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Abstract

This paper introduces new types of square-piece jigsaw

puzzles: those for which the orientation of each jigsaw

piece is unknown. We propose a tree-based reassembly that

greedily merges components while respecting the geomet-

ric constraints of the puzzle problem. The algorithm has

state-of-the-art performance for puzzle assembly, whether

or not the orientation of the pieces is known. Our algorithm

makes fewer assumptions than past work, and success is

shown even when pieces from multiple puzzles are mixed

together. For solving puzzles where jigsaw piece location is

known but orientation is unknown, we propose a pairwise

MRF where each node represents a jigsaw piece’s orienta-

tion. Other contributions of the paper include an improved

measure (MGC) for quantifying the compatibility of poten-

tial jigsaw piece matches based on expecting smoothness in

gradient distributions across boundaries.

1. Introduction

For hundreds of years, people have been entertained by

the challenge of assembling the pieces of a jigsaw puzzle

into a complete picture. One imagines that the same strate-

gies employed by human solvers today were used to solve

those first puzzles produced by British mapmaker John

Spilsbury in the 18th century, relying on the puzzle piece

shapes and textures. Certainly, this combinatorial challenge

is one that inspires developments in computer science. The

computational problem of jigsaw puzzle assembly was first

introduced nearly fifty years ago in a fundamental work by

Freeman and Gardner [7]. As with a physical jigsaw puz-

zle, the object of the computational problem is to adjoin a

number of smaller jigsaw pieces to form a complete picture.

There are two essential components for computationally

solving a jigsaw puzzle, a measure of jigsaw piece compati-

bility for adjoining a pair of jigsaw pieces and a strategy for

puzzle assembly. In this paper, we propose advances in both

categories: this paper introduces a new measure for quanti-

fying the compatibility of adjacent jigsaw pieces, and a new

(a) 3456 Jigsaw Pieces

(b) 9600 Jigsaw Pieces

Figure 1: In this paper, we introduce square-piece puzzles where the ori-

entation of the jigsaw pieces is unknown. We solve puzzles using a con-

strained minimal spanning tree algorithm. We often achieve perfect re-

assembly of very large puzzles; the assembled puzzle in (a) has 3456 pieces

(right) from its jigsaw pieces (left), and the puzzle in (b) has 9600 jigsaw

pieces. We believe these are the largest automatically solved puzzles to

date, and certainly the largest with pieces of unknown orientation.

constrained tree-based assembly.

As noted by [9], the intriguing nature of the puzzle as-

sembly problem is enough to justify research on the topic.

In addition to being an interesting problem in its own right,

computational jigsaw assembly has applications in reassem-

bling archaeological artifacts [10] and recovering shredded

documents or photographs [2, 17, 11].

We follow the lead of recent work [1, 3, 24, 19] and con-

sider jigsaw puzzles with square pieces. This allows us to

focus our efforts exclusively on image content. Our con-

tributions to the state-of-the-art are as follows: First, we

introduce two new types of puzzles having pieces with un-

known orientation. To solve puzzles with jigsaw pieces

of unknown location and orientation, we propose a greedy

tree-based algorithm. We relax the assumption that the puz-

zle dimensions must be known at the time the puzzle is as-

sembled. To solve puzzles with jigsaw pieces of known lo-



cation and unknown orientation, we propose a graph model

solution. Second, we define a Mahalanobis-inspired jigsaw

piece compatibility measure and show that it improves over

others, and allows us to tackle more difficult puzzles.

2. Related Work

Puzzle assembly has a rich literature of exploration. Fol-

lowing Freeman et al. [7], several other early works explore

aspects of using jigsaw piece shape information and con-

tour matching to find likely matching pieces. For example,

in [22], the well-known human strategy of solving the jig-

saw puzzle boundary first is employed by identifying edge

pieces with shape information, and posing edge assembly

as a traveling salesman problem. With square-piece puz-

zles, [3] proposes an MRF, but enforcing the global con-

straints (e.g. that each piece should appear once), proves

difficult. Recently, Pomeranz et al. [19] showed improved

performance with a greedy algorithm that segments a partial

solution (by growing a single component) and then shifts

assembled portions, looking for improved fits. Inevitably,

tough decisions (during component growing) are made ear-

lier than absolutely necessary. Both of the aforementioned

assume oriented jigsaw pieces, and both assume that the di-

mensions of the assembled puzzle are known.

Demaine and Demaine [6] show that when there is un-

certainty in the jigsaw piece compatibility, puzzle assem-

bly is an NP-hard problem. Therefore, we cannot define a

global energy function that can be efficiently optimized. In

other words, there are too many ways in which the jigsaw

pieces could be assembled to evaluate them all. Instead,

researchers have proposed a variety of assembly strategies,

including greedy selection of puzzle pieces, edge identifica-

tion and assembly, and Markov Random Fields.

Kosiba et al. [13] was the first to use both jigsaw piece

shape and image information by encouraging adjacent jig-

saw pieces to have similar colors by computing color com-

patibility along the matching contour. Chung et al. follow,

penalizing squared color disagreement across the boundary,

and later in [3, 24] this compatibility (in LAB color space)

is confirmed as a good choice from among a set of options.

Additional works that consider color [1, 16, 18, 20, 25]

use subtle variations of this dissimilarity measure. Excep-

tions include [1], where the abutting profiles of two jigsaw

pieces are matched with dynamic time warping, [20], where

inpainting [5] is used to hallucinate the content across a

boundary, and [19], where a compatibility measure based

on predicting the values across the boundary is proposed.

We summarize a selection of works related to puzzle

assembly in Table 1 according to whether they use shape

features or color features, and the number of pieces in the

puzzle. Further, we note that several other papers on jig-

saw assembly have thorough reviews of the related work,

including [3, 9, 25]. We believe our paper is the first to de-

Author Year Color Shape Square Puzzle

Pieces Size

Freeman [7] 1964 X 9

Wolfson [22] 1988 X 104

Webster [21] 1991 X 9

Kosiba [13] 1994 X X 54

Chung [4] 1998 X X 54

Kong [12] 2001 X 32

Goldberg [9] 2002 X 204

Yao [25] 2003 X X 12

Makridis [16] 2006 X X 7

Sağiroğlu [20] 2006 X X 21

Nielsen [18] 2008 X X 320

Alajlan [1] 2009 X X 100

Cho [3] 2010 X X 432

Yang [24] 2011 X X 108

Pomeranz [19] 2011 X X 3300

This work 2012 X X 9600

Table 1: A selection of works on solving jigsaw puzzles, and whether

image-based features or shape features are considered. Also, the size of

the largest reconstructed puzzle (number of pieces) is given.

scribe algorithms for solving jigsaws with square pieces of

unknown orientation.

3. Square-Piece Jigsaw Puzzles

In several recent works, puzzles with square pieces have

recently been explored [1, 3, 19, 24]. In the past, there have

been several implicit assumptions for square-piece puzzles.

First, it is assumed that the puzzle dimensions are known.

Anchor pieces are optional in [3] and a single anchor is re-

quired in [24]. The past work assumes that the orientation of

each jigsaw piece is known, and only the location of each

piece in the completed puzzle is unknown. Consequently,

a pair of puzzle pieces can only fit together in four differ-

ent ways. We call this type of square-piece jigsaw puzzle a

“Type 1” puzzle.

In the following sections, we introduce two types of

square-piece puzzles where the pieces have unknown ori-

entation. Examples of puzzles of all three types are shown

in Figure 6.

3.1. Type 2: Unknown Rotation and Location

In this twist on the square-piece jigsaw puzzle, neither

the location, nor the orientation, of any piece is known. This

increases the complexity of the problem in several ways.

First, a pair of pieces can fit together in any of 16 configura-

tions (the second piece can be above, to the left or right of,

or beneath the first piece, and the second jigsaw piece can

have any of four orientations.) This is not a trivial exten-

sion; the number of possible solutions versus Type 1 is mul-

tiplied by a factor of 4K in a K-piece puzzle. Second, the

assembly problem is more complicated. An algorithm must

consider both rotation and translation of pieces or compo-

nents. Third, the puzzle dimensions of a rectangular puzzle

are less useful because it is not known whether the com-

pleted puzzle is in portrait or landscape orientation (absent



some additional image-based inference). In Section 4.2, we

introduce our tree-based reassembly algorithm that is used

to solve square-piece puzzles of Types 1 and 2.

3.2. Type 3: Unknown Rotation, Known Location

In this puzzle, the global geometry and position of every

jigsaw piece is known. Only the orientation of each piece

is unknown. There are 4K possible solutions. The problem

amounts to determining which, of the four possible orienta-

tions for each piece, is the correct one. While this problem

is the least computationally complex of the three, it leads to

an elegant graph model solution and is included for com-

pleteness.

4. Solving Puzzles

There are two essential components for computationally

solving a jigsaw puzzle, a measure of jigsaw piece com-

patibility for adjoining a pair of jigsaw pieces and a strat-

egy for puzzle assembly. We propose contributions for each

component. In Section 4.1, we propose a new jigsaw piece

compatibility score called MGC. In Section 4.2 we propose

a tree-based reassembly algorithm for solving puzzles of

Types 1 and 2, and finally in Section 4.3 an MRF-based

framework for solving Type 3 puzzles.

4.1. Measuring Pairwise Compatibility

In a correctly solved jigsaw puzzle, adjoining jigsaw

pieces tend to share similar colors along their common

edge. This observation motivates the dissimilarity measures

in previous work that penalize intensity differences along

the adjacent pixel boundaries.

While this compatibility measure largely accomplishes

the goal of image content consistency across jigsaw pieces,

it can fail in instances where gradients or edges occur in the

neighborhood of jigsaw piece edges.

4.1.1 Mahalanobis Gradient Compatibility

We propose a measure called Mahalanobis Gradient Com-

patibility (MGC) that describes the local gradients near the

boundary of a puzzle piece by making two improvements

over the standard compatibility measure. First, we propose

to penalize changes in intensity gradients, rather than penal-

izing changes to intensity. In other words, if a jigsaw piece

has a gradient near its edge, we expect that the adjoining

puzzle piece will continue the gradient. Second, rather than

penalizing all deviations from a constant gradient uniformly

(i.e. with Euclidean distance), we learn the covariance be-

tween the color channels and use the Mahalanobis distance.

In essence, we want the boundary of two adjoining jigsaw

pieces to have a similar gradient distribution to the gradient

(within a jigsaw piece) on either side of the boundary.

When computing the compatibility DLR(xi, xj) of a jig-

saw piece xj on the right side of piece xi, we find the distri-

bution of the color gradients near the right edge of piece xi.

We define an array of gradients GiL with 3 columns (one

each for the red, green, and blue color channels), and P

rows (where P is the pixel dimension of the jigsaw piece).

GiL describes the intensity changes along the right size of

the jigsaw piece xi (since it will be on the left of the pair).

Entries in GiL are given as:

GiL(p, c) = xi(p, P, c)− xi(p, P − 1, c) (1)

The mean distribution of those gradients on the right side

of jigsaw piece xi is found as:

µiL(c) =
1

P

P∑

p=1

GiL(p, c) (2)

For each color channel, µiR is the mean difference between

the final two columns of xi. Similarly, the 3×3 covariance

SiL estimated from GiL captures the relationship of the gra-

dients near the edge of the jigsaw piece between the color

channels. To avoid numerical problems related to the inver-

sion of S and the inherent issues of quantized pixel values,

we include nine “dummy gradients” in the calculations (e.g.

[0 0 1],[1 1 1]).

At this point, we define the compatibility measure from

jigsaw piece xi to xj as follows:

DLR(xi, xj) =
P∑

p=1

(GijLR(p)− µiL)S
−1
iL (GijLR(p)− µiL)

T

(3)

where:

GijLR(p) is the gradient from the right side of piece xi

to the left side of piece xj , at row position p. Explicitly,

GijLR(p, c) = xj(p, 1, c)− xi(p, P, c) (4)

The dissimilarity DLR(xi, xj) is not symmetric because

the junction between pieces xi and xj is evaluated based on

the distributions estimated from the xi side of the bound-

ary. Modified Equations, in the spirit of (1) to (4), are used

to define DRL(xj , xi). Finally, the symmetric compatibil-

ity measure CLR(xi, xj) for placing xi and xj as left-right

neighbors is:

CLR(xi, xj) = DLR(xi, xj) +DRL(xj , xi) (5)

These equations are appropriately modified for analyz-

ing each of the 16 configurations of two adjacent jigsaw

pieces with rotation. In practice, the dissimilarities be-

tween all pairs of jigsaw pieces for all pairwise configu-

rations are computed. Next, the ratio is taken between it



(a) (b) RGB Putative Matches (c) MGC Putative Matches

(d) (e) RGB Putative Matches (f) MGC Putative Matches

Figure 2: Our MGC compatibility measure has better performance than simply summing color differences across the boundary (RGB). For each query

jigsaw piece in the left column, the compatibility measure is used to examine all other jigsaw pieces in the puzzle for finding the match to the right side of

the query piece. The top four matches with RGB SSD are shown in order in columns 2-5, and columns 6-9 show the top four results using MGC. Putative

matches are shown adjacent to the query pieces to allow the reader to judge the match. Correct matches are outlined in green. Correct matches tend to have

lower rank when MGC is used. Specifically, for matching (a), the RGB SSD chooses as its top match a jigsaw piece with almost the same boundary pixels,

but breaks the natural curves that are intersecting the right boundary. On the other hand, MGC learns the distribution of the gradients near the right edge of

(a), and the correct match (c, left) is the top ranked piece.

P=14 P=28

K= K= K= K= K= K=

221 432 1064 221 432 1064

RGB SSD 0.682 0.649 0.621 0.828 0.790 0.863

LAB SSD 0.676 0.634 0.606 0.826 0.788 0.859

MGC 0.816 0.785 0.771 0.919 0.902 0.942

Table 2: Similarity performance for Type 1 puzzles: Across a variety of

puzzle sizes (K) and jigsaw piece sizes (P), the correct jigsaw matches

are found for larger portion of jigsaw pieces with MGC than with other

measures of jigsaw piece compatibility. Note that RGB and LAB SSD

have similar performance.

P=14 P=28

K= K= K= K= K= K=

221 432 1064 221 432 1064

RGB SSD 0.596 0.569 0.542 0.782 0.740 0.832

LAB SSD 0.591 0.554 0.525 0.780 0.738 0.827

MGC 0.757 0.712 0.703 0.902 0.879 0.933

Table 3: Similarity performance for Type 2 puzzles with pieces of un-

known orientation: Across a variety of puzzle sizes (K) and jigsaw piece

sizes (P), the correct jigsaw matches are found for larger portion of jigsaw

pieces with MGC than with other measures of jigsaw piece compatibility.

and the second-smallest dissimilarity measure for that jig-

saw piece’s edge (akin to SIFT feature matching [15]). The

logic behind this ratio is that a confident true match is one

that is much better than any alternative. An unsure match

tends to have other jigsaw pieces with almost the same com-

patibility score and ratio value near 1.0. The confidences

are stored in a 3D array S(xi, xj , r) of size K × K × 16
where r indicates the pairwise configuration. The number

of counter-clockwise turns for xj is given as ⌊ r−1
4 ⌋ + 1,

and rc = mod (r − 1, 4) + 1 indicates whether xj is

{above, to the right, below, to the left} of xi.

4.1.2 Evaluation in Puzzle Assembly

In the context of assembling a jigsaw puzzle, the impor-

tant question is whether a proposed measure can be used

to find the correct matching jigsaw piece out of all the po-

tential matches. Over all 20 images from [3], we compute

the fraction of pieces for which the jigsaw piece having the

best compatibility score is the correct match. We compare

the proposed compatibility measure (MGC), as well as pre-

+ =

(a) Merge causes collision

+ =

(b) Successful merge

Figure 3: Example of collisions when merging together two forests of jig-

saw pieces in the “constrained tree stage” by making the red and blue edges

of the respective forests adjacent. In (a), a collision occurs where two jig-

saw pieces overlap (red X), so merging the two forests is abandoned. In

(b), the merge is successful.

viously proposed dissimilarities RGB and LAB. For visual

inspection, ranked potential matches are shown in Figure 2.

Results are reported in Tables 2 and 3 for different num-

bers of puzzle pieces in the puzzle (K = {221, 432, 1064}),

and for different size pieces (either P = {14, 28}. In all

cases, the proposed MGC measure outperforms the others

by a large margin. For example, for 79.0% of the jigsaw

pieces with K =432 and P=28 pixels, RGB SSD retrieves

the correctly matching jigsaw piece. With MGC, that figure

increases to 90.2%, reducing the error rate by over 50%.

The gap in performance between MGC and the other com-

patibility measures is greater when the resolution of each

jigsaw piece is smaller. On 432 piece puzzles, our MGC

measure achieves 90.2% and surpasses the predictive dis-

similarity of [19] (86% accuracy) and the LAB dissimilarity

used by [3] (79%). This is a significant improvement, with

a 29% reduction in errors over [19].

4.2. Tree­Based Reassembly for Types 1 and 2

In this section, we introduce our greedy assembly al-

gorithm for square-piece puzzles of unknown orientation

(Types 1 and 2). The algorithm is inspired by Kruskal’s

Algorithm [14] for finding a minimal spanning tree (MST)

of a graph G = (VG, EG).

The puzzle assembly problem emits a graph where

each jigsaw piece is a vertex, and edge weights (from

S(xi, xj , r)) correspond to the compatibilities (i.e. match-

ing costs) between pairs of pieces. Each graph edge also has

an associated geometric configuration r between the pair of



(a) 1 edge (b) 34 edges (c) 81 edges (d) 92 edges

(e) 156 edges (f) 174 edges (g) Assembled Puzzle (h) Spanning Tree

Figure 4: Puzzle assembly begins with each jigsaw piece as its own forest. Forests are merged (by combining and rotating, if necessary) to create assembled

subclusters according to the compatibility score that we introduce (MGC), until the puzzle is assembled (a)-(g). The spanning tree in (h) shows the final

representation of the solution as well as the order in which edges were added, from early (magenta) to later (yellow). This example has 192 jigsaw pieces.

jigsaw pieces. The MST of this graph would include every

jigsaw piece, and certainly the MST is the cheapest possible

configuration that could be used to assemble the pieces into

a single connected component. However, there is a prob-

lem. Nothing prevents the MST from being a graph that

results in an assembled puzzle that overlaps onto itself (e.g.

if edges of the MST indicate that two different pieces should

each be positioned to the right of a third piece). Therefore,

we desire the MST that is constrained to meet our geometric

requirement that the assembled puzzle should be flat (pieces

should not overlap).

Efficient methods for finding the MST have been discov-

ered, but virtually any constraint to the problem results in a

NP-hard variant. Specifically, constraining the degree of

vertexes in the MST results in an NP-hard problem [8]. The

geometric requirements above at least constrain the prob-

lem by that much, as the flat assembly requires that no ver-

tex have degree greater than four (in addition to the tighter

constraints on edge and corner pieces). Therefore, our MST

problem with geometric constraints is NP-hard as well, and

we propose a heuristic based on Kruskal’s algorithm.

As a review, Kruskal’s algorithm for finding the MST

begins by considering each vertex in V as a separate forest

(i.e. a forest is a vertex subset). From the set E of edges, the

minimum weight edge is found. If the vertexes associated

with that edge belong to separate forests, they are joined

into a single forest. Otherwise (i.e. the edge forms a loop in

one forest), the edge is discarded. The algorithm terminates

when all vertexes belong to the same forest, and the edge

set of the MST is the collection of non-discarded edges.

Our tree-based reassembly algorithm has three stages:

1. The constrained tree stage: In this stage, we perform a

constrained version of Kruskal’s algorithm to find a tree in

E that constructs a flat puzzle assembly. Each jigsaw piece

begins as its own forest in upright (non-rotated) orientation,

and forests record the relative spatial locations of the mem-

ber vertexes (jigsaw pieces) as well as the absolute rotation

to apply to each jigsaw piece. Entries of E are examined,

and the lowest cost edge emin is found and removed from

the set of remaining edges. If the vertexes of emin belong to

the same forest, emin is discarded because otherwise a loop

would be formed. If emin passes that test, the forests joined

by emin are merged according to the geometric relationship

associated r with emin. Merging the forests include updat-

ing the absolute rotations for each jigsaw piece. If, in merg-

ing the forests, two jigsaw pieces occupy the same position,

then a collision has occurred and emin is discarded without

merging the forests (see Figure 3). Otherwise, emin is added

to the set of edges in the tree. The procedure is described

by Figure 4, which shows a jigsaw puzzle in various stages

of assembly.

2. Trimming: Occasionally, the tree resulting from stage

1 does not fit neatly into a rectangular frame. If the dimen-

sions (number of jigsaw pieces on each edge) of the puz-

zle are known, then the assembled tree is trimmed. Trim-

ming is performed by finding the position of the frame that

trims off the fewest pieces. Trimming results in a single

assembled forest (those pieces within the frame) and the

trimmed pieces (which are returned to the set of candidate

piece forests). When orientation is unknown, the trimming

procedure must consider both orientations of the frame.

3. Filling: After trimming, the puzzle frame can have un-

occupied holes. Holes are filled by order of the number of

occupied adjacent neighbors. For each hole, the candidate

piece with a given rotation is selection that has the minimum

total dissimilarity score across all neighbors. We enforce

the requirement that pieces can only appear once in the as-

sembled puzzle; so if the correct match for a given hole is

elsewhere, then all available choices to fill a hole may be

poor. Figure 5 shows an example result of the trimming and

filling steps.



(a) Assembled Puzzle Tree (b) After Trimming (c) After Filling

Figure 5: Our constrained tree stage does not enforce a specific shape or dimensions to an assembled puzzle (a), so pieces (especially when clipped blocks

are present) can extend beyond the bounds of the image. By trimming the assembled puzzle to known dimensions (b) and filling (c) the reconstructed puzzle

can often be improved. This puzzle has 1176 pieces of unknown orientation.

4.3. An MRF for Solving Type 3 Puzzles

For puzzles with in-place rotated pieces, the task is to

rotate each jigsaw piece to its original orientation. A natural

function to minimize is the total sum of the cost across the

boundaries of any two pieces. Let Xi represent one of the

four possible orientations of the ith jigsaw piece, and X be

the set of all Xi. Thus, we seek to minimize:

E(X) =
∑

(Xi,Xj)∈N

Φ(Xi, Xj) (6)

over the possible labels of Xi, where N indicates the set of

sets of neighbors in the puzzle. This equation is a pairwise

Markov Random Field. The pairwise cost term Φ(Xi, Xj)
is the cost incurred when two adjacent pieces have a given

orientation. This term has 16 elements, populated by the

entries of S(xi, xj , r) with each of the 16 possible pairwise

configurations r. Interestingly, there is no unary term in

the model because we have no way of predicting the orien-

tation from a small image block alone. Also, the model

is non-submodular because we there is no reason to be-

lieve that neighboring blocks should be mis-orientated in

the same way. Consequently, finding the global minimum is

intractable, so we use approximate inference (TRW-S [23])

to find a good labeling for the nodes.

5. Experiments

We apply our puzzle assembly algorithms to the set of

20 images from [3]. Several aspects of the problem are ex-

plored. We vary the number of pieces in the puzzle, includ-

ing the sizes of 221, 432 from [3]. We also explore a larger

puzzle with 1064 pieces. Also, we vary the size of each

jigsaw piece from the 28×28 pixels from [3], and a more

challenging 14×14 pixels. We stress that these 20 images

were not used at all in the development of the algorithm.

Computational cost of MGC scales with the square of the

number of pieces. Solving a 432 piece Type 2 puzzle re-

quires about 100 seconds on a modern PC versus about 40

seconds when RGB SSD is used. On Type 1 puzzles with

432 pieces, we compare our results with Cho et al. [3] and

Pomeranz et al. [19].

Direct Neighbor Comp. Perfect

Cho et al. [3] 0.10 0.55 - 0

Pomeranz et al. [19] 0.94 0.95 - 13

Tree-based + LAB SSD 0.814 0.892 0.853 8

Tree-based + MGC 0.953 0.951 0.953 12

Table 4: Performance comparison for Type 1 puzzle assembly (oriented

jigsaw pieces) for puzzles with 432 pieces.

Overall, we find that our jigsaw piece compatibility score

provides a significant improvement in puzzle assembly per-

formance, and occasionally, perfect reconstruction of jig-

saw puzzles is achieved. We evaluate an assembled puzzle

with the following measures, the first two from [3]:

Direct comparison: measures the fraction of pieces in the

assembled puzzle that are in the correct absolute position.

Neighbor comparison: measures the fraction of pairwise

piece adjacencies that are correct. For a jigsaw puzzle with

m×n jigsaw pieces, there are a total of 2mn−m−n pos-

sible adjacencies.

Largest Component: measures the fraction of jigsaw

pieces in the largest connected component of jigsaw pieces

that have correct pairwise adjacencies with other jigsaw

pieces in the component. Essentially, this measures the size

of the largest correct portion of the assembled jigsaw, with-

out regard to its position in the assembled puzzle.

Perfect Reconstruction: a binary indication of whether ev-

ery piece of the assembled puzzle is in the correct position

with correct rotation.

Figure 6 shows the visual results and Tables 4 to 6 report

reassembly accuracies for various experiments.

Type 1 Puzzles: Table 4 reports our results for solving

the 432 jigsaw piece puzzle. We exactly solve 12 of the 20

puzzles, and have high accuracy (95.3%) under direct com-

parison. Our performance is at least comparable to the state

of the art ([19]). The effectiveness of the MGC dissimilar-

ity measure is shown in two ways. First, Table 4 shows that

the performance of our tree-based assembly is improved in

all categories when MGC is used versus the sum-of-squared

differences in LAB (Table 5 shows a similar result for Type

2 puzzles). Second, we use the method of [19], substituting

our MGC measure for their predictive compatibility with no

other changes. We used 10 repetitions and selected the rep-



(a) Type 1 Puzzle (b) Type 2 Puzzle (c) Type 3 Puzzle (d) Type 1 Puzzle (e) Type 2 Puzzle (f) Type 3 Puzzle

(g) Tree-Based Solution (h) Tree-Based Solution (i) MFR Solution (j) Tree-Based Solution (k) Tree-Based Solution (l) MRF Solution

Figure 6: Results from our algorithms on the types of square-piece puzzles are shown. Each puzzle has 432 pieces, each of size 28 × 28. Type 1 puzzles

scramble the location of the pieces, Type 3 puzzles scramble the orientation, and both location and orientation of pieces must be found for Type 2 puzzles.

These results are all perfect reassemblies, except for the solution shown in (h), where there are some mistakes in both the wheat and the sky. In general,

errors involve regions that are extremely uniform, in texture (e.g. an area of uniform foliage) or gradient (e.g. smooth sky, or clipped pixels). When the

assembly algorithm runs out of “easy choices” it must make more difficult choices, and mistakes can occur.

Direct Neighbor Comp. Perfect

Tree-based + LAB SSD 0.423 0.682 0.636 1

Tree-based + MGC 0.822 0.904 0.889 9

Table 5: Our MGC similarity leads to better puzzle assembly versus tra-

ditional dissimilarities. This table shows accuracy at assembling Type 2

puzzles with pieces with unknown location and orientation. The puzzles

have 432 pieces, each with 28× 28 pixels.

P=14 P=28

K= K= K= K= K= K=

221 432 1064 221 432 1064

Direct 0.333 0.377 0.294 0.803 0.822 0.906

Neighbor 0.603 0.626 0.568 0.885 0.904 0.936

Component 0.525 0.551 0.534 0.882 0.889 0.936

Perfect 0 0 0 8 9 14

Table 6: Solving various sizes of Type 2 puzzles (pieces with unknown

location and orientation). This table reports accuracy scores for assembled

jigsaw puzzles with our tree-based reassembly algorithm different numbers

of pieces (K) and different jigsaw piece sizes (P , in pixels square).

etition with the highest “best buddy” score. Due to the ran-

dom component of their algorithm, the overall results were

lower than reported in Table 4, with a direct score of 0.856.

However, when MGC was used, higher scores resulted for

the direct score (0.875, an increase by an absolute 1.9%)

and in the best buddy score (by an absolute 2.7%), although

with a decrease in the neighbor score of 1.1%.

Type 2 Puzzles: Tables 5 and 6 report the assembly ac-

curacy for puzzles where neither the position nor orienta-

tion of pieces are known. As expected, due to the increased

problem complexity, the overall reconstruction accuracies

suffer somewhat compared to the Type 1 puzzles. How-

ever, it is somewhat surprising that nine puzzles are still

perfectly reconstructed.1 As there are no other algorithms

1All reconstructions for Type 1 and 2 puzzles with 432 pieces of size

28×28 can be found at: http://tinyurl.com/7udcpps

that tackle this problem, we explore the results under dif-

ferent parameter settings in Table 6. Even for small pieces

(14× 14), a large portion of pieces are correctly positioned.

Surprisingly, performance is not very sensitive to the num-

ber of pieces in the puzzle, and even puzzles with over 1000

pieces are often solved perfectly. Perhaps this is because

increasing the number of puzzle pieces does not radically

increase the number of pieces that can be confused as a pos-

sible match (on this point, see also Table 3).

Finally, we note that sometimes the largest correct con-

nected component score is much larger than the direct

matching comparison score. This can be a result of early

mistakes in the assembly. Because the assembly algorithm

has no means for backtracking or correcting mistakes (other

than the trim-fill steps), these mistakes can degrade the di-

rect matching score.

Type 3 Puzzles: Finding the correct orientation of jig-

saw pieces with known location using the proposed MRF is

highly reliable. Across the 20 images, the orientation ac-

curacy is 97.2% when considering puzzles with 432 pieces

each with 28 × 28 pixels. The main reason for failure is

when blocks have a constant value (i.e. clipped), which is

true for 3.3% of the blocks. The algorithm executes quickly,

requiring about two seconds for computing the pairwise

compatibility terms, and negligible time for inference.

Mixed-Bag Puzzles: We emphasize that the initial tree

stage of our reassembly algorithm requires no information

about the dimensions of the resulting puzzle, as opposed to

prior work [3, 19]. This allows us to assemble puzzles even

with extra jigsaw pieces that the other methods may have

difficulty handling. To illustrate this point, we combine the

jigsaw pieces from two or three puzzles and then perform

only the first step of our reassembly (stage 1). Note that

no information other than the pieces is given to our algo-

rithm, so it knows neither the number of puzzles that are



(a) 2 Mixed Puzzles (1200

pieces)

(b) Tree-Based Solution of (a) (c) 3 Mixed Puz-

zles (1800 pieces)

(d) Tree-Based Solution of (c)

Figure 7: Building Mixed Puzzles. In (a) and (c), the jigsaw pieces from 2 and 3 puzzles, respectively, are mixed together. Each puzzle has 600 jigsaw

pieces, each jigsaw piece is 28 × 28, and is a Type 2 puzzle having rotated jigsaw pieces. Our tree-based reassembly is still able to assemble the puzzles,

even with no information about the number of puzzles mixed together, or their dimensions. Perfect reassembly is achieved in (b), but a few mistakes occur

in two of the component puzzles in (d), some of which could be fixed with our trimming step.

present, nor the number of pieces that are in a given puzzle.

The results (Figure 7) show not only that the algorithm can

properly group the jigsaw pieces into the component puz-

zles, but that the reassembly is also effective.

Finally, in an effort to push our proposed system to the

limit, we attempt a Type 2 jigsaw puzzle with 9600 jigsaw

pieces. Perfect reconstruction is achieved (Figure 1), proba-

bly aided in part by the image content that contains a variety

of textures and colors. Processing required 23.5 hours on a

modern PC.

6. Conclusion

In summary, this paper introduces a new class of square-

piece jigsaw puzzles: those having pieces with unknown

orientations. For solving jigsaw puzzles where neither the

piece location nor orientation is known, we propose a tree-

based reassembly that greedily merges components while

respecting the geometric constraints of the problem. For

solving puzzles where location is known, we propose a pair-

wise MRF where each node represents a jigsaw piece’s ori-

entation.

We also propose a new measure (MGC) for quantifying

the compatibility of a potential jigsaw piece matches based

on image analysis alone. We show that MGC has supe-

rior performance to previously proposed measures of jigsaw

piece compatibility.

Using MGC and the proposed assembly strategies, we

achieve state-of-the-art results at the task of assembling jig-

saw puzzles with unknown jigsaw piece orientations. In

particular, we have achieved perfect reconstruction of jig-

saw puzzles containing up to 9600 pieces, the largest auto-

matically solved jigsaw puzzle to date.
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