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ABSTRACT 
This paper introduces a new kind of mosaic, called Jigsaw 

Image Mosaic (JIM), where image tiles of arbitrary shape are used 

to compose the final picture. The generation of a Jigsaw Image 

Mosaic is a solution to the following problem: given an 

arbitrarily-shaped container image and a set of arbitrarily-shaped 

image tiles, fill the container as compactly as possible with tiles of 

similar color to the container taken from the input set while 

optionally deforming them slightly to achieve a more visually-

pleasing effect. We approach the problem by defining a mosaic as 

the tile configuration that minimizes a mosaicing energy function. 

We introduce a general energy-based framework for mosaicing 

problems that extends some of the existing algorithms such as 

Photomosaics and Simulated Decorative Mosaics. We also present 

a fast algorithm to solve the mosaicing problem at an acceptable 

computational cost. We demonstrate the use of our method by 

applying it to a wide range of container images and tiles. 

CR Categories: I.3.8 [Computer Graphics]: Application; I.3.5 

[Computational Geometry and Object Modeling]: Geometric algorithms, 

languages, and systems; J.5 [Arts and Humanities]: Fine arts  

Keywords: Mosaics, Morphing, Optimization 

1. INTRODUCTION 
Mosaics are a form of art in which a large image is formed by a 

collection of small images called tiles. Various mosaics can be 

created for an image depending on the choice of tiles and the 

restriction in their placement. Tile mosaics, for example, are 

images made by cementing together uniformly colored polygonal 

tiles carefully positioned to emphasize edges in the composite 

picture; Simulated Decorative Mosaics [Hausner 2001] is an 

algorithm that can generate tile mosaics. Photomosaics [Silvers 

and Hawley 1997] are a different kind of mosaic where a 

collection of small images is arranged in a rectangular grid in such 

a way that when they are seen together from a distance they 

suggest a larger image. Finally, Arcimboldo, a Renaissance Italian 

painter, was the self-proclaimed inventor of a form of painting 

called the composite head where faces are painted, not in flesh, 

but with rendered clumps of vegetables and other materials 

slightly deformed to better match the human features [Strand 

1999]. 

Inspired by Arcimboldo, we propose a new kind of mosaic 

where image tiles of arbitrary shape are used to compose the final 

arbitrarily-shaped picture. We called this new kind of mosaic 

Jigsaw Image Mosaic (JIM). Figure 1 illustrates the process of 

creating a JIM. Our algorithm takes as input a container image of 

arbitrary shape and a set of image tiles of arbitrary shape; it then 

packs the container as compactly as possible with tiles of similar 

color to the container taken from the input set while optionally 

deforming them slightly to achieve a more visually-pleasing 

effect. We can formally define the problem as follows: 

Problem (Jigsaw Image Mosaic): Given an arbitrarily-

shaped container image and a set of arbitrarily-shaped tiles 

{Ti}, find a set of shapes {Sj} such that  

• the union over the Sj resembles the container image as 

closely as possible; and 

• each Sj is a translated and rotated copy of one of the Ti, 

possibly incorporating a small deformation. 

In order to compute a JIM, we introduce a general energy-based 

framework for mosaicing problems, where a mosaic is defined as 

the tile configuration that minimizes a weighted sum of energy 

terms. By changing the weights in the energy formulation, various 

kinds of mosaics can be generated. Our framework generalizes 

 

Figure 1: The Jigsaw Image Mosaic (JIM) algorithm takes as input an arbitrarily-shaped container image and a set of image tiles 

of arbitrary shape (left) and generates a mosaic (right); it then packs the container as compactly as possible with tiles of similar 

color to the container taken from the input set while optionally deforming them slightly to achieve a more visually-pleasing effect.

 

 



 

 

some of the existing mosaicing techniques previously presented in 

the computer graphics literature such as Photomosaics [Silvers 

and Hawley 1997] and Simulated Decorative Mosaics [Hausner 

2001]. A comparison of the images obtained by the three 

algorithms is presented in Figure 2. As with Photomosaics, our 

algorithm uses tiles containing smaller images. As in Simulated 

Decorative Mosaics, the Jigsaw Image Mosaics maintain 

important edges found in the container image; while the first 

algorithm does so by reorienting the tiles, our approach uses 

oriented tiles of the best-fitting shape as shown, for example, by 

the wedge-shaped tiles used in the sharp corners of the drops in 

Figure 2b and Figure 2c. The two algorithms use a segmentation 

of the original image in order to specify important edges. 

Our framework has three major advantages. First, a user can 

easily control the result image by changing the weights in the 

energy formulation. Second, we can introduce new mosaicing 

generation rules by introducing additional energy terms in the 

energy formulation. Finally, the mosaic generation and tile 

preparation is completely automatic requiring no user 

intervention. 

Since the Jigsaw Image Mosaic problem can be cast as an 

instance of an energy minimization problem, various algorithms 

such as simulated annealing could be employed to find a solution. 

Unfortunately, due to its high dimensional search space, most of 

the standard minimization techniques would demand too many 

resources to be run. This paper also presents a fast minimization 

algorithm tailored to solve the generalized mosaicing problem. 

We believe that the two major contributions of this paper are 

• an energy-based framework for the mosaicing problem which 

generalizes on known algorithms 

• an energy-minimization algorithm that solves the mosaicing 

problem at an acceptable computational cost 

Also, since our framework presents a general solution to ‘soft’ 

packing problems, where small deformations are acceptable, our 

framework can be applied to feature-based texture synthesis and 

to various instances of product manufacturing. Mosaics are just 

one application. 

The rest of this paper is organized as follows: Section 2 

summarizes related work. In Section 3, we describe how to 

automatically prepare the required inputs. Sections 4 and 5 

address the energy minimization framework of the mosaicing 

problem, and the basic algorithm for the framework respectively. 

Section 6 presents optimization techniques on top of the basic 

algorithm. We present our results in Section 7, and close with 

discussion and future work in Section 8. 

2. RELATED WORK 
In the computer graphics literature, the works most closely 

related to our approach are the various mosaicing algorithms that 

can be categorized by the choice of tiles and the restriction on 

their placement. Photomosaics [Finkelstein and Range 1998; 

Silvers and Hawley 1997] are a collection of small images 

arranged in a rectangular grid in such a way that when they are 

viewed together from a distance they suggest a larger image (e.g. 

Figure 2d). For each rectangular block of pixels in the input 

image, the photomosaic algorithm searches a large database of 

tiles to find the one that most closely resembles the original block. 

The algorithm gives impressive results using only small resources, 

but unfortunately it is limited to square tiles on a rectangular grid. 

Simulated Decorative Mosaic [Hausner 2001] approaches the 

problem of aligning square tiles with varying orientations to 

preserve input image edges while maximizing the area covered by 

the colored tiles (e.g. Figure 2e). Our algorithm resembles that 

approach since it tries to maintain edges in the input image while 

maximizing coverage. Unfortunately, since we use tiles of 

different shapes, we cannot directly apply the Simulated 

Decorative Mosaic method for finding low-energy configurations. 

Our technique can compute the same results as these two 

algorithms, although its generality exacts a penalty in speed.  

Kaplan and Salesin [2000] presented a solution to the 

“Escherization" problem that finds a regular tiling using a closed 

figure that is as similar as possible to the original figure. Their 

work resembles our approach in that they slightly distort the 

original tile if necessary, but is different in that they seek regular 

tilings whereas we allow small gaps and overlaps. Haeberli [1990] 

randomly chose the tile positions, found the voronoi diagram of 

these positions, and filled each voronoi region with a color 

sampled from the underlying image. While his approach 

tessellates the main image using tiles of different shapes and 

completely arbitrary placements, the shapes are arbitrary and may 

not fit any of the given input tiles as required in our formulation. 

Another body of work related to our approach is the packing 

problem. The packing problem has been extensively studied in 

operations research and computational geometry with application 

to a broad spectrum of layout problems, such as for cloth, leather 

and glass. Since the packing problem is NP-hard [Milenkovic 

1999], numerous heuristics have been developed: boundary 

matching, database driven layout, or leftmost placement policy 

(See [Dowsland and Dowsland 1995] for an extensive survey). 

Recent work of Milenkovic and his colleagues [1999] combined 

a) Input image

b) JIM tile contours

roughly 400 tiles

from a database of 900 tiles

roughly 400 tiles 

from a database of 1100 photographs

roughly 400 tiles

c) Jigsaw Image Mosaic (JIM) d) Photomosaic e) Simulated Decorative Mosaic

Figure 2: Comparison of different mosaicing algorithms. 



 

 

computational geometry and mathematical programming for 

dense packing of polygons. Their approach applied to marker 

layout problems achieves packing efficiencies comparable to 

those of human experts. Our problem differs from the standard 

packing problem in that our aim is not to achieve maximum-

density packing, but to reach aesthetically pleasing packing. 

Inspired by Arcimboldo, we allow a small user-specified 

deformation of the tiles when necessary, which is not allowed in 

the standard packing problem formulation. 

3. PREPARING INPUTS 
The JIM algorithm takes as input a container image of arbitrary 

shape and a set of tiles of arbitrary shape. The shape of tiles and 

container is represented by a polygon. Since we require a fairly 

high number of tiles, we need to be able to extract the shape of the 

tiles directly from the images themselves. We do so using active 

contours [Kass et al. 1987]. All of the 900 tiles used to generate 

the images in this paper are segmented completely automatically 

from clip art harvested from the Web. Active contours are also 

used to extract the container shape. 

 Hausner [2001] showed the importance of preserving important 

edges in the input image when generating a mosaic. Following his 

approach, we segment the input image to generate a set of disjoint 

arbitrarily-shaped containers. Since we preserve the edge of each 

container, the final composite will preserve the important edges 

on the input image. Figure 2c shows this behavior. Within each 

part of the segmentation, the algorithm runs independently. By 

allowing the user to input arbitrary segmentations, we can also 

introduce edges that are not present in the input image, but are 

important to maintain for the user. 

4. MOSAICING FRAMEWORK 

4.1 Problem formalization 
In order to achieve user controllable and extensible framework, 

we cast the problem of generating a mosaic in an energy 

minimization framework. We define a “tile configuration” as a 

subset of the input tiles with repetition, along with their associated 

transformations (translation, rotation, deformation). We say that a 

tile configuration is a Jigsaw Image Mosaic when it minimizes the 

energy E defined as  

 DDOOGGCC EwEwEwEwE ⋅+⋅+⋅+⋅= . (1) 

The energy is a weighted sum of various terms. Figure 3 

illustrates the behaviors of each of these energy terms in a simple 

example. The color energy term EC penalizes configurations that 

do not maintain the color of the input image. The gap energy term 

EG penalizes configurations that have too much empty space in the 

final image, called gap, while a big overlap between tiles gives 

large overlap energy EO. Finally, the deformation energy ED 

penalizes configurations where tiles are highly deformed.  

Inspired by Arcimboldo, we allow small deformations for each 

tile since we may not find a configuration where gaps or overlaps 

are small enough to achieve a pleasing visual effect. This is more 

likely to happen for smaller tile databases. Since collecting a large 

number of tiles may be a long process, we believe that allowing 

the user to specify the amount of deformation necessary makes the 

algorithm more usable. 

In order to compute a Photomosaic in our formulation, we can 

simply restrict the tile database to rectangular tiles and set the 

weights for gap, overlap and deformation to infinity. To compute 

a Simulated Decorative Mosaic, we restrict the database to square 

tiles with uniform color, where the colors are chosen from the 

palette of the input image, and segment the container to preserve 

edges. We then set the deformation weight to infinity and a very 

high overlap weight (note that Simulated Decorative Mosaics 

results have sometimes very small overlaps [Hausner 2001]) and 

moderately high gap weight. 

We believe that our formulation is fairly intuitive to use, since 

the user can easily adjust the weights in the energy function to 

obtain different results. It is also easily extensible, since we can 

add new energy terms in order to introduce additional rules for 

image generation. 

4.2 Energy terms evaluation 
The color energy EC is estimated by taking the average of the L2 

differences of the colors of the final image and the input container 

at random locations on the surface of the container. We evaluate 

this term for each tile separately to ensure a good sampling of the 

tile area.  

We evaluate gap EG and overlap EO energies using the spring 

energy formulation as originally employed to prevent bodies in 

resting contact from penetrating in rigid body simulations [Moore 

and Wilhelms 1988]. More specifically, each vertex of a tile is 

attached with a spring to the nearest edge of the other tiles or the 

container. If the signed distance d between the vertex and the 

anchor is positive, i.e. there is a gap between them, we add d2/2 to 

EG. On the other hand, if d is negative, i.e. the vertex penetrates 

the nearest edge, we add d2/2 to EO. 

The deformation energy ED is the sum of the deformation 

energies for each tile, which measures the difference in shape 

between the deformed tile and the original one. We evaluate ED in 

a similar way to the active contour model, given by 

      ∑ ∫ ′′′−′′′+′′−′′= =
k
i iiiiD dssTsDsTsDE 1

1

0

22
)()()()(

2

1 βα ,  (2) 

where Ti(s) and Di(s) are the original shape and the deformed 

shape of the i-th tile in the current solution, parameterized by s∈
[0,1]. The first term and the second term inside the integral 

measure the difference between the original tile and the deformed 

tile with respect to the stretching and flexing respectively, where α 

and β are sensitivity parameters. Among numerous shape metrics 

such as [Arkin et al. 1991], we choose the above one, since it 

provides good results in our case and it is easily integrated in our 

algorithm. 
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Figure 3: Illustration of mosaicing energy terms. 



 

 

5. BASIC MOSAICING ALGORITHM 

5.1 Overview 
To efficiently compute a Jigsaw Image Mosaic, we propose an 

effective algorithm organized in three phases shown in Figure 4. 

In the first phase, we choose and roughly place the tiles, ignoring 

deformation. In the second phase, we refine the placement of each 

tile and deform them if necessary. Finally in the third phase, we 

assemble the final mosaic by placing each tile in its position and 

warping each image to its final deformed shape using the image 

warping technique presented in [Arad et al. 1994]. Intuitively, this 

three-phase approach works in our case because the deformations 

we allow are always much smaller than the smallest tile in the 

database.  

5.2 Packing 
The first phase of the algorithm finds an approximately good 

configuration ignoring the deformation term, i.e. the configuration 

that minimizes the gap and overlaps in the image while 

maintaining the color, as measured by 

 OOGGCC EwEwEwE ⋅+⋅+⋅= . (3) 

To do so, we use a best first search [Russell and Norvig 1994]. 

Our algorithm places one tile at a time. For each new tile to place, 

we find a roughly suitable position in the container. We then 

search the database to determine which tile we should use, and 

determine the exact position and orientation of the tile in such a 

way that the tile is maximally aligned to the boundary of 

container, i.e., E in Equation 3 is minimized. This is a typical 

registration problem except that we register the tile to a part of the 

container, rather than the container itself. We will explain in more 

detail in Section 6 how to efficiently find a suitable spot using a 

centroidal voronoi diagram (CVD) [Lloyd 1982] and how to 

search the database using geometric hashing.  

After we place a tile, a new container is computed by 

subtracting the tile shape from the original container, as shown in 

Figure 5. The new container is used to place the next tile.  

We keep placing tiles until either the tiles completely fill out the 

container or we cannot find a suitable tile to fill a container. If this 

happens, we backtrack to the configuration that has minimal 

energy so far. Figure 6 illustrates the algorithm sequence. 

5.3 Refinement 
Even after finding the best possible tile arrangement, too much 

gap or overlap may remain and be aesthetically displeasing, 

especially when using a small number of tiles. Sometimes we can 

obtain a better looking result by slightly deforming the tiles to 

reduce gaps and overlaps significantly, as long as the deformation 

does not alter the original tile too much. While this generally 

produces better looking images, the user has the option to define 

the amount or skip deformation. 

The refinement phase of our approach solves this issue by 

deforming the tiles obtained from the packing stage, while 

balancing between maintaining the original tile shape as closely as 

possible and minimizing the gap, overlap and color differences 

(i.e. minimizing the full energy equation). We compute the final 

configuration using a set of active contours [Kass et al. 1987] 

interacting with each other. Intuitively, each vertex of a contour is 

subject to forces that tend to maintain the contour’s original shape 

and to repulse two contours if they penetrate, or attract them if 

there is gap between them. The tile configuration that minimizes 

E in Equation 1 must satisfy the following euler equation: 

        0=∇⋅+∇⋅+∇⋅+∇⋅ DDOOGGCC EwEwEwEw .     (4) 

∇EC is close to zero for our case since the deformations are much 

smaller than the smallest tile. For each vertex, ∇EG=2d⋅n if the 

vertex is in a gap (0 otherwise), where n is the unit vector 

perpendicular to the nearest edge, d is the signed distance to the 

nearest edge. ∇EO=2d⋅n if the vertex penetrates another tile (0 

otherwise). ∇EO makes the tile shrink if it is too big while ∇EG 

expands it if too small. The deformation term can be computed by 

differentiating Equation 2 for each vertex: 

 ( ) ( ))()()()( sTsDsTsDE iiiiD ′′′−′′′+′′−′′=∇ βα . (5) 
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Figure 4: Jigsaw Image Mosaic algorithm phases. 
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Figure 5: Container update. 



 

 

Notice that Equation 5 is exactly the same energy formulation 

used for standard snakes but the ‘relaxed’ state is defined as the 

original tile shape rather than a simple straight line. Also, external 

forces are determined not by an image (as in the standard snake), 

but by gap and overlap between tiles and with the container. The 

solution to the above equation can still be found by solving the 

discrete system iteratively [Amini 1990]. Figure 7 shows the 

evolution from the original tiles to the deformed ones. 

6. ALGORITHM OPTIMIZATIONS 
In the previous section, we presented the basic algorithm for tile 

placement. A naïve implementation would be too resource 

demanding so we present several optimization techniques in this 

section. The time complexity of the algorithm is roughly given by 

 ( )( )bNVNVO ainertileInContcontainertiletile +⋅⋅⋅⋅ 1 . (6) 

where Vtile is the number of vertices per tile, Ntile is the number of 

tiles in the database, Vcontainer is the number of vertices in 

container, NtileInContainer is the number of tiles in the container, and 

b is the overhead due to branching in the search tree 

(backtracking). In the following subsections we will introduce 

optimization for each of the factors in Equation 6. 

6.1 Placing a tile 
When placing a tile in a container of arbitrary shape, it would be 

prohibitive to try every possible location. As we mentioned 

before, we update the container after placing every tile. In order to 

reduce the branching overhead b, we try those locations that are 

most likely to make the container shape easier to fill after 

updating. Unfortunately this depends on which tile we place. 

Nevertheless, we can guess how the container would look after we 

put an “average” tile. A container will be easier to fill if it does 

not have a protrusion and is as convex as possible.  

Before placing a new tile, we construct a CVD, where each site 

has an area roughly equal to the average size of tiles (a similar 

technique has been previously used in [Hausner 2001]). We then 

select a random site among the ones that have the least number of 

neighbors, thus making the container as easy as possible to fill. 

Figure 8 shows the selection process. Notice that placing one tile 

at a time allows us to handle tiles with different sizes. Figure 2c, 

for instance, contains tiles that differ in size by 7 times. 

6.2 Branch-and-bound with look-ahead 
Every time we cannot find a suitable tile to fill a container, we 

need to backtrack to the configuration that has minimal energy so 

far. To reduce this branching overhead b, we use a look-ahead 

technique [Russell and Norvig 1994]. When placing a new tile, we 

penalize tiles that will make it harder to fill the container in the 

next iteration. To do this we add a term to the energy formulation 

that takes into account how the container will look after tile 

placement. Thus, the energy in Equation 3 becomes: 

 LALACCOOGG EwEwEwEwE ⋅+⋅+⋅+⋅= . (7) 

The container shape term advocates for containers with a small 

area and short circumference, or 

 ( ) 21 lengthwareawE AALA ⋅−+⋅= , (8) 

where area is the container’s area, length is its boundary length, 

and wA controls the weight of area in relation to the weight of 

length. Adding the container shape term in the energy evaluation 

prevents the algorithm from placing a tile that fits well but that 

leads to a harder-to-fill updated container.  

6.3 Container cleanup 
After we place a tile in a container, we update the container by 

subtracting the tile from the container. However, the new 

container can be very jagged, or even have disjoint regions. If 

these fragments are shallower than the shallowest tile, we know it 

can never be filled with any existing tile. In that case, it is safe to 

separate those fragments and consider them as a gap. This cleanup 

process reduces the running time by cutting the number of vertices 

in the container Vcontainer. It also reduces the branching overhead b, 

since it prevents the algorithm from wasting time attempting to fill 

unpromising fragments of the container.    

6.4 Geometric hashing 
Given a container and a location in the container, we need to try 

each tile in the database and their positions and orientations. Since 

the number of tiles is fairly high, a linear search would be 

prohibitive. To this end, we employ geometric hashing, a 

technique originally developed in computer vision for matching 

geometric features against a database of such features [Wolfson 

and Rigoutsos 97]. We use geometric hashing to select a few tiles 

that will suit to a particular position in the container. We then 

evaluate the energy term for them and pick the best fitting one. 

Intuitively we use geometric hashing as a pruning technique to 

reject bad tiles.  

In order to use geometric hashing, we will create a grid of 

squares in the plane in a preprocessing phase. Each square 

corresponds to a hash table entry. If a shape boundary crosses a 

square, we will record the tile ID and its orientation as an entry in 

the list attached to that hash table entry. In the preprocessing 

phase we place all tiles with all possible discrete orientations in 

the grid to build the hash table. Every time we need to place a new 

tile in a specific position in the container during the packing stage 

we register the container boundary segment to the hash table and 

access the hash table entries of the squares that the container 

passes through; for every entry found there, we cast a vote for the 

(tile ID, tile orientation) pair. We proceed to determine those 

entries that received more than a certain number of votes. Each 

such entry corresponds to a potential candidate. See Figure 9 for 

an illustration. This hashing technique reduces the time 

complexity of the algorithm from O(Ntile) to O(hgrid), where hgrid is 

the grid granularity. 
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Figure 8: Selecting a tile position by CVD. 



 

 

7. RESULTS 
We have used our algorithm to produce a number of Jigsaw 

Image Mosaics using various container images. The images 

contained in this paper were generated from a database of 900 

tiles, some of which are from the Columbia Coil-100 dataset and 

Coolarchive.com. Size of the tiles varies by up to 8 times. It took 

about 10 minutes to 2 hours to generate the results.  

Figures 1 and 2 show that our algorithm faithfully reproduces 

colors and boundaries of letters and logos. Figure 10 shows three 

variations of the “J” mosaic in Figure 10a obtained by changing 

the parameters in the energy formulation. Figure 10b shows the 

result for a very low color weight. Figure 10c was computed 

allowing a large overlap between tiles. Figure 10d is a picture 

generated with tiles in different scales. These variations show how 

simply changing the weights in the energy function can generate 

different looking images that an artist can easily tweak.  

Figure 11 shows the result for a photograph of a panda. Given 

the container image and its segmentation, our algorithm 

reproduces the container image in a visually pleasing way. As in 

[Hausner 2001], we used the different scales of tiles to faithfully 

reproduce fine details of the containers, such as the mouth of the 

panda. Figure 12 shows a different example where the user draws 

additional edges to emphasize features of the picture, in this case 

the feathers of the parrot. As a result, our algorithm clearly 

reproduces the user-supplied features. Figure 13 shows an artistic 

picture of a kabuki, generated by preserving the edges of the 

original picture, but assigning different colors associated to each 

segment and a texture to the background.  

8. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a general energy-based 

framework for mosaicing problems that generalizes some of the 

existing algorithms. We also introduce a new kind of mosaic, the 

Jigsaw Image Mosaic (JIM), where tiles and container are 

arbitrarily-shaped images. Finally we presented an effective 

algorithm to quickly compute a JIM. Our method produces good 

results, and is general enough to be applied to other ‘soft’ packing 

problems such as texture synthesis and product manufacturing.  

This research suggests a number of directions for further study. 

Our current approach uses a search algorithm for packing. Even 

though it is effective because of the elaborate use of look-ahead 

technique and other optimizations, it is difficult to formally prove 

bounds on the energy of the final configuration. Approaches based 

on mathematical programming or computational geometry as in 

[Milenkovic and Daniels 1999] could be fruitful. Our framework 

could also be extended to 3D mosaic, where the container is a 3D 

object and the tiles can be 2D to fill out the surface of the 

container, or 3D to fill out the container itself. 
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Figure 10: Mosaics for various parameters. 



 

 

 

Figure 11: Panda mosaic with 1367 tiles. Inset: segmentation. 

Different scales of tiles are used to faithfully reproduce the fine details of the mouth of the panda. 

 

Figure 12: Parrot mosaic with 1812 tiles. Inset: segmentation. 

Additional edges are introduced to reproduce the parrot feathers and add leaves. 

 



 

 

 

 

Figure 13: Kabuki mosaic with 4200 tiles. Inset: segmentation. 

Colors are arbitrarily assigned for each segment. 


