.2.3 in Supplementary Material) to compute
transfer entropy (equation (S.25) in Supplementary Mater-
ial), as a standard calling pattern for all estimators applied to
continuous data. The sample code in Listing 3 is adapted from
Example4TeContinuousDataKraskov.java. (That this
is a standard calling pattern can easily be seen by comparing to
Example3TeContinuousDataKernel.java, which uses
a box-kernel estimator but has very similar method calls, except
for which parameters are passed in).

Listing 3 | Use of KSG estimator to compute transfer entropy;
adapted from Example4TeContinuousDataKraskov.
java.

double[] sourceArray, destArray;
// ...
// Import values into sourceArray and

destArray
// ...
TransferEntropyCalculatorKraskov teCalc = new

TransferEntropyCalculatorKraskov();
teCalc.setProperty("k", "4");
teCalc.initialise(1);
teCalc.setObservations(sourceArray,

destArray);
double result = teCalc.

computeAverageLocalOfObservations();

Notice that the calling pattern here is almost the same as that
for discrete calculators, as seen in Listing 2, with some minor
differences outlined below.

Of course, for continuous data we now use double[] arrays
(indexed by time) for the univariate time-series data here at line
1. Multidimensional time series are discussed in Section 4.1.7.

As per discrete calculators, we begin by constructing an instance
of the calculator, as per line 5 above. Here, however, parameters for
the operation of the estimator are not only supplied via the con-
structor (see below). As such, all classes offer a constructor with no
arguments, while only some implement constructors which accept
certain parameters for the operation of the estimator.

Next, almost all relevant properties or parameters of the esti-
mators can be supplied by passing key-value pairs of String
objects to the setProperty(String, String) method
at line 6. The key values for properties, which may be set
for any given calculator are described in the Javadocs for the
setProperty method for each calculator. Properties for the
estimator may be set by calling setProperty at any time; in
most cases, the new property value will take effect immediately,
though it is only guaranteed to hold after the next initialization
(see below). At line 6, we see that property “k” (shorthand for
ConditionalMutualInfoCalculatorMultiVariate
Kraskov.PROP_K) is set to the value “4.” As described in the
Javadocs for TransferEntropyCalculatorKraskov.
setProperty, this sets the number of nearest neighbors K
to use in the KSG estimation in the full joint space. Prop-
erties can also easily be extracted and set from a file, see
Example6LateBindingMutualInfo.java.

As per the discrete calculators, all continuous calculators must
be initialized before use or re-use on new data (see line 7). This
clears any PDFs held inside the class, but additionally finalizes
any property settings here. Also, the initialise() method
for continuous estimators may accept some parameters for the
calculator – here, it accepts a setting for the k embedded his-
tory length parameter for the transfer entropy (see equation
(S.25) in Supplementary Material). Indeed, there may be sev-
eral overloaded forms of initialise() for a given class,
each accepting different sets of parameters. For example, the

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 12

http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

TransferEntropyCalculatorKraskovused above offers
an initialise(k, tau_k, l, tau_l, u)method tak-
ing arguments for both source and target embedding lengths k
and l, embedding delays τk and τl (see Section S.1.2 in Supple-
mentary Material), and source-target delay u (see equation (S.27)
in Supplementary Material). Note that currently such embedding
parameters must be supplied by the user, although we intend
to implement automated embedding parameter selection in the
future. Where a parameter is not supplied, the value given for it
in a previous call to initialise() or setProperty() (or
otherwise its default value) is used.

The supply of samples is also subtly different for
continuous estimators. Primarily, all estimators offer the
setObservations() method (line 8) for supplying a single
time-series of samples (which can only be done once). See Section
4.1.5 for how to use multiple time-series realizations to construct
the PDFs via an addObservations() method.

Finally, the information-theoretic measurement (line 9) is
returned in either bits or nats as per the standard definition for
this type of estimator in Section 2.2 (i.e., bits for discrete, ker-
nel, and permutation estimators; nats for Gaussian and KSG
estimators).

At this point (before or after line 9) once all observations
have been supplied, there are other quantities that the user may
compute. These are described in the next two subsections.

4.1.3. Local information-theoretic measures
Listing 4 computes the local transfer entropy (equation (S.54) in
Supplementary Material) for the observations supplied earlier in
Listing 3:

Listing 4 | Computing local measures after Listing 3; adapted from
Example4TeContinuousDataKraskov.java.

double[] localTE = teCalc.
computeLocalOfPreviousObservations();

Each calculator (discrete or continuous) provides a
computeLocalOfPreviousObservations() method to
compute the relevant local quantities for the given measure (see
Section S.1.3 in Supplementary Material). This method returns a
double[] array of the local values (local TE here) at every time
step n for the supplied time-series observations. For TE estimators,
note that the first k values (history embedding length) will have
value 0, since local TE is not defined without the requisite history
being available20.

4.1.4. Null distribution and statistical significance
For the observations supplied earlier in Listing 3, Listing 5 com-
putes a distribution of surrogate TE values obtained via resampling
under the null hypothesis that sourceArray and destArray
have no temporal relationship (as described in Section S.1.5 in
Supplementary Material).

20The return format is more complicated if the user has supplied observations via
several addObservations() calls rather thansetObservations(); see the
Javadocs for computeLocalOfPreviousObservations() for details.

Listing 5 | Computing null distribution after Listing 3; adapted from
Example3TeContinuousDataKernel.java.

EmpiricalMeasurementDistribution dist =
teCalc.computeSignificance(1000);

The method computeSignificance() is implemented
for all MI and conditional MI based measures (including
TE), for both discrete and continuous estimators. It returns
an EmpiricalMeasurementDistribution object, which
contains a double[] array distribution of an empirical
distribution of values obtained under the null hypothesis (the
sample size for this distribution is specified by the argument to
computeSignificance()). The user can access the mean
and standard deviation of the distribution, a p-value of whether
these surrogate measurements were greater than the actual TE
value for the supplied source, and a corresponding t -score (which
assumes a Gaussian distribution of surrogate scores) via method
calls on this object (see Javadocs for details).

Some calculators (discrete and Gaussian) overload the method
computeSignificance() (without an input argument) to
return an object encapsulating an analytically determined p-value
of surrogate distribution where this is possible for the given estima-
tion type (see Section S.1.5 in Supplementary Material). The avail-
ability of this method is indicated when the calculator implements
the AnalyticNullDistributionComputer interface.

4.1.5. Ensemble approach: using multiple trials or realizations to
construct PDFs

Now, the use of setObservations() for continuous estima-
tors implies that the PDFs are computed from a single stationary
time-series realization. One may supply multiple time-series real-
izations (e.g., as multiple stationary trials from a brain-imaging
experiment) via the following alternative calling pattern to line 8
in Listing 3:

Listing 6 | Supply of multiple time-series realizations as observa-
tions for the PDFs; an alternative to line 8 in Listing 3. Code is
adapted from Example7EnsembleMethodTeContinuous
DataKraskov.java.

teCalc.startAddObservations();
teCalc.addObservations(sourceArray1,

destArray1);
teCalc.addObservations(sourceArray2,

destArray2);
teCalc.addObservations(sourceArray3,

destArray3);
// ...
teCalc.finaliseAddObservations();

Computations on the PDFs constructed from this data
can then follow as before. Note that other variants of
addObservations() exist, e.g., which pull out sub-sequences
from the time series arguments; see the Javadocs for each
calculator to see the options available. Also, for the discrete
estimators,addObservations()may be called multiple times

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

directly without the use of a startAddObservations() or
finaliseAddObservations() method. This type of call-
ing pattern may be used to realize an ensemble approach to con-
structing the PDFs (see Gomez-Herrero et al. (2010), Wibral et al.
(2014b), Lindner et al. (2011), and Wollstadt et al. (2014)), in par-
ticular, by supplying only short corresponding (stationary) parts
of each trial to generate the PDFs for that section of an experiment.

4.1.6. Joint-variable measures on multivariate discrete data
For calculations involving joint variables from multivariate discrete
data time-series (e.g., collective transfer entropy, see Section S.1.2
in Supplementary Material), we use the same discrete calculators
(unlike the case for continuous-valued data in Section 4.1.7). This
is achieved with one simple pre-processing step, as demonstrated
by Example5TeBinaryMultivarTransfer.java:

Listing 7 | Java source code adapted from Example5TeBinary
MultivarTransfer.java.

int[][] source, dest;
// ...
// Import binary values into the arrays,
// with two columns each.
// ...
TransferEntropyCalculatorDiscrete teCalc =

new TransferEntropyCalculatorDiscrete
(4, 1);

teCalc.initialise();
teCalc.addObservations(

MatrixUtils.
computeCombinedValues(source, 2),
MatrixUtils.
computeCombinedValues(dest, 2));

double result = teCalc.
computeAverageLocalOfObservations();

We see that the multivariate discrete data is represented using
two-dimensional int [][] arrays at line 1, where the first
array index (row) is time and the second (column) is variable
number.

The important pre-processing at line 9 and line 10 involves
combining the joint vector of discrete values for each variable
at each time step into a single discrete number, i.e., if our joint
vector source[t] at time t has v variables, each with M pos-
sible discrete values, then we can consider the joint vector as a
v-digit base-M number, and directly convert this into its deci-
mal equivalent. The computeCombinedValues() utility in
infodynamics.utils.MatrixUtils performs this task
for us at each time step, taking the int [][] array and the
number of possible discrete values for each variable M = 2 as argu-
ments. Note also that when the calculator was constructed at line
6, we need to account for the total number of possible combined
discrete values, being Mv

= 4 here.

4.1.7. Joint-variable measures on multivariate continuous data
For calculations involving joint variables from multivariate con-
tinuous data time-series, JIDT provides separate calculators
to be used. Example6LateBindingMutualInfo.java

demonstrates this for calculators implementing theMutualInfo
CalculatorMultiVariate interface21:

Listing 8 | Java source code adapted from Example6Late
BindingMutualInfo.java.

double[][] variable1, variable2;
MutualInfoCalculatorMultiVariate miCalc;
// ...
// Import continuous values into the arrays
// and instantiate miCalc
// ...
miCalc.initialise(2, 2);
miCalc.setObservations(variable1, variable2);
double miValue = miCalc.

computeAverageLocalOfObservations();

First, we see that the multivariate continuous data is repre-
sented using two-dimensional double [][] arrays at line 1,
where (as per section 4.1.6) the first array index (row) is time
and the second (column) is variable number. The instantiat-
ing of a class implementing the MutualInfoCalculator
MultiVariate interface to make the calculations is not shown
here (but is discussed separately in Section 4.1.8).

Now, a crucial step in using the multivariate calculators is
specifying in the arguments to initialise() the number of
dimensions (i.e., the number of variables or columns) for each
variable involved in the calculation. At line 7, we see that each
variable in the MI calculation has two dimensions (i.e., there will
be two columns in each of variable1 and variable2).

Other interactions with these multivariate calculators follow
the same form as for the univariate calculators.

4.1.8. Coding to interfaces; or dynamic dispatch
Listing 8 (Example6LateBindingMutualInfo.java)
also demonstrates the manner in which a user can write code
to use the interfaces defined in infodynamics.measures.
continuous – rather than any particular class implementing
that measure – and dynamically alter the instantiated class imple-
menting this interface at runtime. This is known as dynamic
dispatch, enabled by the polymorphism provided by the interface
(described at Section 3.4). This is a useful feature in object-
oriented programing where,here, a user wishes to write code which
requires a particular measure, and dynamically switch-in different
estimators for that measure at runtime. For example, in Listing
8, we may normally use a KSG estimator, but switch-in a linear-
Gaussian estimator if we happen to know our data is Gaussian.

To use dynamic dispatch with JIDT:

1. Write code to use an interface for a calculator (e.g.,
MutualInfoCalculatorMultiVariate in Listing 8),
rather than to directly use a particular implementing class (e.g.,
MutualInfoCalculatorMultiVariateKraskov);

21In fact, for MI, JIDT does not actually define a separate calculator for univari-
ates – the multivariate calculator MutualInfoCalculatorMultiVariate
provides interfaces to supply univariate double[] data where each variable is
univariate.

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 14

http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

2. Instantiate the calculator object by dynamically specifying the
implementing class (compare to the static instantiation at line
5 of Listing 3), e.g., using a variable name for the class as shown
in Listing 9:

Listing 9 | Dynamic instantiation of a mutual information calcu-
lator, belonging at line 5 in Listing 8. Adapted from Example6
LateBindingMutualInfo.java.

String implementingClass;
// Load the name of the class to be used into
// the variable implementingClass
miCalc = (MutualInfoCalculatorMultiVariate)

Class.forName(implementingClass).
newInstance();

Of course, to be truly dynamic, the value of implementing
Class should not be hard-coded but must be somehow set by the
user. For example, in the fullExample6LateBindingMutual
Info.java it is set from a properties file.

4.2. MATLAB/OCTAVE DEMOS
The “Octave/MATLAB code examples” set at demos/octave
in the distribution provide a basic set of demonstration scripts
for using the toolkit in GNU Octave or MATLAB. The set is
described in some detail at the OctaveMatlabExampleswiki
page (Table 2). See Section 3.1 regarding installation require-
ments for running the toolkit in Octave, with more details at the
UseInOctaveMatlab wiki page (see Table 2).

The scripts in this set mirror the Java code in the “Sim-
ple Java Demos” set (Section 4.1), to demonstrate that anything
which JIDT can do in a Java environment can also be done in
MATLAB/Octave. The user is referred to the distribution or the
OctaveMatlabExamples wiki page for more details on the
examples. An illustrative example is provided in Listing 10, which
converts Listing 2 into MATLAB/Octave:

Listing 10 | Estimation ofTE from discrete data in MATLAB/Octave;
adapted from example1TeBinaryData.m.

javaaddpath(’../../infodynamics.jar’);
sourceArray=(rand(100,1)>0.5)*1;
destArray = [0; sourceArray(1:99)];
teCalc=javaObject(’infodynamics.measures.

discrete.TransferEntropyCalculatorDiscrete’,
2, 1);

teCalc.initialise();
teCalc.addObservations(

octaveToJavaIntArray(sourceArray),
octaveToJavaIntArray(destArray));

result = teCalc.
computeAverageLocalOfObservations()

This example illustrates several important steps for using JIDT
from a MATLAB/Octave environment:

1. Specify the classpath (i.e., the location of theinfodynamics.
jar library) before using JIDT with the function javaadd
path(samplePath) (at line 1);

2. Construct classes using the javaObject() function (see
line 4);

3. Use of objects is otherwise almost the same as in Java itself,
however,

a. In Octave, conversion between native array data types
and Java arrays is not straightforward; we recommend
using the supplied functions for such conversion in
demos/octave, e.g., octaveToJavaIntArray.m.
These are described on theOctaveJavaArrayConvers
ion wiki page (Table 2), and see example use in line 7
here, and in example2TeMultidimBinaryData.m
and example5TeBinaryMultivarTransfer.m.

b. In Java arrays are indexed from 0, whereas in Octave or MAT-
LAB these are indexed from 1. So when you call a method on
a Java object such as MatrixUtils.select(double
data, int fromIndex, int length)– even from
within MATLAB/Octave – you must be aware that from
Index will be indexed from 0 inside the toolkit, not 1!

4.3. PYTHON DEMOS
Similarly, the “Python code examples” set at demos/python in
the distribution provide a basic set of demonstration scripts for
using the toolkit in Python. The set is described in some detail at the
PythonExampleswiki page (Table 2). See Section 3.1 regarding
installation requirements for running the toolkit in Python, with
more details at the UseInPython wiki page (Table 2).

Again, the scripts in this set mirror the Java code in the “Simple
Java Demos” set (Section 4.1), to demonstrate that anything which
JIDT can do in a Java environment can also be done in Python.

Note that this set uses theJPype library22 to create the Python-
Java interface, and the examples would need to be altered if you
wish to use a different interface. The user is referred to the distri-
bution or the PythonExamples wiki page for more details on
the examples.

An illustrative example is provided in Listing 11, which
converts Listing 2 into Python:

Listing 11 | Estimation ofTE from discrete data in Python; adapted
from example1TeBinaryData.py.

from jpype import *
import random
startJVM(getDefaultJVMPath(), "-ea",

"-Djava.class.path=../../infodynamics.jar")
sourceArray = [random.randint(0,1) for

r in xrange(100)]
destArray = [0] + sourceArray[0:99];
teCalcClass = JPackage("infodynamics.measures.
discrete").TransferEntropyCalculatorDiscrete

teCalc = teCalcClass(2,1)
teCalc.initialise()
teCalc.addObservations(sourceArray,
destArray)
result = teCalc.

computeAverageLocalOfObservations()
shutdownJVM()

22http://jpype.sourceforge.net/

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 15

http://jpype.sourceforge.net/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

This example illustrates several important steps for using JIDT
from Python via JPype:

1. Import the relevant packages from JPype (line 1);
2. Start the JVM and specify the classpath (i.e., the location of the

infodynamics.jar library) before using JIDT with the
function startJVM() (at line 3);

3. Construct classes using a reference to their package (see line 6
and 7);

4. Use of objects is otherwise almost the same as in Java itself,
however, conversion between native array data types and Java
arrays can be tricky – see comments on the UseInPython
wiki page (see Table 2).

5. Shutdown the JVM when finished (line 11).

4.4. SCHREIBER’S TRANSFER ENTROPY DEMOS
The“Schreiber Transfer Entropy Demos”set atdemos/octave/
SchreiberTransferEntropyExamples in the distribu-
tion recreates the original examples introducing transfer entropy
by Schreiber (2000). The set is described in some detail at the
SchreiberTeDemos wiki page (see Table 2). The demo can be
run in MATLAB or Octave.

The set includes computing TE with a discrete estimator for
data from a Tent Map simulation, with a box-kernel estimator
for data from a Ulam Map simulation, and again with a box-
kernel estimator for heart and breath rate data from a sleep
apnea patient23 (see Schreiber (2000)) for further details on
all of these examples and map types). Importantly, the demo
shows correct values for important parameter settings (e.g., use
of bias correction), which were not made clear in the original
paper.

We also revisit the heart-breath rate analysis using a KSG
estimator, demonstrating how to select embedding dimensions
k and l for this data set. As an example, we show in Figure 3,
a calculation of AIS (equation (S.23) in Supplementary Mate-
rial) for the heart and breath rate data, using a KSG estima-
tor with K = 4 nearest neighbors, as a function of embedding
length k. This plot is produced by calling the MATLAB function:
activeInfoStorageHeartBreathRatesKraskov(1:
15, 4). Ordinarily, as an MI the AIS will be non-decreasing
with k, while an observed increase may be simply because bias in
the underlying estimator increases with k (as the statistical power
of the estimator is exhausted). This is not the case, however, when
we use an underlying KSG estimator, since the bias is automat-
ically subtracted away from the result. As such, we can use the
peak of this plot to suggest that an embedded history of k = 2 for
both heart and breath time-series is appropriate to capture all rel-
evant information from the past without adding more spurious
than relevant information as k increases. (The result is stable with
the number of nearest neighbors K.) We then continue on to use
those embedding lengths for further investigation with the TE in
the demonstration code.

23This data set was made available via the Santa Fe Institute time series contest held
in 1991 (Rigney et al., 1993) and redistributed with JIDT with kind permission from
Andreas Weigend.

0 5 10 15
0

0.5

1

1.5

2

k

A
X
(k

)

AIS(Heart)

AIS(Breath)

FIGURE 3 | Active information storage (AIS) computed by the KSG
estimator (K = 4 nearest neighbors) as a function of embedded history
length k for the heart and breath rate time-series data.

4.5. CELLULAR AUTOMATA DEMOS
The “Cellular Automata Demos” set at demos/octave/Cellu
larAutomata in the distribution provide a standalone demon-
stration of the utility of local information dynamics profiles. The
scripts allow the user to reproduce the key results from Lizier et al.
(2008c, 2010, 2012b, 2014); (Lizier, 2013); (Lizier and Mahoney,
2013), etc., i.e., plotting local information dynamics measures at
every point in space-time in the cellular automata (CA). These
results confirmed the long-held conjectures that gliders are the
dominant information transfer entities in CAs, while blinkers
and background domains are the dominant information stor-
age components, and glider/particle collisions are the dominant
information modification events.

The set is described in some detail at theCellularAutomata
Demos wiki page (see Table 2). The demo can be run in MAT-
LAB or Octave. The main file for the demo is plotLocal
InfoMeasureForCA.m, which can be used to specify a CA type
to run and which measure to plot an information profile for. Sev-
eral higher-level scripts are available to demonstrate how to call
this, including DirectedMeasuresChapterDemo2013.m
which was used to generate the figures by Lizier (2014) (repro-
duced in Figure 4).

4.6. OTHER DEMOS
The toolkit contains a number of other demonstrations, which we
briefly mention here:

• The“Interregional Transfer demo”set atdemos/java/inter
regionalTransfer/is a higher-level example of comput-
ing information transfer between two regions of variables (e.g.,
brain regions in fMRI data), using multivariate extensions to
the transfer entropy, to infer effective connections between the
regions. This demonstration implements the method originally

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 16

http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

A B C D

FIGURE 4 | Local information dynamics in ECA rule 54 for the raw
values in (A) (black for “1,” white for “0”). Thirty-five time steps are
displayed for 35 cells, and time increases down the page for all CA
plots. All units are in bits, as per scales on the right-hand sides.

(B) Local active information storage; local apparent transfer entropy:
(C) one cell to the right, and (D) one cell to the left per time step. NB:
Reprinted with kind permission of Springer Science+Business Media
from Lizier (2014).

described by Lizier et al. (2011a). Further documentation is
provided via the Demos wiki page (see Table 2).
• The“Detecting interaction lags”demo set atdemos/octave/
DetectingInteractionLags shows how to use the
transfer entropy calculators to investigate a source-destination
lag that is different to 1 (the default). In particular, this demo
was used to make the comparisons of using transfer entropy
(TE) and momentary information transfer (MIT) (Pompe and
Runge, 2011) to investigate source-destination lags by Wibral
et al. (2013) (see Test cases Ia and Ib therein). In particular, the
results show that TE is most suitable for investigating source-
destination lags as MIT can be deceived by source memory,
and also that symbolic TE (Section S.2.2.4 in Supplementary
Material) can miss important components of information in an
interaction. Further documentation is provided via the Demos
wiki page (see Table 2).
• The “Null distribution” demo set at demos/octave/Null
Distributions explores the match between analytic and
resampled distributions of MI, conditional MI and TE
under null hypotheses of no relationship between the data
sets (see Section S.1.5 in Supplementary Material). Fur-
ther documentation is provided via the Demos wiki page
(see Table 2).

Finally, we note that demonstrations on using JIDT within
several additional languages (Julia, Clojure, and R) are currently
available within the SVN repository only, and will be distributed
in future releases.

5. CONCLUSION
We have described the Java Information Dynamics Toolkit (JIDT),
an open-source toolkit available on Google code, which imple-
ments information-theoretic measures of dynamics via several
different estimators. We have described the architecture behind
the toolkit and how to use it, providing several detailed code
demonstrations.

In comparison to related toolkits, JIDT provides implementa-
tions for a wider array of information-theoretic measures, with a
wider variety of estimators implemented, adds implementations
of local measures and statistical significance, and is standalone

software. Furthermore, being implemented in Java, JIDT is plat-
form agnostic and requires little to no installation, is fast, exhibits
an intuitive object-oriented design, and can be used in MATLAB,
Octave, Python, and other environments.

JIDT has been used to produce results in publications by both
this author and others (Wang et al., 2012, 2014; Dasgupta et al.,
2013; Lizier and Mahoney, 2013; Wibral et al., 2013, 2014a,c;
Gómez et al., 2014; Lizier, 2014; Lizier et al., 2014).

It may be complemented by the Java Partial Information
Decomposition (JPID) toolkit (Lizier and Flecker, 2012; Lizier
et al., 2013), which implements early attempts (Williams and Beer,
2010b) to separately measure redundant and synergistic compo-
nents of the conditional mutual information (see Section S.1.1 in
Supplementary Material).

We are planning the extension or addition of several important
components in the future. Of highest priority, we are exploring
the use of multi-threading and GPU computing, and automated
parameter selection for time-series embedding. We will add addi-
tional implementations to complete Table 3, and aim for larger
code coverage by our unit tests. Most importantly, however, we
seek collaboration on the project from other developers in order
to expand the capabilities of JIDT, and we will welcome volunteers
who wish to contribute to the project.

ACKNOWLEDGMENTS
I am grateful to many collaborators and contacts who have tested
JIDT in their applications,provided test data, found bugs,provided
feedback, and reviewed this manuscript, etc. These include pri-
marily X. Rosalind Wang, Michael Wibral, Oliver Cliff, Siddharth
Pritam, Rommel Ceguerra, Ipek Özdemir, and Oliver Obst; as well
as Sakyasingha Dasgupta, Heni Ben Amor, Mizuki Oka, Christoph
Hartmann, Michael Harré, and Patricia Wollstadt.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/frobt.2014.00011/
abstract

REFERENCES
Adami, C. (2002). What is complexity? Bioessays 24, 1085–1094. doi:10.1002/bies.

10192
Ash, R. B. (1965). Information Theory. New York, NY: Dover Publications Inc.

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 17

http://www.frontiersin.org/Journal/10.3389/frobt.2014.00011/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2014.00011/abstract
http://dx.doi.org/10.1002/bies.10192
http://dx.doi.org/10.1002/bies.10192
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

Astakhov, S., Grassberger, P., Kraskov, A., and Stögbauer, H. (2013). Mutual
Information Least-Dependent Component Analysis (MILCA). Available from:
http://www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/MILCA/
MILCA

Ay, N., Bertschinger, N., Der, R., Güttler, F., and Olbrich, E. (2008). Predictive infor-
mation and explorative behavior of autonomous robots. Eur. Phys. J. B 63,
329–339. doi:10.1140/epjb/e2008-00175-0

Bandt, C., and Pompe, B. (2002). Permutation entropy: a natural complexity mea-
sure for time series. Phys. Rev. Lett. 88, 174102. doi:10.1103/PhysRevLett.88.
174102

Barnett, L., Barrett, A. B., and Seth, A. K. (2009). Granger causality and trans-
fer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 103, 238701.
doi:10.1103/PhysRevLett.103.238701

Barnett, L., and Bossomaier, T. (2012). Transfer entropy as a log-likelihood ratio.
Phys. Rev. Lett. 109, 138105. doi:10.1103/PhysRevLett.109.138105

Barnett, L., Lizier, J. T., Harré, M., Seth, A. K., and Bossomaier, T. (2013). Informa-
tion flow in a kinetic Ising model peaks in the disordered phase. Phys. Rev. Lett.
111, 177203. doi:10.1103/PhysRevLett.111.177203

Barnett, L., and Seth, A. K. (2014). The MVGC multivariate granger causality tool-
box: a new approach to granger-causal inference. J. Neurosci. Methods 223, 50–68.
doi:10.1016/j.jneumeth.2013.10.018

Bauer, T. L., Colbaugh, R., Glass, K., and Schnizlein, D. (2013). “Use of transfer
entropy to infer relationships from behavior,” in Proceedings of the Eighth Annual
Cyber Security and Information Intelligence Research Workshop, CSIIRW’13 (New
York, NY: ACM). doi:10.1145/2459976.2460016

Beer, R. D., and Williams, P. L. (2014). Information processing and dynamics in
minimally cognitive agents. Cogn. Sci. doi:10.1111/cogs.12142

Bialek, W., Nemenman, I., and Tishby, N. (2001). Complexity through non-
extensivity. Physica A 302, 89–99. doi:10.1186/1752-0509-5-61

Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M., and Asada, M. (2012). Informa-
tion processing in echo state networks at the edge of chaos. Theory Biosci. 131,
205–213. doi:10.1007/s12064-011-0146-8

Bonachela, J. A., Hinrichsen, H., and Muñoz, M. A. (2008). Entropy estimates of
small data sets. J. Phys. A Math. Theor. 41, 202001. doi:10.1088/1751-8113/41/
20/202001

Chávez, M., Martinerie, J., and LeVanQuyen, M. (2003). Statistical assessment of
non-linear causality: application to epileptic EEG signals. J. Neurosci. Methods
124, 113–128. doi:10.1016/S0165-0270(02)00367-9

Cliff, O. M., Lizier, J. T., Wang, X. R., Wang, P., Obst, O., and Prokopenko, M. (2014).
“Towards quantifying interaction networks in a football match,” in RoboCup
2013: Robot World Cup XVII, Volume 8371 of Lecture Notes in Computer Sci-
ence, eds S. Behnke, M. Veloso, A. Visser, and R. Xiong (Berlin: Springer),
1–12.

Computer Language Benchmarks Game. (2014). Available at: http:
//benchmarksgame.alioth.debian.org/u64q/java.php

Cover, T. M., and Thomas, J. A. (1991). Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). New York, NY: Wiley-Interscience.

Crutchfield, J. P., and Feldman, D. P. (2003). Regularities unseen, randomness
observed: levels of entropy convergence. Chaos 13, 25–54. doi:10.1063/1.1530990

Damiani, C., Kauffman, S., Serra, R., Villani, M., and Colacci, A. (2010). “Informa-
tion transfer among coupled random Boolean networks,” in Cellular Automata,
Volume 6350 of Lecture Notes in Computer Science, eds S. Bandini, S. Manzoni, H.
Umeo, and G. Vizzari (Berlin: Springer), 1–11.

Damiani, C., and Lecca, P. (2011). “Model identification using correlation-
based inference and transfer entropy estimation,” in Fifth UKSim European
Symposium on Computer Modeling and Simulation (EMS) (Madrid: IEEE),
129–134.

Dasgupta, S., Wörgötter, F., and Manoonpong, P. (2013). Information dynamics
based self-adaptive reservoir for delay temporal memory tasks. Evolving Systems
4, 235–249. doi:10.1007/s12530-013-9080-y

Faes, L., Nollo, G., and Porta, A. (2011). Information-based detection of non-linear
granger causality in multivariate processes via a non-uniform embedding tech-
nique. Phys. Rev. E 83, 051112. doi:10.1103/PhysRevE.83.051112

Faes, L., and Porta, A. (2014). “Conditional entropy-based evaluation of informa-
tion dynamics in physiological systems,” in Directed Information Measures in
Neuroscience, Understanding Complex Systems, eds M. Wibral, R. Vicente, and J.
T. Lizier (Berlin: Springer), 61–86.

Fano, R. M. (1961). Transmission of Information: A Statistical Theory of Communi-
cations. Cambridge, MA: MIT Press.

Fernández, P., and Solé, R. V. (2006).“The role of computation in complex regulatory
networks,” in Power Laws, Scale-Free Networks and Genome Biology, Molecular
Biology Intelligence Unit, eds E. V. Koonin, Y. I. Wolf, and G. P. Karev (Springer),
206–225. doi:10.1007/0-387-33916-7_12

Frenzel, S., and Pompe, B. (2007). Partial mutual information for coupling analysis
of multivariate time series. Phys. Rev. Lett. 99, 204101. doi:10.1103/PhysRevLett.
99.204101

Gell-Mann, M. (1994). The Quark and the Jaguar. New York, NY: W.H. Freeman.
Gómez, C., Lizier, J. T., Schaum, M., Wollstadt, P., Grützner, C., Uhlhaas, P., et al.

(2014). Reduced predictable information in brain signals in autism spectrum
disorder. Front. Neuroinformatics 8:9. doi:10.3389/fninf.2014.00009

Gomez-Herrero, G., Wu, W., Rutanen, K., Soriano, M. C., Pipa, G., and Vicente,
R. (2010). Assessing coupling dynamics from an ensemble of time series.
arXiv :1008.0539.

Gong, P., and van Leeuwen, C. (2009). Distributed dynamical computation in
neural circuits with propagating coherent activity patterns. PLoS Comput. Biol.
5:e1000611. doi:10.1371/journal.pcbi.1000611

Grassberger, P. (1986). Toward a quantitative theory of self-generated complexity.
Int. J. Theor. Phys. 25, 907–938. doi:10.1007/BF00668821

Helvik, T., Lindgren, K., and Nordahl, M. G. (2004). “Local information in one-
dimensional cellular automata,” in Proceedings of the International Conference on
Cellular Automata for Research and Industry, Amsterdam, Volume 3305 of Lecture
Notes in Computer Science, eds P. M. A. Sloot, B. Chopard, and A. G. Hoekstra
(Berlin: Springer), 121–130.

Honey, C. J., Kötter, R., Breakspear, M., and Sporns, O. (2007). Network structure
of cerebral cortex shapes functional connectivity on multiple time scales. Proc.
Natl. Acad. Sci. U.S.A. 104, 10240–10245. doi:10.1073/pnas.0701519104

Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., and Beggs,
J. M. (2011). Extending transfer entropy improves identification of effec-
tive connectivity in a spiking cortical network model. PLoS ONE 6:e27431.
doi:10.1371/journal.pone.0027431

Kaiser, A., and Schreiber, T. (2002). Information transfer in continuous processes.
Physica D 166, 43–62. doi:10.1016/S0167-2789(02)00432-3

Kantz, H., and Schreiber, T. (1997). Non-Linear Time Series Analysis. Cambridge,
MA: Cambridge University Press.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2008). Keep your options open:
an information-based driving principle for sensorimotor systems. PLoS ONE
3:e4018. doi:10.1371/journal.pone.0004018

Kozachenko, L., and Leonenko, N. (1987). A statistical estimate for the entropy of a
random vector. Probl. Inf. Transm. 23, 9–16.

Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual informa-
tion. Phys. Rev. E 69, 066138. doi:10.1103/PhysRevE.69.066138

Langton, C. G. (1990). Computation at the edge of chaos: phase transitions
and emergent computation. Physica D 42, 12–37. doi:10.1016/0167-2789(90)
90064-V

Liao,W., Ding, J., Marinazzo, D., Xu, Q.,Wang, Z.,Yuan, C., et al. (2011). Small-world
directed networks in the human brain: multivariate granger causality analysis of
resting-state fMRI. Neuroimage 54, 2683–2694. doi:10.1016/j.neuroimage.2010.
11.007

Lindner, M., Vicente, R., Priesemann, V., and Wibral, M. (2011). TRENTOOL: a
MATLAB open source toolbox to analyse information flow in time series data
with transfer entropy. BMC Neurosci. 12:119. doi:10.1186/1471-2202-12-119

Lizier, J. T. (2013). The Local Information Dynamics of Distributed Computation in
Complex Systems (Springer Theses). Berlin: Springer.

Lizier, J. T. (2014). “Measuring the dynamics of information processing on a local
scale in time and space,” in Directed Information Measures in Neuroscience, Under-
standing Complex Systems, eds M. Wibral, R. Vicente, and J. T. Lizier (Berlin:
Springer), 161–193.

Lizier, J. T., Atay, F. M., and Jost, J. (2012a). Information storage, loop motifs, and
clustered structure in complex networks. Phys. Rev. E 86, 026110. doi:10.1103/
PhysRevE.86.026110

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2012b). Local measures of
information storage in complex distributed computation. Inf. Sci. 208, 39–54.
doi:10.1016/j.ins.2012.04.016

Lizier, J. T., and Flecker, B. (2012). Java Partial Information Decomposition Toolkit.
Available at: http://github.com/jlizier/jpid

Lizier, J. T.,Flecker,B., and Williams,P. L. (2013).“Towards a synergy-based approach
to measuring information modification,” in Proceedings of the 2013 IEEE Sympo-
sium on Artificial Life (ALIFE) (Singapore: IEEE), 43–51.

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 18

http://www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/MILCA/MILCA
http://www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/MILCA/MILCA
http://dx.doi.org/10.1140/epjb/e2008-00175-0
http://dx.doi.org/10.1103/PhysRevLett.88.174102
http://dx.doi.org/10.1103/PhysRevLett.88.174102
http://dx.doi.org/10.1103/PhysRevLett.103.238701
http://dx.doi.org/10.1103/PhysRevLett.109.138105
http://dx.doi.org/10.1103/PhysRevLett.111.177203
http://dx.doi.org/10.1016/j.jneumeth.2013.10.018
http://dx.doi.org/10.1145/2459976.2460016
http://dx.doi.org/10.1111/cogs.12142
http://dx.doi.org/10.1186/1752-0509-5-61
http://dx.doi.org/10.1007/s12064-011-0146-8
http://dx.doi.org/10.1088/1751-8113/41/20/202001
http://dx.doi.org/10.1088/1751-8113/41/20/202001
http://dx.doi.org/10.1016/S0165-0270(02)00367-9
http://benchmarksgame.alioth.debian.org/u64q/java.php
http://benchmarksgame.alioth.debian.org/u64q/java.php
http://dx.doi.org/10.1063/1.1530990
http://dx.doi.org/10.1007/s12530-013-9080-y
http://dx.doi.org/10.1103/PhysRevE.83.051112
http://dx.doi.org/10.1007/0-387-33916-7_12
http://dx.doi.org/10.1103/PhysRevLett.99.204101
http://dx.doi.org/10.1103/PhysRevLett.99.204101
http://dx.doi.org/10.3389/fninf.2014.00009
http://dx.doi.org/10.1371/journal.pcbi.1000611
http://dx.doi.org/10.1007/BF00668821
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1371/journal.pone.0027431
http://dx.doi.org/10.1016/S0167-2789(02)00432-3
http://dx.doi.org/10.1371/journal.pone.0004018
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1016/0167-2789(90)90064-V
http://dx.doi.org/10.1016/0167-2789(90)90064-V
http://dx.doi.org/10.1016/j.neuroimage.2010.11.007
http://dx.doi.org/10.1016/j.neuroimage.2010.11.007
http://dx.doi.org/10.1186/1471-2202-12-119
http://dx.doi.org/10.1103/PhysRevE.86.026110
http://dx.doi.org/10.1103/PhysRevE.86.026110
http://dx.doi.org/10.1016/j.ins.2012.04.016
http://github.com/jlizier/jpid
http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

Lizier JIDT: an information-theoretic toolkit

Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J.-D., and Prokopenko, M. (2011a).
Multivariate information-theoretic measures reveal directed information struc-
ture and task relevant changes in fMRI connectivity. J. Comput. Neurosci. 30,
85–107. doi:10.1007/s10827-010-0271-2

Lizier, J. T., Piraveenan, M., Pradhana, D., Prokopenko, M., and Yaeger, L. S. (2011b).
“Functional and structural topologies in evolved neural networks,” in Proceed-
ings of the European Conference on Artificial Life (ECAL), Volume 5777 of Lecture
Notes in Computer Science, eds G. Kampis, I. Karsai, and E. Szathmáry (Berlin:
Springer), 140–147.

Lizier, J. T., Pritam, S., and Prokopenko, M. (2011c). Information dynamics in small-
world Boolean networks. Artif. Life 17, 293–314. doi:10.1162/artl_a_00040

Lizier, J. T., and Mahoney, J. R. (2013). Moving frames of reference, relativity and
invariance in transfer entropy and information dynamics. Entropy 15, 177–197.
doi:10.3390/e15010177

Lizier, J. T., Prokopenko, M., Tanev, I., and Zomaya, A. Y. (2008a). “Emergence of
glider-like structures in a modular robotic system,” in Proceedings of the Eleventh
International Conference on the Simulation and Synthesis of Living Systems (ALife
XI), Winchester, UK, eds S. Bullock, J. Noble, R. Watson, and M. A. Bedau (Cam-
bridge, MA: MIT Press), 366–373.

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2008b).“The information dynamics
of phase transitions in random Boolean networks,” in Proceedings of the Eleventh
International Conference on the Simulation and Synthesis of Living Systems (ALife
XI), Winchester, UK, eds S. Bullock, J. Noble, R. Watson, and M. A. Bedau (Cam-
bridge, MA: MIT Press), 374–381.

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2008c). Local information trans-
fer as a spatiotemporal filter for complex systems. Phys. Rev. E 77, 026110.
doi:10.1103/PhysRevE.77.026110

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2007). “Detecting non-trivial com-
putation in complex dynamics,” in Proceedings of the 9th European Conference on
Artificial Life (ECAL 2007), Volume 4648 of Lecture Notes in Computer Science, eds
F. Almeida e Costa, L. M. Rocha, E. Costa, I. Harvey, and A. Coutinho (Berlin:
Springer), 895–904.

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2010). Information modifi-
cation and particle collisions in distributed computation. Chaos 20, 037109.
doi:10.1063/1.3486801

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2014). “A framework for the
local information dynamics of distributed computation in complex systems,”
in Guided Self-Organization: Inception, Volume 9 of Emergence, Complexity and
Computation, ed. M. Prokopenko (Berlin: Springer), 115–158.

Lungarella, M., and Sporns, O. (2006). Mapping information flow in sensorimotor
networks. PLoS Comput. Biol. 2:e144. doi:10.1371/journal.pcbi.0020144

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge: Cambridge University Press.

Mahoney, J. R., Ellison, C. J., James, R. G., and Crutchfield, J. P. (2011). How hidden
are hidden processes? A primer on crypticity and entropy convergence. Chaos
21, 037112. doi:10.1063/1.3637502

Mäki-Marttunen, V., Diez, I., Cortes, J. M., Chialvo, D. R., and Villarreal, M. (2013).
Disruption of transfer entropy and inter-hemispheric brain functional connec-
tivity in patients with disorder of consciousness. Front. Neuroinformatics 7:24.
doi:10.3389/fninf.2013.00024

Marinazzo, D.,Wu, G., Pellicoro, M.,Angelini, L., and Stramaglia, S. (2012). Informa-
tion flow in networks and the law of diminishing marginal returns: evidence from
modeling and human electroencephalographic recordings. PLoS ONE 7:e45026.
doi:10.1371/journal.pone.0045026

Miramontes, O. (1995). Order-disorder transitions in the behavior of ant societies.
Complexity 1, 56–60. doi:10.1002/cplx.6130010313

Mitchell, M. (1998). “Computation in cellular automata: a selected review,” in Non-
Standard Computation, eds T. Gramß, S. Bornholdt, M. Groß, M. Mitchell, and
T. Pellizzari (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 95–140.

Mitchell, M. (2009). Complexity: A Guided Tour. New York, NY: Oxford University
Press.

Montalto, A. (2014). MuTE Toolbox to Evaluate Multivariate Transfer Entropy.
Figshare. Available at: http://dx.doi.org/10.6084/m9.figshare.1005245

Montalto, A., Faes, L., and Marinazzo, D. (2014a). MuTE: a MATLAB toolbox to
compare established and novel estimators of the multivariate transfer entropy.
PLoS ONE 9:e109462. doi:10.1371/journal.pone.0109462

Montalto, A., Faes, L., and Marinazzo, D. (2014b). “MuTE: a new MATLAB tool-
box for estimating the multivariate transfer entropy in physiological variability

series,” in 8th Conference of the European Study Group on Cardiovascular Oscilla-
tions (ESGCO) (Trento: IEEE), 59–60. doi:10.1109/ESGCO.2014.6847518

Nakajima, K., and Haruna, T. (2013). Symbolic local information transfer. Eur. Phys.
J. Spec. Top. 222, 437–455. doi:10.1140/epjst/e2013-01851-x

Nakajima, K., Li, T., Kang, R., Guglielmino, E., Caldwell, D. G., and Pfeifer, R. (2012).
“Local information transfer in soft robotic arm,” in IEEE International Conference
on Robotics and Biomimetics (ROBIO) (Guangzhou: IEEE), 1273–1280.

Nilsson, M., and Kleijn, W. B. (2007). On the estimation of differential entropy from
data located on embedded manifolds. IEEE Trans. Inf. Theory 53, 2330–2341.
doi:10.1109/TIT.2007.899533

Obst, O., Boedecker, J., and Asada, M. (2010). “Improving recurrent neural network
performance using transfer entropy neural information processing. models and
applications,” in Neural Information Processing. Models and Applications, Volume
6444 of Lecture Notes in Computer Science, Chapter 24, eds K. Wong, B. Mendis,
and A. Bouzerdoum (Berlin: Springer), 193–200.

Obst, O., Boedecker, J., Schmidt, B., and Asada, M. (2013). On active information
storage in input-driven systems. arXiv :1303.5526.

Oka, M., and Ikegami, T. (2013). Exploring default mode and information flow on
the web. PLoS ONE 8:e60398. doi:10.1371/journal.pone.0060398

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip: open
source software for advanced analysis of MEG, EEG, and invasive electrophysio-
logical data. Comput. Intell. Neurosci. 2011, 156869. doi:10.1155/2011/156869

Orlandi, J., Saeed, M., and Guyon, I. (2014). Chalearn Connectomics Challenge Sam-
ple Code. Available at: http://connectomics.chalearn.org

Paninski, L. (2003). Estimation of entropy and mutual information. Neural Comput.
15, 1191–1253. doi:10.1162/089976603321780272

Piraveenan, M., Prokopenko, M., and Zomaya, A. Y. (2009). Assortativeness and
information in scale-free networks. Eur. Phys. J. B 67, 291–300. doi:10.1140/
epjb/e2008-00473-5

Pompe, B., and Runge, J. (2011). Momentary information transfer as a coupling
measure of time series. Phys. Rev. E 83, 051122. doi:10.1103/PhysRevE.83.051122

Prokopenko, M. (2009). Guided self-organization. HFSP J. 3, 287–289. doi:10.2976/
1.3233933

Prokopenko, M., Boschietti, F., and Ryan, A. J. (2009). An information-theoretic
primer on complexity, self-organization, and emergence. Complexity 15, 11–28.
doi:10.1002/cplx.20249

Prokopenko, M., Gerasimov, V., and Tanev, I. (2006a). “Evolving spatiotemporal
coordination in a modular robotic system,” in From Animals to Animats 9: Pro-
ceedings of the Ninth International Conference on the Simulation of Adaptive
Behavior (SAB’06), Volume 4095 of Lecture Notes in Computer Science, eds S.
Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco, J.-A. Meyer,
et al. (Berlin: Springer), 558–569.

Prokopenko, M., Gerasimov, V., and Tanev, I. (2006b). “Measuring spatiotemporal
coordination in a modular robotic system,” in Proceedings of the 10th Interna-
tional Conference on the Simulation and Synthesis of Living Systems (ALifeX),
Bloomington, Indiana, USA, eds L. M. Rocha, L. S. Yaeger, M. A. Bedau,
D. Floreano, R. L. Goldstone, and A. Vespignani (Bloomington: MIT Press),
185–191.

Prokopenko, M., Lizier, J. T., Obst, O., and Wang, X. R. (2011). Relating Fisher infor-
mation to order parameters. Phys. Rev. E 84, 041116. doi:10.1103/PhysRevE.84.
041116

Prokopenko, M.,Wang, P.,Valencia, P., Price, D., Foreman, M., and Farmer,A. (2005).
Self-organizing hierarchies in sensor and communication networks. Artif. Life
11, 407–426. doi:10.1162/106454605774270642

Rigney, D. R., Goldberger, A. L., Ocasio, W., Ichimaru, Y., Moody, G. B., and
Mark, R. (1993). “Multi-channel physiological data: description and analysis,”
in Time Series Prediction: Forecasting the Future and Understanding the Past,
eds A. S. Weigend and N. A. Gershenfeld (Reading, MA: Addison-Wesley),
105–129.

Rutanen, K. (2011). Tim 1.2.0. Available at: http://www.cs.tut.fi/~timhome/tim-1.
2.0/tim.htm

Sandoval, L. (2014). Structure of a global network of financial companies based on
transfer entropy. Entropy 16, 4443–4482. doi:10.3390/e16084443

Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett. 85, 461–464.
doi:10.1103/PhysRevLett.85.461

Shalizi, C. R., Haslinger, R., Rouquier, J.-B., Klinkner, K. L., and Moore, C. (2006).
Automatic filters for the detection of coherent structure in spatiotemporal sys-
tems. Phys. Rev. E 73, 036104. doi:10.1103/PhysRevE.73.036104

www.frontiersin.org December 2014 | Volume 1 | Article 11 | 19

http://dx.doi.org/10.1007/s10827-010-0271-2
http://dx.doi.org/10.1162/artl_a_00040
http://dx.doi.org/10.3390/e15010177
http://dx.doi.org/10.1103/PhysRevE.77.026110
http://dx.doi.org/10.1063/1.3486801
http://dx.doi.org/10.1371/journal.pcbi.0020144
http://dx.doi.org/10.1063/1.3637502
http://dx.doi.org/10.3389/fninf.2013.00024
http://dx.doi.org/10.1371/journal.pone.0045026
http://dx.doi.org/10.1002/cplx.6130010313
http://dx.doi.org/10.6084/m9.figshare.1005245
http://dx.doi.org/10.1371/journal.pone.0109462
http://dx.doi.org/10.1109/ESGCO.2014.6847518
http://dx.doi.org/10.1140/epjst/e2013-01851-x
http://dx.doi.org/10.1109/TIT.2007.899533
http://dx.doi.org/10.1371/journal.pone.0060398
http://dx.doi.org/10.1155/2011/156869
http://connectomics.chalearn.org
http://dx.doi.org/10.1162/089976603321780272
http://dx.doi.org/10.1140/epjb/e2008-00473-5
http://dx.doi.org/10.1140/epjb/e2008-00473-5
http://dx.doi.org/10.1103/PhysRevE.83.051122
http://dx.doi.org/10.2976/1.3233933
http://dx.doi.org/10.2976/1.3233933
http://dx.doi.org/10.1002/cplx.20249
http://dx.doi.org/10.1103/PhysRevE.84.041116
http://dx.doi.org/10.1103/PhysRevE.84.041116
http://dx.doi.org/10.1162/106454605774270642
http://dx.doi.org/10.3390/e16084443
http://dx.doi.org/10.1103/PhysRevLett.85.461
http://dx.doi.org/10.1103/PhysRevE.73.036104
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive
http://www.cs.tut.fi/~timhome/tim-1.2.0/tim.htm
http://www.cs.tut.fi/~timhome/tim-1.2.0/tim.htm

Lizier JIDT: an information-theoretic toolkit

Shalizi, C. R. (2001). Causal Architecture, Complexity and Self-Organization in Time
Series and Cellular Automata. Ph.D., thesis, University of Wisconsin-Madison,
Madison, WI.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J.
27, 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

Solé, R. V., and Valverde, S. (2001). Information transfer and phase transitions in a
model of internet traffic. Physica A 289, 595–605. doi:10.1016/S0378-4371(00)
00536-7

Solé, R. V., and Valverde, S. (2004). “Information theory of complex networks: on
evolution and architectural constraints,” in Complex Networks, Volume 650 of
Lecture Notes in Physics, eds E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai
(Berlin: Springer), 189–207.

Staniek, M., and Lehnertz, K. (2008). Symbolic transfer entropy. Phys. Rev. Lett. 100,
158101. doi:10.1103/PhysRevLett.100.158101

Steeg, G. V., and Galstyan, A. (2013). “Information-theoretic measures of influ-
ence based on content dynamics,” in Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, WSDM’13 (New York, NY: ACM),
3–12.

Stetter, O., Battaglia, D., Soriano, J., and Geisel, T. (2012). Model-free reconstruction
of excitatory neuronal connectivity from calcium imaging signals. PLoS Comput.
Biol. 8:e1002653. doi:10.1371/journal.pcbi.1002653

Stögbauer, H., Kraskov, A., Astakhov, S., and Grassberger, P. (2004). Least-
dependent-component analysis based on mutual information. Phys. Rev. E 70,
066123. doi:10.1103/PhysRevE.70.066123

Stowell, D., and Plumbley, M. D. (2009). Fast multidimensional entropy estimation
by k-d partitioning. IEEE Signal Process. Lett. 16, 537–540. doi:10.1109/LSP.2009.
2017346

Stramaglia, S., Wu, G.-R., Pellicoro, M., and Marinazzo, D. (2012). “Expanding
the transfer entropy to identify information subgraphs in complex systems,” in
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (San Diego, CA: IEEE), 3668–3671.

Takens, F. (1981). “Detecting strange attractors in turbulence,” in Dynamical Sys-
tems and Turbulence, Warwick 1980, Volume 898 of Lecture Notes in Mathematics,
Chapter 21, eds D. Rand and L.-S. Young (Berlin: Springer), 366–381.

Tononi, G., Sporns, O., and Edelman, G. M. (1994). A measure for brain complexity:
relating functional segregation and integration in the nervous system. Proc. Natl.
Acad. Sci. U.S.A. 91, 5033–5037. doi:10.1073/pnas.91.11.5033

Vakorin, V. A., Krakovska, O. A., and McIntosh, A. R. (2009). Confounding effects of
indirect connections on causality estimation. J. Neurosci. Methods 184, 152–160.
doi:10.1016/j.jneumeth.2009.07.014

Verdes, P. F. (2005). Assessing causality from multivariate time series. Phys. Rev. E
72, 026222. doi:10.1103/PhysRevE.72.026222

Vicente, R., and Wibral, M. (2014). “Efficient estimation of information transfer,” in
Directed Information Measures in Neuroscience, Understanding Complex Systems,
eds M. Wibral, R. Vicente, and J. T. Lizier (Berlin: Springer), 37–58.

Vicente, R., Wibral, M., Lindner, M., and Pipa, G. (2011). Transfer entropy – a
model-free measure of effective connectivity for the neurosciences. J. Comput.
Neurosci. 30, 45–67. doi:10.1007/s10827-010-0262-3

Walker, S. I., Cisneros, L., and Davies, P. C. W. (2012). “Evolutionary transitions
and top-down causation,” in Artificial Life 13 (East Lansing, MI: MIT Press),
283–290.

Wang, X. R., Lizier, J. T., Nowotny, T., Berna,A. Z., Prokopenko, M., and Trowell, S. C.
(2014). Feature selection for chemical sensor arrays using mutual information.
PLoS ONE 9:e89840. doi:10.1371/journal.pone.0089840

Wang, X. R., Miller, J. M., Lizier, J. T., Prokopenko, M., and Rossi, L. F. (2012).
Quantifying and tracing information cascades in swarms. PLoS ONE 7:e40084.
doi:10.1371/journal.pone.0040084

Wibral, M., Lizier, J. T., Vögler, S., Priesemann, V., and Galuske, R. (2014a). Local
active information storage as a tool to understand distributed neural information
processing. Front. Neuroinformatics 8:1. doi:10.3389/fninf.2014.00001

Wibral, M.,Vicente, R., and Lindner, M. (2014b).“Transfer entropy in neuroscience,”
in Directed Information Measures in Neuroscience, Understanding Complex Sys-
tems, eds M. Wibral, R. Vicente, and J. T. Lizier (Berlin: Springer), 3–36.

Wibral, M., Vicente, R., and Lizier, J. T. (eds) (2014c). Directed Information Measures
in Neuroscience. Berlin: Springer.

Wibral, M., Pampu, N., Priesemann, V., Siebenhühner, F., Seiwert, H., Lindner,
M., et al. (2013). Measuring information-transfer delays. PLoS ONE 8:e55809.
doi:10.1371/journal.pone.0055809

Wibral, M., Rahm, B., Rieder, M., Lindner, M., Vicente, R., and Kaiser, J. (2011).
Transfer entropy in magnetoencephalographic data: quantifying information
flow in cortical and cerebellar networks. Prog. Biophys. Mol. Biol. 105, 80–97.
doi:10.1016/j.pbiomolbio.2010.11.006

Williams, P. L., and Beer, R. D. (2010a). “Information dynamics of evolved agents,”
in From Animals to Animats 11, Volume 6226 of Lecture Notes in Computer Science,
Chapter 4, eds S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, and J.-B.
Mouret (Berlin: Springer), 38–49.

Williams, P. L., and Beer, R. D. (2010b). Nonnegative decomposition of multivariate
information. arXiv :1004.2515.

Williams, P. L., and Beer, R. D. (2011). Generalized measures of information transfer.
arXiv :1102.1507.

Wollstadt, P., Martínez-Zarzuela, M., Vicente, R., Díaz-Pernas, F. J., and Wibral, M.
(2014). Efficient transfer entropy analysis of non-stationary neural time series.
PLoS ONE 9:e102833. doi:10.1371/journal.pone.0102833

Conflict of Interest Statement: The Review Editor Keyan Ghazi-Zahedi declares
that, despite being affiliated to the same institution as author Joseph T. Lizier,
the review process was handled objectively and no conflict of interest exists. The
author declares that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

Received: 15 August 2014; paper pending published: 23 September 2014; accepted: 24
October 2014; published online: 02 December 2014.
Citation: Lizier JT (2014) JIDT: an information-theoretic toolkit for studying the
dynamics of complex systems. Front. Robot. AI 1:11. doi: 10.3389/frobt.2014.00011
This article was submitted to Computational Intelligence, a section of the journal
Frontiers in Robotics and AI.
Copyright © 2014 Lizier . This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Robotics and AI | Computational Intelligence December 2014 | Volume 1 | Article 11 | 20

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1016/S0378-4371(00)00536-7
http://dx.doi.org/10.1016/S0378-4371(00)00536-7
http://dx.doi.org/10.1103/PhysRevLett.100.158101
http://dx.doi.org/10.1371/journal.pcbi.1002653
http://dx.doi.org/10.1103/PhysRevE.70.066123
http://dx.doi.org/10.1109/LSP.2009.2017346
http://dx.doi.org/10.1109/LSP.2009.2017346
http://dx.doi.org/10.1073/pnas.91.11.5033
http://dx.doi.org/10.1016/j.jneumeth.2009.07.014
http://dx.doi.org/10.1103/PhysRevE.72.026222
http://dx.doi.org/10.1007/s10827-010-0262-3
http://dx.doi.org/10.1371/journal.pone.0089840
http://dx.doi.org/10.1371/journal.pone.0040084
http://dx.doi.org/10.3389/fninf.2014.00001
http://dx.doi.org/10.1371/journal.pone.0055809
http://dx.doi.org/10.1016/j.pbiomolbio.2010.11.006
http://dx.doi.org/10.1371/journal.pone.0102833
http://dx.doi.org/10.3389/frobt.2014.00011
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive

	JIDT: an information-theoretic toolkit for studying the dynamics of complex systems
	Introduction
	Information-theoretic measures and estimators
	Information-theoretic measures
	Estimation techniques
	Related open-source information-theoretic toolkits

	JIDT installation, contents, and design
	Installation and dependencies
	Contents of distribution
	Source code and estimators implemented
	JIDT architecture
	Interfaces
	Abstract classes
	Child classes

	Validation
	(Re-)building the code
	Documentation and support

	JIDT code demonstrations
	Simple java demos
	Typical calling pattern for an information-theoretic measure on discrete data
	Typical calling pattern for an information-theoretic measure on continuous data
	Local information-theoretic measures
	Null distribution and statistical significance
	Ensemble approach: using multiple trials or realizations to construct PDFs
	Joint-variable measures on multivariate discrete data
	Joint-variable measures on multivariate continuous data
	Coding to interfaces; or dynamic dispatch

	MATLAB/OCTAVE demos
	Python demos
	Schreiber's transfer entropy demos
	Cellular automata demos
	Other demos

	Conclusion
	Acknowledgments
	Supplementary material
	References

