

Jigsaw Image Mosaics
 Junhwan Kim Fabio Pellacini

 Dept. of Computer Science, Cornell University Program of Computer Graphics, Cornell University

ABSTRACT
This paper introduces a new kind of mosaic, called Jigsaw

Image Mosaic (JIM), where image tiles of arbitrary shape are used

to compose the final picture. The generation of a Jigsaw Image

Mosaic is a solution to the following problem: given an

arbitrarily-shaped container image and a set of arbitrarily-shaped

image tiles, fill the container as compactly as possible with tiles of

similar color to the container taken from the input set while

optionally deforming them slightly to achieve a more visually-

pleasing effect. We approach the problem by defining a mosaic as

the tile configuration that minimizes a mosaicing energy function.

We introduce a general energy-based framework for mosaicing

problems that extends some of the existing algorithms such as

Photomosaics and Simulated Decorative Mosaics. We also present

a fast algorithm to solve the mosaicing problem at an acceptable

computational cost. We demonstrate the use of our method by

applying it to a wide range of container images and tiles.

CR Categories: I.3.8 [Computer Graphics]: Application; I.3.5

[Computational Geometry and Object Modeling]: Geometric algorithms,

languages, and systems; J.5 [Arts and Humanities]: Fine arts

Keywords: Mosaics, Morphing, Optimization

1. INTRODUCTION
Mosaics are a form of art in which a large image is formed by a

collection of small images called tiles. Various mosaics can be

created for an image depending on the choice of tiles and the

restriction in their placement. Tile mosaics, for example, are

images made by cementing together uniformly colored polygonal

tiles carefully positioned to emphasize edges in the composite

picture; Simulated Decorative Mosaics [Hausner 2001] is an

algorithm that can generate tile mosaics. Photomosaics [Silvers

and Hawley 1997] are a different kind of mosaic where a

collection of small images is arranged in a rectangular grid in such

a way that when they are seen together from a distance they

suggest a larger image. Finally, Arcimboldo, a Renaissance Italian

painter, was the self-proclaimed inventor of a form of painting

called the composite head where faces are painted, not in flesh,

but with rendered clumps of vegetables and other materials

slightly deformed to better match the human features [Strand

1999].

Inspired by Arcimboldo, we propose a new kind of mosaic

where image tiles of arbitrary shape are used to compose the final

arbitrarily-shaped picture. We called this new kind of mosaic

Jigsaw Image Mosaic (JIM). Figure 1 illustrates the process of

creating a JIM. Our algorithm takes as input a container image of

arbitrary shape and a set of image tiles of arbitrary shape; it then

packs the container as compactly as possible with tiles of similar

color to the container taken from the input set while optionally

deforming them slightly to achieve a more visually-pleasing

effect. We can formally define the problem as follows:

Problem (Jigsaw Image Mosaic): Given an arbitrarily-

shaped container image and a set of arbitrarily-shaped tiles

{Ti}, find a set of shapes {Sj} such that

• the union over the Sj resembles the container image as

closely as possible; and

• each Sj is a translated and rotated copy of one of the Ti,

possibly incorporating a small deformation.

In order to compute a JIM, we introduce a general energy-based

framework for mosaicing problems, where a mosaic is defined as

the tile configuration that minimizes a weighted sum of energy

terms. By changing the weights in the energy formulation, various

kinds of mosaics can be generated. Our framework generalizes

Figure 1: The Jigsaw Image Mosaic (JIM) algorithm takes as input an arbitrarily-shaped container image and a set of image tiles

of arbitrary shape (left) and generates a mosaic (right); it then packs the container as compactly as possible with tiles of similar

color to the container taken from the input set while optionally deforming them slightly to achieve a more visually-pleasing effect.

some of the existing mosaicing techniques previously presented in

the computer graphics literature such as Photomosaics [Silvers

and Hawley 1997] and Simulated Decorative Mosaics [Hausner

2001]. A comparison of the images obtained by the three

algorithms is presented in Figure 2. As with Photomosaics, our

algorithm uses tiles containing smaller images. As in Simulated

Decorative Mosaics, the Jigsaw Image Mosaics maintain

important edges found in the container image; while the first

algorithm does so by reorienting the tiles, our approach uses

oriented tiles of the best-fitting shape as shown, for example, by

the wedge-shaped tiles used in the sharp corners of the drops in

Figure 2b and Figure 2c. The two algorithms use a segmentation

of the original image in order to specify important edges.

Our framework has three major advantages. First, a user can

easily control the result image by changing the weights in the

energy formulation. Second, we can introduce new mosaicing

generation rules by introducing additional energy terms in the

energy formulation. Finally, the mosaic generation and tile

preparation is completely automatic requiring no user

intervention.

Since the Jigsaw Image Mosaic problem can be cast as an

instance of an energy minimization problem, various algorithms

such as simulated annealing could be employed to find a solution.

Unfortunately, due to its high dimensional search space, most of

the standard minimization techniques would demand too many

resources to be run. This paper also presents a fast minimization

algorithm tailored to solve the generalized mosaicing problem.

We believe that the two major contributions of this paper are

• an energy-based framework for the mosaicing problem which

generalizes on known algorithms

• an energy-minimization algorithm that solves the mosaicing

problem at an acceptable computational cost

Also, since our framework presents a general solution to ‘soft’

packing problems, where small deformations are acceptable, our

framework can be applied to feature-based texture synthesis and

to various instances of product manufacturing. Mosaics are just

one application.

The rest of this paper is organized as follows: Section 2

summarizes related work. In Section 3, we describe how to

automatically prepare the required inputs. Sections 4 and 5

address the energy minimization framework of the mosaicing

problem, and the basic algorithm for the framework respectively.

Section 6 presents optimization techniques on top of the basic

algorithm. We present our results in Section 7, and close with

discussion and future work in Section 8.

2. RELATED WORK
In the computer graphics literature, the works most closely

related to our approach are the various mosaicing algorithms that

can be categorized by the choice of tiles and the restriction on

their placement. Photomosaics [Finkelstein and Range 1998;

Silvers and Hawley 1997] are a collection of small images

arranged in a rectangular grid in such a way that when they are

viewed together from a distance they suggest a larger image (e.g.

Figure 2d). For each rectangular block of pixels in the input

image, the photomosaic algorithm searches a large database of

tiles to find the one that most closely resembles the original block.

The algorithm gives impressive results using only small resources,

but unfortunately it is limited to square tiles on a rectangular grid.

Simulated Decorative Mosaic [Hausner 2001] approaches the

problem of aligning square tiles with varying orientations to

preserve input image edges while maximizing the area covered by

the colored tiles (e.g. Figure 2e). Our algorithm resembles that

approach since it tries to maintain edges in the input image while

maximizing coverage. Unfortunately, since we use tiles of

different shapes, we cannot directly apply the Simulated

Decorative Mosaic method for finding low-energy configurations.

Our technique can compute the same results as these two

algorithms, although its generality exacts a penalty in speed.

Kaplan and Salesin [2000] presented a solution to the

“Escherization" problem that finds a regular tiling using a closed

figure that is as similar as possible to the original figure. Their

work resembles our approach in that they slightly distort the

original tile if necessary, but is different in that they seek regular

tilings whereas we allow small gaps and overlaps. Haeberli [1990]

randomly chose the tile positions, found the voronoi diagram of

these positions, and filled each voronoi region with a color

sampled from the underlying image. While his approach

tessellates the main image using tiles of different shapes and

completely arbitrary placements, the shapes are arbitrary and may

not fit any of the given input tiles as required in our formulation.

Another body of work related to our approach is the packing

problem. The packing problem has been extensively studied in

operations research and computational geometry with application

to a broad spectrum of layout problems, such as for cloth, leather

and glass. Since the packing problem is NP-hard [Milenkovic

1999], numerous heuristics have been developed: boundary

matching, database driven layout, or leftmost placement policy

(See [Dowsland and Dowsland 1995] for an extensive survey).

Recent work of Milenkovic and his colleagues [1999] combined

a) Input image

b) JIM tile contours

roughly 400 tiles

from a database of 900 tiles

roughly 400 tiles

from a database of 1100 photographs

roughly 400 tiles

c) Jigsaw Image Mosaic (JIM) d) Photomosaic e) Simulated Decorative Mosaic

Figure 2: Comparison of different mosaicing algorithms.

computational geometry and mathematical programming for

dense packing of polygons. Their approach applied to marker

layout problems achieves packing efficiencies comparable to

those of human experts. Our problem differs from the standard

packing problem in that our aim is not to achieve maximum-

density packing, but to reach aesthetically pleasing packing.

Inspired by Arcimboldo, we allow a small user-specified

deformation of the tiles when necessary, which is not allowed in

the standard packing problem formulation.

3. PREPARING INPUTS
The JIM algorithm takes as input a container image of arbitrary

shape and a set of tiles of arbitrary shape. The shape of tiles and

container is represented by a polygon. Since we require a fairly

high number of tiles, we need to be able to extract the shape of the

tiles directly from the images themselves. We do so using active

contours [Kass et al. 1987]. All of the 900 tiles used to generate

the images in this paper are segmented completely automatically

from clip art harvested from the Web. Active contours are also

used to extract the container shape.

 Hausner [2001] showed the importance of preserving important

edges in the input image when generating a mosaic. Following his

approach, we segment the input image to generate a set of disjoint

arbitrarily-shaped containers. Since we preserve the edge of each

container, the final composite will preserve the important edges

on the input image. Figure 2c shows this behavior. Within each

part of the segmentation, the algorithm runs independently. By

allowing the user to input arbitrary segmentations, we can also

introduce edges that are not present in the input image, but are

important to maintain for the user.

4. MOSAICING FRAMEWORK

4.1 Problem formalization
In order to achieve user controllable and extensible framework,

we cast the problem of generating a mosaic in an energy

minimization framework. We define a “tile configuration” as a

subset of the input tiles with repetition, along with their associated

transformations (translation, rotation, deformation). We say that a

tile configuration is a Jigsaw Image Mosaic when it minimizes the

energy E defined as

 DDOOGGCC EwEwEwEwE ⋅+⋅+⋅+⋅= . (1)

The energy is a weighted sum of various terms. Figure 3

illustrates the behaviors of each of these energy terms in a simple

example. The color energy term EC penalizes configurations that

do not maintain the color of the input image. The gap energy term

EG penalizes configurations that have too much empty space in the

final image, called gap, while a big overlap between tiles gives

large overlap energy EO. Finally, the deformation energy ED

penalizes configurations where tiles are highly deformed.

Inspired by Arcimboldo, we allow small deformations for each

tile since we may not find a configuration where gaps or overlaps

are small enough to achieve a pleasing visual effect. This is more

likely to happen for smaller tile databases. Since collecting a large

number of tiles may be a long process, we believe that allowing

the user to specify the amount of deformation necessary makes the

algorithm more usable.

In order to compute a Photomosaic in our formulation, we can

simply restrict the tile database to rectangular tiles and set the

weights for gap, overlap and deformation to infinity. To compute

a Simulated Decorative Mosaic, we restrict the database to square

tiles with uniform color, where the colors are chosen from the

palette of the input image, and segment the container to preserve

edges. We then set the deformation weight to infinity and a very

high overlap weight (note that Simulated Decorative Mosaics

results have sometimes very small overlaps [Hausner 2001]) and

moderately high gap weight.

We believe that our formulation is fairly intuitive to use, since

the user can easily adjust the weights in the energy function to

obtain different results. It is also easily extensible, since we can

add new energy terms in order to introduce additional rules for

image generation.

4.2 Energy terms evaluation
The color energy EC is estimated by taking the average of the L2

differences of the colors of the final image and the input container

at random locations on the surface of the container. We evaluate

this term for each tile separately to ensure a good sampling of the

tile area.

We evaluate gap EG and overlap EO energies using the spring

energy formulation as originally employed to prevent bodies in

resting contact from penetrating in rigid body simulations [Moore

and Wilhelms 1988]. More specifically, each vertex of a tile is

attached with a spring to the nearest edge of the other tiles or the

container. If the signed distance d between the vertex and the

anchor is positive, i.e. there is a gap between them, we add d2/2 to

EG. On the other hand, if d is negative, i.e. the vertex penetrates

the nearest edge, we add d2/2 to EO.

The deformation energy ED is the sum of the deformation

energies for each tile, which measures the difference in shape

between the deformed tile and the original one. We evaluate ED in

a similar way to the active contour model, given by

 ∑ ∫ ′′′−′′′+′′−′′= =
k
i iiiiD dssTsDsTsDE 1

1

0

22
)()()()(

2

1 βα , (2)

where Ti(s) and Di(s) are the original shape and the deformed

shape of the i-th tile in the current solution, parameterized by s∈
[0,1]. The first term and the second term inside the integral

measure the difference between the original tile and the deformed

tile with respect to the stretching and flexing respectively, where α

and β are sensitivity parameters. Among numerous shape metrics

such as [Arkin et al. 1991], we choose the above one, since it

provides good results in our case and it is easily integrated in our

algorithm.

… high gap

energy discard

…high overlap

energy discard

…high deformation

energy discard

…high color

energy discard

Trying 2nd tile… Trying 3rd tile… Trying 4th tile… Trying 5th tile…Trying 1st tile…Container

Container to be

filled

Container filled

Tiles

Legend

…lowest energy

Accept

Color mismatch Gap region Overlap region Shape mismatch Accepted tile

Figure 3: Illustration of mosaicing energy terms.

5. BASIC MOSAICING ALGORITHM

5.1 Overview
To efficiently compute a Jigsaw Image Mosaic, we propose an

effective algorithm organized in three phases shown in Figure 4.

In the first phase, we choose and roughly place the tiles, ignoring

deformation. In the second phase, we refine the placement of each

tile and deform them if necessary. Finally in the third phase, we

assemble the final mosaic by placing each tile in its position and

warping each image to its final deformed shape using the image

warping technique presented in [Arad et al. 1994]. Intuitively, this

three-phase approach works in our case because the deformations

we allow are always much smaller than the smallest tile in the

database.

5.2 Packing
The first phase of the algorithm finds an approximately good

configuration ignoring the deformation term, i.e. the configuration

that minimizes the gap and overlaps in the image while

maintaining the color, as measured by

 OOGGCC EwEwEwE ⋅+⋅+⋅= . (3)

To do so, we use a best first search [Russell and Norvig 1994].

Our algorithm places one tile at a time. For each new tile to place,

we find a roughly suitable position in the container. We then

search the database to determine which tile we should use, and

determine the exact position and orientation of the tile in such a

way that the tile is maximally aligned to the boundary of

container, i.e., E in Equation 3 is minimized. This is a typical

registration problem except that we register the tile to a part of the

container, rather than the container itself. We will explain in more

detail in Section 6 how to efficiently find a suitable spot using a

centroidal voronoi diagram (CVD) [Lloyd 1982] and how to

search the database using geometric hashing.

After we place a tile, a new container is computed by

subtracting the tile shape from the original container, as shown in

Figure 5. The new container is used to place the next tile.

We keep placing tiles until either the tiles completely fill out the

container or we cannot find a suitable tile to fill a container. If this

happens, we backtrack to the configuration that has minimal

energy so far. Figure 6 illustrates the algorithm sequence.

5.3 Refinement
Even after finding the best possible tile arrangement, too much

gap or overlap may remain and be aesthetically displeasing,

especially when using a small number of tiles. Sometimes we can

obtain a better looking result by slightly deforming the tiles to

reduce gaps and overlaps significantly, as long as the deformation

does not alter the original tile too much. While this generally

produces better looking images, the user has the option to define

the amount or skip deformation.

The refinement phase of our approach solves this issue by

deforming the tiles obtained from the packing stage, while

balancing between maintaining the original tile shape as closely as

possible and minimizing the gap, overlap and color differences

(i.e. minimizing the full energy equation). We compute the final

configuration using a set of active contours [Kass et al. 1987]

interacting with each other. Intuitively, each vertex of a contour is

subject to forces that tend to maintain the contour’s original shape

and to repulse two contours if they penetrate, or attract them if

there is gap between them. The tile configuration that minimizes

E in Equation 1 must satisfy the following euler equation:

 0=∇⋅+∇⋅+∇⋅+∇⋅ DDOOGGCC EwEwEwEw . (4)

∇EC is close to zero for our case since the deformations are much

smaller than the smallest tile. For each vertex, ∇EG=2d⋅n if the

vertex is in a gap (0 otherwise), where n is the unit vector

perpendicular to the nearest edge, d is the signed distance to the

nearest edge. ∇EO=2d⋅n if the vertex penetrates another tile (0

otherwise). ∇EO makes the tile shrink if it is too big while ∇EG

expands it if too small. The deformation term can be computed by

differentiating Equation 2 for each vertex:

 () ())()()()(sTsDsTsDE iiiiD ′′′−′′′+′′−′′=∇ βα . (5)

Phase 2:

Refining tiles

Phase 1:

Placing tiles

a) Initial container

image

b) Tile contours after

tile placement

c) Tile contours after

tile refinement

d) Final Jigsaw

Image Mosaic

Phase 3:

Adjusting images

Figure 4: Jigsaw Image Mosaic algorithm phases.

Container Available Tiles

Place 1st tile Cannot place next

Try again 1st tile

Backtrack

Place next Done

a b

c

Figure 6: Tile placement.

Tile Container with

placed tile

Container for

next iteration

a b c
Initial

container

Figure 5: Container update.

Notice that Equation 5 is exactly the same energy formulation

used for standard snakes but the ‘relaxed’ state is defined as the

original tile shape rather than a simple straight line. Also, external

forces are determined not by an image (as in the standard snake),

but by gap and overlap between tiles and with the container. The

solution to the above equation can still be found by solving the

discrete system iteratively [Amini 1990]. Figure 7 shows the

evolution from the original tiles to the deformed ones.

6. ALGORITHM OPTIMIZATIONS
In the previous section, we presented the basic algorithm for tile

placement. A naïve implementation would be too resource

demanding so we present several optimization techniques in this

section. The time complexity of the algorithm is roughly given by

 ()()bNVNVO ainertileInContcontainertiletile +⋅⋅⋅⋅ 1 . (6)

where Vtile is the number of vertices per tile, Ntile is the number of

tiles in the database, Vcontainer is the number of vertices in

container, NtileInContainer is the number of tiles in the container, and

b is the overhead due to branching in the search tree

(backtracking). In the following subsections we will introduce

optimization for each of the factors in Equation 6.

6.1 Placing a tile
When placing a tile in a container of arbitrary shape, it would be

prohibitive to try every possible location. As we mentioned

before, we update the container after placing every tile. In order to

reduce the branching overhead b, we try those locations that are

most likely to make the container shape easier to fill after

updating. Unfortunately this depends on which tile we place.

Nevertheless, we can guess how the container would look after we

put an “average” tile. A container will be easier to fill if it does

not have a protrusion and is as convex as possible.

Before placing a new tile, we construct a CVD, where each site

has an area roughly equal to the average size of tiles (a similar

technique has been previously used in [Hausner 2001]). We then

select a random site among the ones that have the least number of

neighbors, thus making the container as easy as possible to fill.

Figure 8 shows the selection process. Notice that placing one tile

at a time allows us to handle tiles with different sizes. Figure 2c,

for instance, contains tiles that differ in size by 7 times.

6.2 Branch-and-bound with look-ahead
Every time we cannot find a suitable tile to fill a container, we

need to backtrack to the configuration that has minimal energy so

far. To reduce this branching overhead b, we use a look-ahead

technique [Russell and Norvig 1994]. When placing a new tile, we

penalize tiles that will make it harder to fill the container in the

next iteration. To do this we add a term to the energy formulation

that takes into account how the container will look after tile

placement. Thus, the energy in Equation 3 becomes:

 LALACCOOGG EwEwEwEwE ⋅+⋅+⋅+⋅= . (7)

The container shape term advocates for containers with a small

area and short circumference, or

 () 21 lengthwareawE AALA ⋅−+⋅= , (8)

where area is the container’s area, length is its boundary length,

and wA controls the weight of area in relation to the weight of

length. Adding the container shape term in the energy evaluation

prevents the algorithm from placing a tile that fits well but that

leads to a harder-to-fill updated container.

6.3 Container cleanup
After we place a tile in a container, we update the container by

subtracting the tile from the container. However, the new

container can be very jagged, or even have disjoint regions. If

these fragments are shallower than the shallowest tile, we know it

can never be filled with any existing tile. In that case, it is safe to

separate those fragments and consider them as a gap. This cleanup

process reduces the running time by cutting the number of vertices

in the container Vcontainer. It also reduces the branching overhead b,

since it prevents the algorithm from wasting time attempting to fill

unpromising fragments of the container.

6.4 Geometric hashing
Given a container and a location in the container, we need to try

each tile in the database and their positions and orientations. Since

the number of tiles is fairly high, a linear search would be

prohibitive. To this end, we employ geometric hashing, a

technique originally developed in computer vision for matching

geometric features against a database of such features [Wolfson

and Rigoutsos 97]. We use geometric hashing to select a few tiles

that will suit to a particular position in the container. We then

evaluate the energy term for them and pick the best fitting one.

Intuitively we use geometric hashing as a pruning technique to

reject bad tiles.

In order to use geometric hashing, we will create a grid of

squares in the plane in a preprocessing phase. Each square

corresponds to a hash table entry. If a shape boundary crosses a

square, we will record the tile ID and its orientation as an entry in

the list attached to that hash table entry. In the preprocessing

phase we place all tiles with all possible discrete orientations in

the grid to build the hash table. Every time we need to place a new

tile in a specific position in the container during the packing stage

we register the container boundary segment to the hash table and

access the hash table entries of the squares that the container

passes through; for every entry found there, we cast a vote for the

(tile ID, tile orientation) pair. We proceed to determine those

entries that received more than a certain number of votes. Each

such entry corresponds to a potential candidate. See Figure 9 for

an illustration. This hashing technique reduces the time

complexity of the algorithm from O(Ntile) to O(hgrid), where hgrid is

the grid granularity.

a) Bad tile: 15 votes b) Good tile: 22 votesLegend

Container

contour

Tile contour

Container and

tile contour

overlap:

cast a vote

Figure 9: Geometric hashing for the 3
rd

 and 5
th

tile in Figure 3.

a) Initial

contours
b) Intermediate

contours

c) Converged

contours

Figure 7: Evolution of active contours.

CVD connected graph

CVD cells

Selected position:

only two neighbors

in the CVD graph

Legend

Figure 8: Selecting a tile position by CVD.

7. RESULTS
We have used our algorithm to produce a number of Jigsaw

Image Mosaics using various container images. The images

contained in this paper were generated from a database of 900

tiles, some of which are from the Columbia Coil-100 dataset and

Coolarchive.com. Size of the tiles varies by up to 8 times. It took

about 10 minutes to 2 hours to generate the results.

Figures 1 and 2 show that our algorithm faithfully reproduces

colors and boundaries of letters and logos. Figure 10 shows three

variations of the “J” mosaic in Figure 10a obtained by changing

the parameters in the energy formulation. Figure 10b shows the

result for a very low color weight. Figure 10c was computed

allowing a large overlap between tiles. Figure 10d is a picture

generated with tiles in different scales. These variations show how

simply changing the weights in the energy function can generate

different looking images that an artist can easily tweak.

Figure 11 shows the result for a photograph of a panda. Given

the container image and its segmentation, our algorithm

reproduces the container image in a visually pleasing way. As in

[Hausner 2001], we used the different scales of tiles to faithfully

reproduce fine details of the containers, such as the mouth of the

panda. Figure 12 shows a different example where the user draws

additional edges to emphasize features of the picture, in this case

the feathers of the parrot. As a result, our algorithm clearly

reproduces the user-supplied features. Figure 13 shows an artistic

picture of a kabuki, generated by preserving the edges of the

original picture, but assigning different colors associated to each

segment and a texture to the background.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a general energy-based

framework for mosaicing problems that generalizes some of the

existing algorithms. We also introduce a new kind of mosaic, the

Jigsaw Image Mosaic (JIM), where tiles and container are

arbitrarily-shaped images. Finally we presented an effective

algorithm to quickly compute a JIM. Our method produces good

results, and is general enough to be applied to other ‘soft’ packing

problems such as texture synthesis and product manufacturing.

This research suggests a number of directions for further study.

Our current approach uses a search algorithm for packing. Even

though it is effective because of the elaborate use of look-ahead

technique and other optimizations, it is difficult to formally prove

bounds on the energy of the final configuration. Approaches based

on mathematical programming or computational geometry as in

[Milenkovic and Daniels 1999] could be fruitful. Our framework

could also be extended to 3D mosaic, where the container is a 3D

object and the tiles can be 2D to fill out the surface of the

container, or 3D to fill out the container itself.

9. ACKNOWLEDGEMENTS
We would like to thank Eva Tardos, Klara Kedem, Paul Chew, Shimon Edelman,

James E. Cutting, Vladimir Kolmogorov, and Amy Gale for their insights and

comments and to Ramin Zabih and Donald P. Greenberg for their encouragement.

Peggy Anderson, Parag Tole, and Steven Westin carefully read the manuscripts. We

would also like to thank Alejo Hausner for providing us his software and to the

anonymous reviewers for their constructive critiques. Some of the tiles in Figure 2d

were obtained from the MIT VisTex web page (Copyright © 1995 MIT. All rights

reserved). Junhwan Kim was supported by NSF grants IIS-9900115 and CCR-

0113371 and a grant from Microsoft Research, while Fabio Pellacini was supported

by NSF Science and Technology Center for Computer Graphics and Scientific

Visualization (ASC-8920219).

10. BIBLIOGRAPHY
AMINI, A. A. 1990. Using Dynamic Programming for Solving Variational Problems

in Vision. IEEE Trans. on PAMI, Vol. 12, no 9, pp. 855-867, Sept. 1990.

ARAD, N., DYN, N., REISFELD, D., AND YESHURUN, Y. 1994. Image warping by Radial

Basis Functions: Application to Facial Expressions. Computer Vision, Graphics,

and Image Processing. GMIP, 56 (2), 161--172, 1994.

ARKIN, M., CHEW, P., HUTTENLOCHER, D. P., KADEM, K., AND MITCHELL, J.S.B.

1991. An Efficiently Computable Metric for Comparing Polygonal Shapes. IEEE

Trans. on PAMI, Vol. 13, No. 3, 209-216, Mar. 1991.

DOWSLAND, K. A. AND DOWSLAND, W. B. 1992. Packing Problems. European

Journal of Operational Research, 56:2 - 14, 1992.

DOWSLAND, K. A. AND DOWSLAND, W. B. 1995. Solution Approaches to Irregular

Nesting Problems. European Journal of Operational Research, 84:506--521,

1995.

FINKELSTEIN, A. AND RANGE, M. 1998. Image Mosaics. In Roger D. Hersch, Jacques

André, and Heather Brown, Ed., Artistic Imaging and Digital Typography, LNCS,

No. 1375, Heidelberg: Springer-Verlag 1998.

HAEBERLI, P. 1990. Paint by Numbers. In Computer Graphics (Proceedings of ACM

SIGGRAPH 90), 24(4), ACM, 207-214.

HAUSNER, A. 2001. Simulating Decorative Mosaics. In Proceedings of ACM

SIGGRAPH 2001, ACM Press / ACM SIGGRAPH, New York, E. Fiume, Ed.,

Computer Graphics Proceedings, Annual Conference Series, ACM, 573-580.

KAPLAN, C.S. AND SALESIN, D.H. 2000. Escherization. In Proceedings of ACM

SIGGRAPH 2000, ACM Press / ACM SIGGRAPH, New York, K. Akeley, Ed.,

Computer Graphics Proceedings, Annual Conference Series, ACM, 499-510.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1987. Snakes: Active Contour Models,

International Journal of Computer Vision, 1:321--331, 1987.

LLOYD, S. 1982. Least Square Quantization in PCM. IEEE Transactions on

Information Theory, 28(1982): 129-137.

MILENKOVIC, V.J. 1999. Rotational Polygon Containment and Minimum Enclosure

using only Robust 2D Constructions, Computational Geometry, 13(1):3-19, 1999.

MILENKOVIC, V. J. AND DANIELS, K. 1999. Translational Polygon Containment and

Minimal Enclosure using Mathematical Programming. Transactions in

Operational Research, 6:525-554, 1999.

MOORE, M. P. AND WILHELMS, J. 1988. Collision Detection and Response for

Computer Animation, In Computer Graphics (Proceedings of ACM SIGGRAPH

88), 22(4), ACM, 289--298.

RUSSELL, S AND NORVIG, P. 1994. Artificial Intelligence: A Modern Approach,

Prentice Hall, 1994.

SILVERS, R AND HAWLEY, M. 1997. Photomosaics, New York: Henry Holt, 1997.

STRAND, C. 1999. Hello, Fruit Face! : The Paintings of Guiseppe Arcimboldo,

Prestel, 1999.

WOLFSON, H. J. AND RIGOUTSOS, I. 1997. Geometric Hashing: An Overview. IEEE

Computational Science and Engineering, Vol. 4, No. 4, pp. 10-21.

a) Base case b) Lower color

weight

c) Lower overlap

weight

d) Tiles of

finer scales

Figure 10: Mosaics for various parameters.

Figure 11: Panda mosaic with 1367 tiles. Inset: segmentation.

Different scales of tiles are used to faithfully reproduce the fine details of the mouth of the panda.

Figure 12: Parrot mosaic with 1812 tiles. Inset: segmentation.

Additional edges are introduced to reproduce the parrot feathers and add leaves.

Figure 13: Kabuki mosaic with 4200 tiles. Inset: segmentation.

Colors are arbitrarily assigned for each segment.

